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We investigate the moving average process such that X, = 37, a;Yjin, n > 1, where 3,72, |a;] <
oo and {Y;,1 < i < oo} is a sequence of asymptotically almost negatively associated (AANA)
random variables. The complete convergence, complete moment convergence, and the existence of
the moment of supermum of normed partial sums are presented for this moving average process.

1. Introduction

We assume that {Yj, —c0 < i < oo} is a doubly infinite sequence of identically distributed
random variables with E|Y;| < oo. Let {a;, —o0 < i < oo} be an absolutely summable sequence
of real numbers and

X = Z aiYiym, n2>1 (1.1)
i=—c0

be the moving average process based on the sequence {Y;, —o0 < i < oo}. As usual, S, =
ko1 Xk, n>1 denotes the sequence of partial sums.

Under the assumption that {Y;, —oo <i < oo} is a sequence of independent identically
distributed random variables, various results of the moving average process {X,, n > 1}
have been obtained. For example, Ibragimov [1] established the central limit theorem, Burton
and Dehling [2] obtained a large deviation principle, and Li et al. [3] gave the complete con-
vergence result for {X,, n >1}.
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Many authors extended the complete convergence of moving average process to the
case of dependent sequences, for example, Zhang [4] for p-mixing sequence, Li and Zhang
[5] for NA sequence. The following Theorems A and B are due to Zhang [4] and Kim et al.
[6], respectively.

Theorem A. Suppose that {Y;, —co < i < oo} is a sequence of identically distributed p-mixing
random variables with 3 5_, ¢'/?(m) < co and {X,, n>1}isasin (1.1). Let h(x) >0 (x > 0) bea
slowly varying functionand 1 <p <2, r > 1. If Y1 = 0 and E|Y1|"Ph(|Y1|P) < oo, then

inr—Zh(n)POSnl > Enl/P> < oo, Ve > 0. (1-2)

n=1

Theorem B. Suppose that {Y;, —co < i < oo} is a sequence of identically distributed ¢-mixing
random variables with EY; = 0, EY? < oo and 3 5_y ¢'/?(m) < oo and {X,, n > 1} isas in (1.1).
Let h(x) > 0 (x > 0) be a slowly varying functionand 1 < p <2, r > LIfE[Y1|"Ph(|Y1|P) < oo, then

an—Z—l/ph(n)E<|Sn| —gnl/p>+ <o, Ve>0, (1.3)
n=1

where x* = max{x,0}.

Chen and Gan [7] investigated the moments of maximum of normed partial sums of
p-mixing random variables and gave the following result.

Theorem C. Let0 <r <2andp > 0. Assume that {X,,, n > 1} is a mean zero sequence of identically
distributed p-mixing random variables with the maximal correlation coefficient rate 322, p?/5(2") <
oo, where s =2 ifp <2and s > p ifp > 2. Denote S, = 3.1y X, n > 1. Then

EIXi|" <o, ifp<r,

E[IX:["log(1 +[Xa])] <oo, if p=r,
EXiff <o, ifp>r,

p (1.4)
E{ su < oo,
n2113 n

P
E{ sup <
n>1

1/r
Chen et al. [8] and Zhou [9] also studied limit behavior of moving average process
under ¢-mixing assumption. For more related details of complete convergence, one can refer
to Hsu and Robbins [10], Chow [11], Shao [12], Lietal. [3], Zhang [4], Li and Zhang [5], Chen
and Gan [7], Kim et al. [6], Sung [13-15], Chen and Li [16], Zhou and Lin [17], and so forth.
Inspired by Zhang [4], Kim et al. [6], Chen and Gan [7], Sung [13-15], and other
papers above, we investigate the limit behavior of moving average process under AANA

X

nl/r

are all equivalent.
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sequence, which is weaker than NA and obtain some similar results of Theorems A, B, and C.
The main results can be seen in Section 2 and their proofs are given in Section 3.

Recall that the sequence {X,, n > 1} is stochastically dominated by a nonnegative
random variable X if

sup P(|X,| >t) <CP(X >t) for some positive constant C and Vt > 0. (1.5)

n>1

Definition 1.1. A finite collection of random variables Xj, Xy, ..., X, is said to be negatively
associated (NA) if for every pair of disjoint subsets A;, A, of {1,2,...,n},

Cov {f(Xl ZiEAl), g(X] ZjEAz)} <0, (16)

whenever f and g are coordinatewise nondecreasing such that this covariance exists.
An infinite sequence {X,,, n > 1} is NA if every finite subcollection is NA.

Definition 1.2. A sequence {X,, n > 1} of random variables is called asymptotically almost
negatively associated (AANA) if there exists a nonnegative sequence g(n) — Oasn — oo
such that

Cov (f(Xn)/ (X1, Xus2, -+, XrH—k)) <q(n) [Var(f(Xn)) Var (g(Xn+1/ X2, e ey Xn+k))] 1/2;
(1.7)

for all n, k > 1 and for all coordinate-wise nondecreasing continuous functions f and g when-
ever the variances exist.

The concept of NA sequence was introduced by Joag-Dev and Proschan [18]. For the
basic properties and inequalities of NA sequence, one can refer to Joag-Dev and Proschan [18]
and Matula [19]. The family of AANA sequence contains NA (in particular, independent)
sequence (with g(n) = 0, n > 1) and some more sequences of random variables which are
not much deviated from being negatively associated. An example of an AANA which is not
NA was constructed by Chandra and Ghosal [20, 21]. For various results and applications
of AANA random variables can be found in Chandra Ghosal [21], Wang et al. [22], Ko et al.
[23], Yuan and An [24], and Wang et al. [25, 26] among others.

For simplicity, in this paper we consider the moving average process:

Xp=YaYim, n>1, (1.8)
i=1

where >\, |ai| < oo and {Y;, 1 <i < oo} is a mean zero sequence of AANA random variables.
The following lemmas are our basic techniques to prove our results.

Lemma 1.3. Let {X,,, n > 1} be a sequence of AANA random variables with mixing coefficients
{g(n), n > 1}. If f1, fo,... are all nondecreasing (or nonincreasing) continuous functions, then
{fn(Xy), n > 1} is still a sequence of AANA random variables with mixing coefficients {q(n), n >
1}.
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Remark 1.4. Lemma 1.3 comes from Lemma 2.1 of Yuan and An [24], but the functions of
fi, f2,...in Lemma 2.1 of Yuan and An [24] are written to be all nondecreasing (or non-
increasing) functions. According to the definition of AANA, f1, f»,... should be all non-
decreasing (or nonincreasing) continuous functions.

Lemma 1.5 (cf. Wang et al. [25, Lemma 1.4]). Let 1 < p < 2 and {X,, n > 1} be a mean zero
sequence of AANA random variables with mixing coefficients {q(n), n>1}.If 32, g*(n) < oo, then
there exists a positive constant C,, depending only on p such that

k

>
1

i= i=1

P n
) <G, Y EIXP, (19)

E( max
1<k<n

forall n > 1, where C, = 2P[2277 + (6p)" (32, 4*(n))P'].

Lemma 1.6 (cf. Wu [27, Lemma 4.1.6]). Let {X,, n > 1} be a sequence of random variables, which
is stochastically dominated by a nonnegative random variable X. For any a > 0 and b > 0, the
following two statements hold:

E[|Xa*I(|Xul <b)] < GH[EX"I(X <b)] +b"P(X > b)},
1.10
E[IXa|"I(1Xal > b)] < GE[X"I(X > b)], o

where Cy and C, are positive constants.

Throughout the paper, I(A) is the indicator function of set A, x* = max{x,0} and C,
C1,Cy, ... denote some positive constants not depending on n, which may be different in
various places.

2. The Main Results

Theorem 2.1. Letr > 1,1 < p <2and rp < 2. Assume that {X,,, n > 1} is a moving average process
defined in (1.8), where {Y;,1 < i < oo} is a mean zero sequence of AANA random variables with
>, ¢*(n) < oo and stochastically dominated by a nonnegative random variable Y. If EY'P < oo, then
for every € > 0,

an‘2P<max|Sk| > snl/’”> < oo, (2.1)
1<k<n

n=1

n2P <sup =k
; Kl/p

k>n

> 5> < oo. (2.2)
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Theorem 2.2. Let the conditions of Theorem 2.1 hold. Then for every € > 0,
0 +
an_z_l/”E<max|Sk| - snl/”> < oo, (2.3)

1<ks<n
+
- £> < oo. (2.4)

n=1

n"2E <sup =k
; Kl/p

k>n

Theorem 2.3. Let 0 < v <2and 0 < p < 2. Assume that {X,,, n > 1} is a moving average process
defined in (1.8), where {Y;, 1 < i < oo} is a mean zero sequence of AANA random variables with
S q*(n) < oo and stochastically dominated by a nonnegative random variable Y with EY < co.
Suppose that

( E[Ylog1+Y)] <o, if r=1,
forp<r,
EY" < oo, if r>1,
E[Ylog(1+Y)] <o, ifO0<r<l,

{ forp=r, E[Ylog2(1 + Y)] <o, ifr=1, (2.5)

E[Y"log(1+Y)] <oo, if r>1,
E[Ylog(1+Y)] <o, ifp=1,
forp>r,
{ EYP < oo, ifp>1.

Then

P
—_— > < oo. (2.6)

3. The Proofs of Main Results

Proof of Theorem 2.1. Firstly, we show that the moving average process (1.8) converges almost
surely under the conditions of Theorem 2.1. Since rp > 1, it has EY < oo, following from the
condition EY"P < co. On the other hand, by Lemma 1.6 with « =1 and b = 1, one has

ElYi| <1+ GE[YI(Y>1)]<1+CEY <0, 1<i<oo. (3.1)

Consequently, by the condition >, |a;| < oo, we have that

S ElaiYin] < G Y lail < oo, (32)
i=1 i=1

which implies X.7%; a;Yi., converges almost surely.
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Note that

n n o © i+n
SXe=D>DaYik=>a > Y, n>xl (3.3)
k=1 k=1 i=1 i=1  k=i+l

Since r > 1 and EY"? < oo, one has EY? < oo. Combining EY? < co with EY; = 0, 3,72 |ai| < o0
and Lemma 1.6, we can find that

® i+k
n—l/Pg@ gaiiglE[YjIOyA < nl/pﬂ‘
w itk
= ;”Z;E [vir(Jv;| > n'77)] N
< nl/p§;|ai| iin:lE[lyJ'H(lel S nl/f’>]
= j=it+

<CE [(n”’”)p_lYI(Y > nl/r')] < CE[Y’”I(Y > n“r’)] —50 asn— 0.

Meanwhile,
0 i+k
n—l/Plr?]fz(l ;aijgl(_nl/p> E[I(lfj < ml/p)]‘
< n”'”glailglﬁ[|1g|1<|yj| >n!M)| < CE[yP1(Y > n'/7)| —0 asn— o,
(3.5)
-1/p < ) & Ureli(Y: 1/p
n g}iﬁ galj:lzﬂn [ ( i>n )]
< nl/pg|ai|j2115[|¥j|l<|¥j| > nl/P>] < CE[Y’”I(Y > n“”)] —0 asn— oo.
Let
Yo =-nPI(Y; < =nP) + GI(|Y;| < n') w01 (Yy > 0 P), G2, 56

Yo =Yaj—EYy, j21.
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Hence, for for all € > 0, there exists an ng such that

0 i+k
n /P max Zal Z EY,; < 7 n>np.
I<ksn i=1  j=i+l

Denote

Y, = n“pI(Y,- < —nl/p> - nl/r’I(Yj > nl/p> n YJ'I(|Y1'| S nl/p)/ i>1.

Noting that Y; = Y::j +Yyj, j > 1, wecan find

] i+k p
Zn’ 2P( max|Sk| > en'/? ) < an_zP max Zal Z
1<k<n - 1<k<n
n=1 n=1 i=1  j=i+l
e i+k 1/p
en
+ Zn’ 2P max Zal Z Yoi| > ——
n=1 1gksn i=1 =i+l
0 i+k /
<> n max| » a
< D P( max Sa
n=1 i=1  j=i+l
[e3) i+k 1/p
en
+ an 2P max Zal Z Yn] >
n=1 Isksnl3 S0
0 ) itk
-2
+C+ » n“P{ max| ) a EY,|> &
2 max| 2,4 2, EYa
=ng j=i+l
=) i+k /p
<C+ Zn’_zP max al Z
n=1 Isksnl3 S0
o) i+k /p
en
+ an 2P max Zal Z Yn] >
n=1 Isksn i=1  j=i+l

(3.7)

(3.8)

(3.9)
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For I, by Markov’s inequality, 3.2, |a;| < oo, |Yr’l‘j| < |Y;lI(y;| > n'/P), Lemma 1.6 and EY'? <
oo, it has

2 ® i+k
1< —Zn"zn‘l/”E max Za, Z

£ 1<k<n
n=1 i=1  j=i+l

n=1 i=1

i+k
< C1an zn‘l/pzm |E<max 2 |Y; |I<|Y | > nl/P>>

< Czinr*l/PE[ﬂ@f > nl/r’)]

n=1

=C ) VPN EYI(m < YP <m+1)]
n=1

m=n
il m

= szE[YI(m <YP<m+ 1)]an—1—1/p
m=1 o

<C3 ). m VPE[YI(m <YP <m+1)] <CEY"? < o.

m=1

(3.10)

Since f;(x) = -n'/PI(x < -n'/?) + xI(|x| < n'/?) + n'/PI(x > n!/P) is a nondecreasing continu-
ous function of x, we can find by using Lemma 1.3 that {17,1]-, 1< j < oo} isamean zero AANA
sequence and Efrfj < EYs]., YT%]. = Y].ZI(|Y]-| < n'/P) + n?/PI([Y;| > n'/P), j > 1. Consequently, by
the property of AANA, Markov’s inequality, Holder’s inequality, Lemma 1.5, C, inequality,
and Lemma 1.6, we can check that

4 2 o 2.2/ i+k 2
12 (5) e man (S 2T

j=i+l

, 2
<(* 2inr‘zn_z/’?]:" i<|a~|1/2> |a;|Y? max fff
“\¢€ < ! " qcken| &AM

n=1 i=1 j=i+l

2 » 0 2 i+k 2
) an‘2n‘2/” <Z|‘1i|> sup E max Z Yn]
=1 i=1 i>1 Isksn\ ;551

i+n

]
Clzn"zn‘z/’”sup Z EYj]
n=1

i1 =iyl

i+n

<GSt rsup 3 (E[FI(Iv| <n) ]« E[1 (] > )]

21 j=i+1
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<GS (Y < 07|+ C 3 P (Y 5 )
n=l n=1

< C3gnrlz/PE[YZI<Y < n”"’)] + C4§nrll/pE[YI<Y > nl/P>]

= C3J1 + CaJo.
(3.11)
Since rp < 2, it can be seen by EY? < oo that
Ji = inf-l-ﬂpgﬁ[yzl((i P <y < i“P)]
- iE[YZI((i ~)P <y < i“P)]inf-l-Z/P (3.12)

—_

n=i

< CliE[YrPYZ—TPI<(Z' _ 1)1/}7 <Y< il/P)]ir—Z/p < CZEer < .
i=1

By the proof of (3.10), we have J, < CEY"? < oo. Therefore, (2.1) follows from (3.9), (3.10),
(3.11), and (3.12).
Inspired by the proof of Theorem 12.1 of Gut [28], it can be checked that

K\/p | > 22/P5>

an ’p <sup

< 22—rip< sup
1

m= k>2m-1

2m-1
22/p€> Z om(r-2)

n=2m-1

> 22/”s>
> 22/”s>

< 22—r22m(r—1)2p<max|sk| > 82(1+1)/p>
I=m

1<k<2!

P

<22 rzzm(r 1)P< sup

m=1 k>2m-1

k_

ki/p

m=1 I>m 21-1<k<2!

=227 Z 2mr-hp <sup max

0 1
= Zz‘rZP<max Skl > gz<’+1>/P> > amih

1
= \ik<2 “~
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<G Zz’“ 1)P<max|Sk| > 52(”1)/’”)
I=1

o 2111
= 22*fclz Z 2(1”)(”2)P<max|5k| > SZ(ZH)/P)

=1 nl 1<k<2!
e 21+1_1

< 2% rclz Z n 2P(max|Sk| > 5n1/”> (since r < 2)
I=1 n=2!

<277TCy Zn’ 2P(max|5k| > gnl/"’>

n=1
(3.13)
Combining (2.1) with the inequality above, we obtain (2.2) immediately. O
Proof of Theorem 2.2. For all € > 0, it has
0 +
an - 1/”E<max|5k| - Snl/”>
=1 1<k<n
= an‘z‘l/"’J (max|5k| en'/P > t> dt
=1 0 1<k<n
0 n/p
Z n U”J P<max|5k| —en'/? > t>dt (3.14)
~ 1<ks<
Z 2= UPI <max|5k|—£n1/p>t>dt
= nl/p 1<k<
0 0 {os]
Z <max|Sk| > enl/p> + an‘z‘l/”f (max|5k| > t>dt
) =1 nl/p 1<k<
By Theorem 2.1, in order to prove (2.3), we only have to prove that
an -2- 1/pf (max|5k| > t)dt < co. (3.15)
nl/p 1<k<
Fort >0, let
Yij=—tI(Y; < —t) +Y]I(|Y]| <t) +tI(Y]~ >t), j=1,
Y =Y;-EYy, j>1, (3.16)

Y5 = (Y <—t) —tI(Y; > ) + (|| > 1), j>1.
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Since Y; = Yt’; +Yij, j > 1, it is easy to see that

oo} (o)
Z n U’”f P(max|5k| > t) t
1<k<n

=1 nl/p

) .y 0 ) i+k ¢

<y n P Pl max|» a; » Y| > = )dt

- Z ,[1/;1 1<k<n Z I.Z b 2
n=1 n i=1  j=i+l

0 i+k 3.17
e Sz [ p( max| S 35yl > ¢ ) (3.17)
n=1 n'/v I<ksn i=1 =i+l

For I;, by Markov’s inequality, |Yt’;.| <1Y;lI(]Y;| > t), Lemma 1.6 and EY'? < oo, we get that

i+k
I < Zan —2-1/p t'E( max Zal Z
nl/p 1<k<n 1 =it

0 ® i+k
SZZn"Z‘l/p’[ t‘lz|a1|E<maxZ |Y;|I(]Y;] >t)>
n=1

nl/p

< C1an‘1‘1/f’f FYE[YI(Y > 1)]dt
nl/pr

(m+1)/? 1E[YI<Y N ml/p)]dt (3.18)

— Clinr_l_l/pz I
n=1 m=

1/p

<Gy Zn’ - ”PZml/P - “PE[YI(Y > ml/P)]

m=n

_ CZZm_lE[YI<Y S ml/p)]znr 1-1/p

m=1

< Cg,imr‘l‘l/PE[YI(Y > ml/r’>] < CEY™ < co.
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From the fact that {fﬁj, 1 <j < oo} is a mean zero AANA sequence and El?tzj < EYyj, Yé =
Y].21(|Y]-| <t)+#2I(|Y;| > t), j > 1, similar to the proof of (3.11), we have

itk
2 r-2-1/p -2
I, <4 gn Lup 1r£1ka<>7<1 (Zal Z Yt]> dt

i=1 =i+l

© 2 itk 2
< 42211’ w2 1/’7"‘ t2( Dllail ) supEq max( DYy dt
nl/p i1 izl | ks \ T

o i+n

<G an = VPI t7sup > EYidt (3.19)
nte 2l =i
[ee] i+n

<C Zn’ 2 “PJ‘ F2sup >, {EPZI(|Y)| <0)] + LE[I(|v;] > )] }at
nl/p 21 j=i+1

<G Yl t‘ZE[YZI(Y < t)]dt + C4Zn’-1-1/r’f P(Y > t)dt

n=1 nl/p n=1 nl/p

=: C3121 + C4122.

It follows from rp < 2 and EY'P < oo that

(m+1)VP

t‘zE[YZI(Y < t)]dt

[ee] [ee]
21 = an‘l‘l/”z f
n=1

m=n m'/P

<C an Y ek PE[V(Y < (m+ 1))

m=n

= C1im*1/p—1E[YZI<Y < (m+ 1)1/}7)]%”1‘*171/;)

m=1 n=1

< Czimr_l'Z/”E[YZI(Y < (m+1)"7)]

m=1

m+1

= < r-1-2/ 2 Y 1/
szzzlm F’;E[Y I((z DP <y <i p>]
= ngmr—l—z/PE[YZI(ml/P <Y< (m+ 1)1/,;)]
+Czim”lfypiE[YzI((i_1)1/;7 <Y< il/r’>]
m=1 i=1

= Czimr_l_Z/PE[YrPYZ_rpI<m1/p <Y< (m i 1)1/p>]

m=1
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+OYEVI(G- ) <Y <) | St
i=1 m=i

< 2(24P)/PC2§:m’1E[er1<m1/P <Y< (m+ 1)1/p>]

m=1

+ QiE[Y’PYz‘“’I((i —DP<y< il/P)]iH/P < CLEY™ < oo.

i=1
(3.20)
By the proof of (3.18), one has
In < nf-l-l/r’f tYE[YI(Y > t)]dt < CEY" < oo. (3.21)
n=1 nl/r
On the other hand, by the property EY; = 0, we have
© i+k
i+k
= max Zm SHEI(|Y;] <t)] —tE[I(Y; < -t)] +tE[I(Y; > 1)]}
sksn i=1  j=i+l
© i+k
- max| Do 3 (DG > 0] + 21103 <] = {137 > )]
i+n
<23 Jal 3% [ |1(¥] > 0)].
i=1 j=i+l
(3.22)
Thus, by Lemma 1.6 and the proof of (3.18), it can be seen that
© © © i+k
I; < 4an_2‘1/"f 1 max Zal Z EY;;
n=1 n/p Isksn |3 /5
i+n
<83Sw> WI 30l S E[Y 1Y > 6)]dt (3.23)
n=1 i=1 j=i+l
< clzn’-l-l/r’f tYE[YI(Y > t)]dt < CLEY"™P < 0.
n=1 nl/v

Consequently, by (3.14), (3.17), (3.18), (3.19), (3.20), (3.21), and (3.23) and Theorem 2.1, (2.3)
holds true.
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Next, we prove (2.4). It is easy to see that

> g22/P 4 t> dt

0 ~ ) Sk
_ § r-2
= n J‘ P<sup m

n=1 0 k>n
o 2"-1 o /
_ r-2 2/p
=> > n f P<sup U > g2 +t>dt
m=1p=2m-1 0 k>n
0 o / 2m-1 (r2)
2-r 2/p m(r-2
<2 Z'[ < sup kl/ > g2 +t>dt22
m=170 k>2m-1 n=om-1

o0 [ee] S
< 2>y 2mir IO P< sup kl_l/(p > £22/P + t> dt

k22m—1

K1/p

= 22"22’”(’_1) J P<sup max
0 =

m=1 I>m b ]Sk<21

X > g2%p +t>dt

<277 Zm(r ! Zf (maXISkI > (e227 +t)2“—1>/P>dt

1<k<2!

= 22‘er <max|5k| > (522/” + t>2(l 1V”)alt‘zzm(r D
=170

!
1<k<2 =l

e o
< ZZ‘TZZW‘D P( max|Sk| > <£22/’” + t>2(l‘1)/p dt <let s= 2(1_1)/’”1‘)
= 0 1<k<2!

o] (o)
< (:1221(r’1’1/7”> f P<max|5k| > 2B D/p s)d
=1 0 1<k<2!

2I+1_1
_2/pn e, Z PP LRI 1/p)f p(max|5k| S e/ S>ds
0

i 1<k<2!

0 2l+1_1
< 2@ /pn Z Z nr Upf <max|Sk| >en'/P + s>ds (since r < 2)

=1 neo! 1<k<n

N
< 2@ /rnc, an 2= 1/”15<rrhax|5k| —Enl/p> < 0.

=1 1<k<

(3.24)

Therefore, (2.4) holds true following from (2.3). O
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Proof of Theorem 2.3. Similar to the proof of Theorem 2.1, by >, |ai| < oo and EY < oo,
> aiYiw, converges almost surely. It can be seen that

p o0
E( sup = f P{ sup > /P ) dt
n>1 0 n>1
Szp/r+f P(sup >t1/”>dt
o0/ n>1

(o)
SZP/’+I P( sup m > /P ) dt
op/r k>1 2k l<n<2k

n
nl/r

nl/

al/r

nl/
(3.25)
32””+f ZP( max >t1/”>dt
WD \2 sk nT
o) =]
e [ 5 (masisu > 25 Y (520
op/r k=1 1<n<2k
—27"/r+2p/r22 k"’/rf P(max|5 |>sl/’”>ds.
k=1 okp/r 1<n<2k
For s!/7 > 0, let
Yoy = -sPI(Y; < =s"7) + Iy < 87) + 50 (Yy > 81F), G2,
Yo=Y -EYs, j21, (3.26)

Ys*j = sl/pI<Y]~ < —51/p> — 51/P1<Y,- > Sl/p> n Y]I<|Y]| S 51/p>, i>1.

Since Y; = Ys*j +Ysj, j 21, then
22 kp/rf (max|5 |>sl/”>ds
okp/r 1<n<2k
[o'e] [ee]
< szkp/r J max
k=1 okp/r 1<n<2k

+ Zz kp/rf

2

i+n

Sa 3y

i=1  j=i+l

> ds
s > . (3.27)
> > ds

i+n
o max Zal Z Ys]

k
1<n<2* 153 j=i+l

+ 22 kp/rf

2!

i+n
o max Zal Z EY;

k
1<n<2 i=1  j=i+l

=: H; + H, + H;.



16 Discrete Dynamics in Nature and Society

For H;, similar to (3.18), by Markov’s inequality and Lemma 1.6, one has

> ds
i+n

< 2227kp/rj‘ s*l/PZ|ai|E <1r<ni>2(k Z |YJ|I(|Y]| > Sl/p>> ds

i+n

i“i 2.

k
k=1 2kp/r 1< (5 S

[ee) [ee)
H; < 222_"7"/’ f s VPE < max

k=1 2kp/r i=1 N =

<C SRk fw sYPE[YI(Y > s'7)|ds
k=1

2kp/r

omp /r

S S| T e [va(x > 57) s

m=k

(3.28)

< ngzk—kw’gzmﬂ’—m/ ’E[YI(Y > om/ )]

=G, S amirm "E[yi(Y >2m7)] Srokprr
k=1

m=1

(S ommrElYI(Y > 2], ifp<r,

m=1

< 4 Ca Y m2mmE[YI(Y >2mT)], ifp=T,

m=1

Cs > 2m/m=m/PE[YI(Y > 2m/7)], ifp>r.

\ m=1

For the case p < r,if 0 <r <1, then

< m-m/r m/r\| — < m—m/rw k/r (k+1)/r
S E[YI(Y>2 )] m;z éE[YI(Z <Y <20k )]

m=1

) k
_ k/r (k+1)/r m(1-1/r)
éE[YI(Z <Y<2 )]glz 529

< CliE[YI<2k/T <Y <20/
k=1

< C1EY.
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If r =1, then

izm‘m/’E[YI<Y > 2'“/’)]

m=1

E[YI(Y >2™)]

Ms FMs
Ms

E[Yl(zk <Y< 2’<+1>]

3
N
~
If
3

k
1E[Y1<2’< <Y< 2’<+1)]§11 30

M TTDH48

kE [Yl(zk <Y< 2"“)]

o~
Il

1

< CliE[Ylog(l + Y)I(Zk <Y< 2’<+1)]
k=1
<CGE[Ylog(1+Y)].

Otherwise for r > 1, it has

izm-m/rls[n(lr > 2m/f)] - i

=1 -1

mr N K/ (k+1)/
2mmr1§115[y1(2 Ty <ok )]

© k
_ k/ (k+1)/ -m/
SE[y1(29 <y <2t >]mZ:12mm

=~
1l
—_

(3.31)

< Clizk—k/rE[YI<2k/r <Y< 2(k+1)/r>]
k=1

< r k/r (k+1)/r r
g(:lkZ:lE[Y 1(2¥7 <y <260/ < CEY"
Similarly, for the case p = r,if 0 < r < 1, then
- m-m/r m/r\| = < m-m/r < k/r (k+1) /7
mzzlmz E[YI<Y>2 )] mzzlmz %E[YI(Z <Y <20k )]

= ig[y[@k/r <Y< 2(k+1)/r>] imzm(l—l/r)
k=1 =l

< gE[YI(zk/f <Y< 2<k+1>/f)]kngzm<l-l/f> (332

< ClikE[YI(Zk/r <Y< 2(k+1)/r>]
k=1

< GE[Ylog(1+Y)].
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If r =1, then

S mammir "E[YI(Y>2"")] = imiE[YI(Zk <Y <2

m=1

= iE[YI(Zk <Y 28] im

m=1

< Czisz[YI<2k <Y< 2k+1>] (3.33)
k=1

< CziE[Y10g2(1 + Y)I(zk <Y< 2k+1>]
k=1

< C2E[Y10g2(1 + Y)].
Otherwise, for r > 1, it follows

< -m/ /
mzlmzm m ’E[YI(Y > om ,>]

y m2" " ZE[n(zk/ <Y <20/

k=m

M 2

[Yl(zk/ <Y <20/ )] Zmzm m/r (3.34)
m=1

=~
1l
—_

Ms

E[y1(2"7 <y <2lnr )]kZZ"’ -/t

m=1

=~
1l
[

< clzkzk*k/fE[n(zk/f <Y <26/ < GEY log(1+ Y)).
k=1

On the other hand, for the case p > r,if 0 < p <1, then

szP/ rrE[YI(Y > 2] = sz@ /e ZE[YI(zk/ <Y 20/

m=1

[ee)
=N E|YI(27 <y < 2k+D)/r om(p-1)/r
"Z:; [ ( >]m§=:1 (3.35)

< CliE[YI(Zk/r <Y< 2(k+1)/r>]
k=1

< C1EY.
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If p=1, then

izmp/r-m/rls[n(y >2mr)| = s iE[YI(Zk“ <Y 200/

m=1 m=1lk=m

E[y1(2"7 <y <2len/r)] il

m=1

M

T
n

< k/r (k+1)/7r
;kE[YI@ <Y <20k )]

< CiEYlog(1+Y).

(3.36)
For p > 1, it has
rgzmp/r—m/rE[YI<Y > zm/r>] _ mi;lzm(p—l)/rlgn}; [YI<2k/r <Y< 2(k+1)/r>]
& k
= k/ (k+1)/ (r-1)/
éz—r[n(z Ty <20k r)]mglzmp .
< Clgzk(p—n/rE[YI <2k/r <Y< 2(k+1)/r>]
< C1iE[Y”I(2k/T <Y< 2("*1)“)] < C{EY".
- (3.37)

Consequently, by (3.28), the conditions of Theorem 2.3 and inequalities above, we obtain that

r(:122"1-'"/09[1/1(1/ >2m/m)],  ifp<r,

m=1

Hy < { G > m2m ™ E[YI(Y >2m/")], ifp=r,

m=1

C3 D 2mr/mm/TE[YI(Y > 2™/T)], ifp>r

\ m=1
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[ CLEY < oo, ifo<r<l,
forp<r, 4 GE[Ylog(1+Y)] <o, ifr=1,

LC6EY" < o0, ifr>1,
C/E[Ylog(1+Y)] <oo, ifO0<r<1,

<dforp=r,1 CgE[Ylog2(1+Y)] <o, ifr=1,

(CoE[Y"log(1+Y)] <o, ifr>1,
(C1oEY < oo, if0<p<1,

forp>r, 4 CiE[Ylog(1+Y)] <o, ifp=1,

kCuE}/p < oo, if p> 1.

(3.38)

Since {)Nfs]-,l < j < oo} is amean zero AANA sequence and El?z <EYZ?, Y% = Y]2[(|Y]| <

sj’ " sj

s'/P) + s¥PI(]Y;| > s'/7), j > 1, similar to the proof of (3.11), we obtam that

2
i+n
kp/ —2/
H, < Clzz p/ir Lkn/r PEQ max (Zal Z Y5]> ds

k
k=1 <28\ 33 5

o0 2 i+n 2
<C1 )2 kp/rf s72/p a;| ) supE{ max Y. ds
12 okp/r ;l ll izF 1<n<2k _Z *

k=1 j=i+l
i+2K
<G, Zz e f s2rsup ) EV2ds (3.39)
2kp/r i>1 j=i+1

< CBZZ kp/r+kj

zkp/r

+ C4ZZ kp/r+k J‘ka/r (Y > sl/p>ds

k=1

‘Z/PE[YZI(Y < sl/r’>]ds

= C3H21 + C4H22.

Similar to the proof of Theorem 1.1 of Chen and Gan [7], by p < 2 and the conditions of
Theorem 2.3, we have that

2 (m+1)p/r

s2/PE YZ (Y < sl/P)]ds

mp/r

2- kp/r+k J‘
kZ; Z

< —kp/ kOo /r=2m/ 2 (m+1)/
k; p/re %2"1?” mrE[YI(YSZ"” )]
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St/ E[y2r(x <2 /)| Sok(-p/n
m=1 k=1

C1 D 2mr2/rE[Y2I(Y <20 D/m)],ifp <,
m=1

Cy > m2m=2/TE[Y2I(Y <20mV/r)]ifp =7,

m=1

IN
o\

C3 > 2mP2/E[Y2I(Y <20m /)], ifp>r

\ m=1

C4EYV < oo, if P <r,

IN
-\

CsE[Y"log(1+Y)] <o, ifp=r,

L C6EY? < o0, ifp>r.

(3.40)

On the other hand, by the proof of (3.28) and (3.38), it follows

Hop < 326017 fw sYPE[YI(Y > sVF)|ds
k=1

2kp/r

CiEY < oo, if0<r<l,
forp<r, { GE[Ylog(1+Y)] <oo, ifr=1,

| C3EY" < oo, ifr>1,
(C4E[Ylog(1+Y)] <o, ifO<r<l, (3.41)

<{forp=r1 C5E[Ylog2(1 + Y)] <o, ifr=1,

(C6E[Y"log(1+Y)] <o, ifr>1,
CyEY < oo, if0<p<l,

forp>r 4 CGE[Y1og(1+Y)] <oo, ifp=1,

| CoEY? < oo, ifp>1.

Similar to the proof of (3.23), by the property EY; = 0 and the proofs of (3.28) and (3.38), one

has
> ds

< 822"‘”/’ Jm s‘l/”<max i|ai| > E[|Y]|I<|Y]| > sl/p>]>ds

k
k=1 2kp/r = W =

i+n

iai Z EYS]

=1 j=i+l

[0} 0]
H; < 422""’”’ f s < max

k=1 okp/r 1§n52k
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<C Sokklr fw sVPE[YI(Y > sV7)]ds
k=1

2kp/r

-

(C1EY < oo, if0<r<l,
forp<r,{ GE[Ylog(1+Y)] <oo, ifr=1,

C3EY" < oo, ifr>1,
(C4E[Ylog(1+Y)] <o, ifO<r<l,

< {forp=r,1 CsE[Ylog*(1 + Y)] <o, ifr=1,

(C6E[Y"log(1+Y)] <o, ifr>1,
(C7EY < oo, if0<p<l,

forp>r,q GE[Ylog(1+Y)] <o, ifp=1,

CoEY? < oo, if p>1.

(3.42)

Consequently, by (3.25), (3.27), (3.28), (3.38), (3.39), (3.40), (3.41), and (3.42), we finally
obtain (2.6). O

Remark 3.1. Zhou and Lin [17] obtained the result (2.6) for partial sums of moving average
process under (-mixing sequence. But there is one problem in their proof. On page 694 of
Zhou and Lin [17], they presented that

CS I > 27, ifp<r,
m=1
h<o < dCSmm B > 2], i p=r,
m=1
Cilzmp/r—m/rE“YluQYﬂ >2m/m)], if p >, (3.43)
| =
CEY1|" < oo, iftp<r,

<d CE[M[ log +|¥i])] < oo, ifp=7,
CEY1|F < o0, ifp>r,

where 1 <r <2and p > 0. For the case p < r, by taking r = 1, we cannot get that

>2m I EMlE(al > 27)| = SEIII(n| > 27)] < CEY| < oo (3.44)

m=1 m=1
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Here, we give a counter example to illustrate this problem. Assume that the density function
of nonnegative random variable Y is

-1
C F 1
_  ys2 C= day| . (3.45)
f(y) Sy y [2 iy y]

Obviously, it can be found that

EY = CI —dy < . (3.46)

But forr =1,

izm-m/rls[n(y >2mn)] = s iE[YI(Z” <y <2mh)| = iE[YI(Z” <Y <2m)] S

m=1 m=1n=m n=1 m=1
& (P cC& 1
_CETLJ"I ylnzydy_m§n+1 = Q0.
(3.47)
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