
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 868549, 11 pages
doi:10.1155/2012/868549

Research Article
Warped Product Submanifolds of
LP-Sasakian Manifolds

S. K. Hui,1 S. Uddin,2 C. Özel,3 and A. A. Mustafa2
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We study of warped product submanifolds, especially warped product hemi-slant submanifolds
of LP-Sasakian manifolds. We obtain the results on the nonexistance or existence of warped
product hemi-slant submanifolds and give some examples of LP-Sasakianmanifolds. The existence
of warped product hemi-slant submanifolds of an LP-Sasakian manifold is also ensured by an
interesting example.

1. Introduction

The notion of warped product manifolds was introduced by Bishop and O’Neill [1], and later
it was studied bymanymathematicians and physicists. These manifolds are generalization of
Riemannian product manifolds. The existence or nonexistence of warped product manifolds
plays some important role in differential geometry as well as in physics.

On the analogy of Sasakian manifolds, in 1989, Matsumoto [2] introduced the notion
of LP-Sasakian manifolds. The same notion is also introduced by Mihai and Roşca [3] and
obtained many interesting results. Later on, LP-Sasakian manifolds are also studied by sev-
eral authors.

The notion of slant submanifolds in a complex manifold was introduced and studied
by Chen [4], which is a natural generalization of both invariant and anti-invariant sub-
manifolds. Chen [4] also found examples of slant submanifolds of complex Euclidean spaces
C2 and C4. Then, Lotta [5] has defined and studied the slant immersions of a Riemannian
manifold into an almost contact metric manifold and proved some properties of such
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immersions. Also, Cabrerizo et al. [6] studied slant immersions of K-contact and Sasakian
manifolds.

In 1994, Papaghuic [7] introduced the notion of semi-slant submanifolds of almost
Hermitian manifolds. Then, Cabrerizo et. al [8] defined and investigated semi-slant submani-
folds of Sasakianmanifolds. The idea of hemi-slant submanifolds was introduced by Carriazo
as a particular class of bi-slant submanifolds and he called them anti-slant submanifolds [9].
Recently, these submanifolds were studied by Sahin for their warped products of Kähler
manifolds [10]. Recently, Uddin [11] studied warped product CR-submanifolds of LP-
Sasakian manifolds.

The purpose of the present paper is to study the warped product hemi-slant submani-
folds of LP-Sasakianmanifolds. The paper is organized as follows. Section 2 is concernedwith
some preliminaries. Section 3 deals with the study of warped and doubly warped product
submanifolds of LP-Sasakian manifolds. In Section 4, we define hemi-slant submanifolds
of LP-contact manifolds and investigate their warped products. Section 5 consists some
examples of LP-Sasakian manifolds and their warped products.

2. Preliminaries

An n-dimensional smooth manifoldM is said to be an LP-Sasakian manifold [3] if it admits a
(1, 1) tensor field φ, a unit timelike contravariant vector field ξ, an 1-form η, and a Lorentzian
metric g, which satisfy

η(ξ) = −1, g(X, ξ) = η(X), φ2X = X + η(X)ξ, (2.1)

g
(
φX, φY

)
= g(X,Y ) + η(X)η(Y ), ∇Xξ = φX, (2.2)

(
∇Xφ

)
(Y ) = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ, (2.3)

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian
metric g. It can be easily seen that, in an LP-Sasakian manifold, the following relations hold:

φξ = 0, η
(
φX

)
= 0, rankφ = n − 1. (2.4)

Again, we put

Ω(X,Y ) = g
(
X,φY

)
(2.5)

for any vector fields X, Y tangent to M. The tensor field Ω(X,Y ) is a symmetric (0,2) tensor
field [2]. Also, since the vector field η is closed in an LP-Sasakian manifold, we have [2]

(
∇Xη

)
(Y ) = Ω(X,Y ), Ω(X, ξ) = 0, (2.6)

for any vector fields X and Y tangent toM.
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Let N be a submanifold of an LP-Sasakian manifold M with induced metric g and let
∇ and∇⊥ be the induced connections on the tangent bundle TN and the normal bundle T⊥N
ofN, respectively. Then, the Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X,Y ), (2.7)

∇XV = −AVX +∇⊥
XV, (2.8)

for allX, Y ∈ TN and V ∈ T⊥N, where h andAV are second fundamental form and the shape
operator (corresponding to the normal vector field V ), respectively, for the immersion of N
intoM. The second fundamental form h and the shape operator AV are related by [12]

g(h(X,Y ), V ) = g(AVX, Y ) (2.9)

for any X,Y ∈ TN and V ∈ T⊥N
For any X ∈ TN, we may write

φX = EX + FX, (2.10)

where EX is the tangential component and FX is the normal component of φX.
Also, for any V ∈ T⊥N, we have

φV = BV + CV, (2.11)

where BV and CV are the tangential and normal components of φV , respectively. The cov-
ariant derivatives of the tensor fields E and F are defined as

(
∇XE

)
Y = ∇XEY − E∇XY, (2.12)

(
∇XF

)
Y = ∇⊥

XFY − F∇XY (2.13)

for any X,Y ∈ TN.
Throughout the paper, we consider ξ to be tangent toN. The submanifoldN is said to

be invariant if F is identically zero, that is, φX ∈ TN for any X ∈ TN. On the other hand, N
is said to anti-invariant if E is identically zero, that is, φX ∈ T⊥N for any X ∈ TN.

Furthermore, for a submanifold tangent to the structure vector field ξ, there is another
class of submanifolds which is called a slant submanifold. For each nonzero vectorX tangent
toN at x ∈ N, the angle θ(X), 0 ≤ θ(X)(π/2) between φX and EX is called the slant angle or
wirtinger angle. If the slant angle is constant then the submanifold is called aslant submanifold.
Invariant and anti-invariant submanifolds are particular classes of slant submanifolds with
slant angle θ = 0 and θ = π/2, respectively. A slant submanifold is said to be proper slant if
the slant angle θ lies strictly between 0 and π/2, that is, 0 < θ < π/2 [6].
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Theorem 2.1 (see [13]). Let N be a submanifold of a Lorentzian almost paracontact manifold M
such that ξ is tangent to N. Then, N is slant submanifold if and only if there exists a constant λ ∈
[0, 1] such that

E2 = λ
(
I + η ⊗ ξ

)
. (2.14)

Furthermore, if θ is the slant angle of N, then λ = cos2θ. Also from (2.14), we have

g(EX,EY ) = cos2θ
[
g(X,Y ) + η(X)η(Y )

]
, (2.15)

g(FX, FY ) = sin2θ
[
g(X,Y ) + η(X)η(Y )

]
(2.16)

for any X, Y tangent toN.
The study of semi-slant submanifolds of almost Hermitian manifolds was introduced

by Papaghuic [7], which was extended to almost contact manifold by Cabrerizo et al. [8].
The submanifold N is called semi-slant submanifold of M if there exist an orthogonal direct
decomposition of TN as

TN = D1 ⊕D2 ⊕ {ξ}, (2.17)

whereD1 is an invariant distribution, that is, φ(D1) = D1 andD2 is slant with slant angle θ /= 0.
The orthogonal complement of FD2 in the normal bundle T⊥N is an invariant subbundle of
T⊥N and is denoted by μ. Thus, we have for a semi-slant submanifold

T⊥N = FD2 ⊕ μ. (2.18)

For an LP-contact manifold this study is extended by Yüksel et al. [13].

3. Warped and Doubly Warped Products

The notion of warped product manifolds was introduced by Bishop and O’Neill [1]. They
defined the warped product manifolds as follows.

Definition 3.1. Let (N1, g1) and (N2, g2) be two semi-Riemannian manifolds and f be a
positive differentiable function onN1. Then, the warped product ofN1 andN2 is a manifold,
denoted by N1×fN2 = (N1 ×N2, g), where

g = g1 + f2g2. (3.1)

Awarped product manifoldN1×fN2 is said to be trivial if the warping function f is constant.
More explicitely, if the vector fields X and Y are tangent toN1×fN2 at (x, y), then

g(X,Y ) = g1(π1 ∗X,π1 ∗ Y ) + f2(x)g2(π2 ∗X,π2 ∗ Y ), (3.2)
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where πi (i = 1, 2) are the canonical projections ofN1 ×N2 ontoN1 andN2, respectively, and
∗ stands for the derivative map.

Let N = N1×fN2 be a warped product manifold, which means that N1 and N2 are
totally geodesic and totally umbilical submanifolds ofN, respectively.

For the warped product manifolds, we have the following result for later use [1].

Proposition 3.2. Let N = N1×fN2 be a warped product manifold. Then,

(I) ∇XY ∈ TN1 is the lift of ∇XY on N1,

(II) ∇UX = ∇XU = (X ln f)U,

(III) ∇UV = ∇′
UV − g(U,V )∇ ln f ,

for any X,Y ∈ TN1 and U,V ∈ TN2, where ∇ and ∇′ denote the Levi-Civita connections on N and
N2, respectively.

Doubly warped product manifolds were introduced as a generalization of warped
product manifolds by Ünal [14]. A doubly warped product manifold ofN1 andN2, denoted
as f2N1×f1N2 is endowed with a metric g defined as

g = f2
2g1 + f2

1g2, (3.3)

where f1 and f2 are positive differentiable functions on N1 andN2, respectively.
In this case formula (II) of Proposition 3.2 is generalized as

∇XZ =
(
X ln f1

)
Z +

(
Z ln f2

)
X (3.4)

for each X in TN1 and Z in TN2 [15].
One has the following theorem for doubly warped product submanifolds of an LP-

Sasakian manifold [11].

Theorem 3.3. LetN=f2N1×f1N2 be a doubly warped product submanifold of an LP-Sasakian mani-
foldM whereN1 andN2 are submanifolds ofM. Then, f2 is constant andN2 is anti-invariant if the
structure vector field ξ is tangent to N1, and f1 is constant and N1 is anti-invariant if ξ is tangent to
N2.

The following corollaries are immediate consequences of the above theorem.

Corollary 3.4. There does not exist a proper doubly warped product submanifold in LP-Sasakian
manifolds.

Corollary 3.5. There does not exist a warped product submanifoldN1×fN2 of an LP-Sasakian mani-
foldM such that ξ is tangent toN2.

From the above theorem and Corollary 3.5, we have only the remaining case is to study
the warped product submanifold N1×fN2 with structure vector field ξ is tangent toN1.
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4. Warped Product Hemi-Slant Submanifolds

In this section, first we define hemi-slant submanifolds of an LP-contact manifold and then
we will discuss their warped products.

Definition 4.1. A submanifold N of an LP-contact manifold M is said to be a hemi-slant sub-
manifold if there exist two orthogonal complementary distributions D1 and D2 satisfying:

(i) TN = D1 ⊕D2 ⊕ 〈ξ〉,
(ii) D1 is a slant distribution with slant angle θ /=π/2,

(iii) D2 is anti-invariant, that is, φD2 ⊆ T⊥N.

If μ is φ-invariant subspace of the normal bundle T⊥N, then in case of hemi-slant
submanifold, the normal bundle T⊥N can be decomposed as

T⊥N = FD1 ⊕ FD2 ⊕ μ. (4.1)

Now, we discuss the warped product hemi-slant submanifolds of an LP-Sasakian
manifoldM. IfN = N1×fN2 be a warped product hemi-slant submanifold of an LP-Sasakian
manifold M and Nθ and N⊥ are slant and anti-invariant submanifolds of an LP-Sasakian
manifold M, respectively then their warped product hemi-slant submanifolds may be given
by one of the following forms:

(i) N⊥×fNθ,

(ii) Nθ×fN⊥.

In the following theorem, we start with the case (i).

Theorem 4.2. There does not exist a proper warped product hemi-slant submanifold N = N⊥×fNθ

of an LP-Sasakian manifoldM such that ξ is tangent toNθ, whereN⊥ andNθ are anti-invariant and
proper slant submanifolds of M, respectively.

Proof. Let N = N⊥×fNθ be a proper warped product hemi-slant submanifold of an LP-
Sasakian manifold M such that ξ is tangent to Nθ. Then, for any X ∈ TNθ and U ∈ TN⊥,
we have

(
∇Xφ

)
U = ∇XφU − φ∇XU. (4.2)

By virtue of (2.3) and (2.7)–(2.11), it follows from (4.2) that

η(U)X = −AFUX +∇⊥
XFU − E∇XU

− F∇XU − Bh(X,U) − Ch(X,U).
(4.3)

Using Proposition 3.2(II) in (4.3) and then equating the tangential components, we get

η(U)X = AFUX +
(
U ln f

)
EX + Bh(X,U). (4.4)
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Taking the inner product with EX in (4.4) and using the fact that X and EX are mutually
orthogonal vector fields, then we have

g(AFUX,EX) +
(
U ln f

)
g(EX,EX) + g(Bh(X,U), EX) = 0. (4.5)

Using (2.9) and (2.15), we get

−(U ln f
)
cos2θ‖X‖2 = g(h(X,EX), FU) − g(h(X,U), FEX). (4.6)

Replacing X by EX in (4.6) and using (2.14), we obtain

−(U ln f
)
cos2θ‖X‖2 = −g(h(X,EX), FU) + g(h(EX,U), EX). (4.7)

Adding (4.6) and (4.7), we get

(
U ln f

)
cos2θ‖X‖2 = 0. (4.8)

Since Nθ is proper slant and X is nonnull, (4.8) yields U ln f = 0, which shows that f is con-
stant and consequently the theorem is proved.

The second case is dealt with the following theorem.

Theorem 4.3. Let N = Nθ×fN⊥ be a warped product hemi-slant submanifold of an LP-Sasakian
manifold M such that Nθ is a proper slant submanifold tangent to ξ and N⊥ is an anti-invariant
submanifold ofM. Then, (∇XF)(U) lies in the invariant normal subbundle μ, for each X ∈ TNθ and
U ∈ TN⊥.

Proof. Consider N = Nθ×fN⊥ be a warped product hemi-slant submanifold of an LP-
Sasakian manifold M such that Nθ is a proper slant submanifold tangent to ξ and N⊥ is
an anti-invariant submanifold of M. Then, for any X ∈ TNθ and U ∈ TN⊥, we have

∇XφU = φ∇XU. (4.9)

Using (2.7) and (2.8), we obtain

−AFUX +∇⊥
XFU = φ(∇XU + h(X,U)). (4.10)

By virtue of (2.10), (2.11) and Proposition 3.2(II), it follows from (4.10) that

−AFUX +∇⊥
XFU =

(
X ln f

)
EU +

(
X ln f

)
FU

+ Bh(X,U) + Ch(X,U).
(4.11)

Equating the normal components, we obtain

∇⊥
XFU =

(
X ln f

)
FU + Ch(X,U). (4.12)
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Taking the inner product of with FW1, for any W1 ∈ TN⊥ in (4.13), we get

g
(
∇⊥

XFU, FW1

)
=
(
X ln f

)
g(FU, FW1) + g(Ch(X,U), FW1)

=
(
X ln f

)
g
(
φU,φW1

)
+ g

(
φh(X,U), φW1

)

=
(
X ln f

)
g(U,W1).

(4.13)

Also for any X ∈ TNθ and U ∈ TN⊥, we have

(
∇XF

)
U = ∇⊥

XFU − (
X ln f

)
FU. (4.14)

Taking the inner product FW1 for anyW1 ∈ TN⊥ in (4.14) and using (2.1) and (2.2), we derive

g
((

∇XF
)
U,FW1

)
= g

(
∇⊥

XFU, FW1

)
− (

X ln f
)
g(U,W1). (4.15)

By virtue of (4.13), the above equation yields

g
((

∇XF
)
U,FW1

)
= 0, for any X ∈ TNθ, U,W1 ∈ TN⊥. (4.16)

Similarly, if any W2 ∈ TNθ, then from (2.13), we obtain

g
((

∇XF
)
U,φW2

)
= g

(
∇⊥

XFU, φW2

)
− g

(
F∇XU, φW2

)
. (4.17)

Since the product of tangential component with normal is zero and Nθ is a proper slant
submanifold, we may conclude from (4.17) that

g
((

∇XF
)
U,φW2

)
= 0 for any X,W2 ∈ TNθ, U ∈ TN⊥. (4.18)

From (4.16) and (4.18), it follows that (∇XF)(U) ∈ μ and hence the proof is complete.

5. Examples on LP-Sasakian Manifolds

Example 5.1. We consider a 3-dimensional manifold M = {(x, y, z) ∈ R
3 : z > 0}, where

(x, y, z) are the standard coordinates in R
3. Let {E1, E2, E3} be a linearly independent global

frame on M given by

E1 = ez
∂

∂x
, E2 = ez−ax

∂

∂y
, E3 = − ∂

∂z
, (5.1)

where a is a nonzero constant such that a/= 1. Let g be the Lorentzian metric defined by
g(E1, E3) = g(E2, E3 = g(E1, E2) = 0, g(E1, E1) = g(E2, E2) = 1, g(E3, E3) = −1. Let η be
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the 1-form defined by η(U) = g(U,E3) for anyU ∈ TM. Let θ be the (1,1) tensor field defined
by ηE1 = −E1, φE2 = −E2, and φE3 = 0. Then, using the linearity of φ and g we have η(E3) =
−1, φ2U = U + η(U)E3, and g(φU,φW) = g(U,W) + η(U)η(W) for anyU,W ∈ TM. Thus for
E3 = ξ, (φ, ξ, η, g) defines a Lorentzian paracontact structure onM.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then, we
have

[E1, E2] = −aezE2, [E1, E3] = −E1, [E2, E3] = −E2. (5.2)

Using Koszul formula for the Lorentzian metric g, we can easily calculate

∇E1E1 = −E3, ∇E1E2 = 0, ∇E1E3 = −E1,

∇E2E1 = aezE2, ∇E2E2 = −aezE1 − E3, ∇E2E3 = −E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

(5.3)

From the above computations, it can be easily seen that forE3 = ξ, (φ, ξ, η, g) is an LP-Sasakian
structure on M. Consequently, M3(φ, ξ, η, g) is an LP-Sasakian manifold.

Example 5.2 (see [16]). Let R
5 be the 5-dimensional real number space with a coordinate

system (x, y, z, t, s). Define

η = ds − ydx − tdz, ξ =
∂

∂s
,

g = η ⊗ η − (dx)2 − (
dy

)2 − (dz)2 − (dt)2,

φ

(
∂

∂x

)
= − ∂

∂x
− y

∂

∂s
, φ

(
∂

∂y

)
= − ∂

∂y
,

φ

(
∂

∂z

)
= − ∂

∂z
− t

∂

∂s
, φ

(
∂

∂t

)
= − ∂

∂t
, φ

(
∂

∂s

)
= 0,

(5.4)

the structure (φ, η, ξ, g) becomes an LP-Sasakian structure in R
5.

Example 5.3. Consider a 4-dimensional submanifold N of R
7 with the cordinate system

(x1, x2, . . . , x6, t) and the structure is defined as

φ

(
∂

∂xi

)
=

∂

∂xi
, (i = 1, 2, 3),

φ

(
∂

∂xj

)

=
∂

∂xj
,

(
j = 4, 5, 6

)
,

η = dt, ξ = − ∂

∂t
, φ

(
∂

∂t

)
= 0,

g = dx2
i + dx2

j + η ⊗ η.

(5.5)
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Hence, the structure (φ, ξ, η, g) is an LP-contact structure on R
7. Now, for any α ∈ (0, π/2)

and nonzero u and v, we define the submanifold N as follows:

ω(u, v, α, t) = 2(u, v, u cosα,−v sinα, u sinα, v cosα, t). (5.6)

Then, the tangent space TN is spanned by the vectors:

e1 =
∂

∂x1
+ cosα

∂

∂x3
+ sinα

∂

∂x5
,

e2 =
∂

∂x2
− sinα

∂

∂x4
+ cosα

∂

∂x6
,

e3 = − u sinα
∂

∂x3
− v cosα

∂

∂x4
+ u cosα

∂

∂x5
− v sinα

∂

∂x6
,

e4 = − ∂

∂t
.

(5.7)

Then the distributions Dθ = span{e1, e2, e4} is a slant distribution tangent to ξ = e4 and
D⊥ = span{e3} is an anti-invariant distribution, respectively. Let us denote by Nθ and N⊥
their integral submanifolds, then the metric g on N is given by

g = 2
(
du2 + dv2

)
+
(
u2 + v2

)
dα2. (5.8)

Hence, the submanifold N = Nθ×fN⊥ is a hemi-slant-warped product submanifold of R
7

with the warping function f =
√
(u2 + v2).
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