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We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation.
By employing the Lie group method of infinitesimal transformations, symmetry reductions and
similarity solutions of the governing equation are given. Based on discrete symmetries analysis,
two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid
Burgers equation.

1. Introduction

Burgers equation is one of the basic partial differential equations of fluid mechanics. It occurs
in various fields of applied mathematics, such as modeling of gas dynamics and traffic flow.

For a given velocity u and viscosity coefficient ν, the general form of Burgers equation
is:

ut(x, t) + g(u)ux(x, t) = νuxx(x, t), (1.1)

where g(u) is a smooth function of u. If ν = 0, Burgers equation reduces to the inviscid
Burgers equation:

IBE : ut(x, t) + g(u)ux(x, t) = 0, (1.2)
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which is a prototype for equations for which the solution can develop discontinuities (shock
waves). There are many methods to solve (1.2). In [1], the authors discussed the matrix
exponential representations of solutions to similar equation of (1.2). Here we can use the
method of Lie symmetries and discrete symmetries analysis to solve (1.2).

The classical Lie symmetries of the partial differential equations (PDEs) which can
be obtained through the Lie group method of infinitesimal transformations were originally
developed by Lie [2]. We can use the basic prolongation method and the infinitesimal
criterion of invariance to find some particular Lie point symmetries group of the nonlinear
partial differential equations. The Lie groups of transformations admitted by a given system
of differential equations can be used (1) to lower the order or eventually reduce the equation
to quadrature, in the case of ordinary differential equations; (2) to determine particular
solutions, called invariant solutions, or generate new solutions, once a special solution is
known, in the case of ordinary differential equations or PDEs.

In the past decades, much attention has been paid to the symmetrymethod and a series
of achievements have been obtained [3–9]. Particularly, In [9], a five-dimensional symmetry
algebra consisting of Lie point symmetries is firstly computed for the nonlinear Schrödinger
equation. But it seems that very few research on discrete symmetries is available up to now. In
fact, discrete symmetries also play an important role in solving PDEs. For instance, to under-
stand how a system changes its stability, to simplify the numerical computation of solutions
of PDEs and to create new exact solutions from known solutions. Discrete symmetries are
usually easy to guess but difficult to get in a systematic way. They can be obtained from the
continuous Lie point symmetries. In [10, 11], Hydon studied the application of the method
in differential equations.

For the Burgers equation, many researches have been carried on [12–18]. In these
papers, Ouhadan and El Kinani used Lie symmetry method for obtaining exact solutions
of inviscid Burgers equation in some cases [14]. However, the analysis presented there was
not complete. Nadjafikhah extended the study to include other cases of interest [15, 16]. But
in all their work, they only used the Lie symmetry method, and the discrete symmetries
approach has never been considered. In this work, we obtain the analytical solutions of the
inviscid Burgers equation by using Lie group method. Also by applying discrete symmetries,
we introduce new groups of analytical solutions of our problem.

2. Lie Symmetries and Lie Algebra

In this section, we recall the general procedure for determining symmetries for any system of
PDEs [19–21]. To begin, let us consider the general case of a nonlinear system of PDEs,

Δν

(
x, u(n)

)
= 0, ν = 1, . . . , l, (2.1)

that involve p independent variables x = (x1, . . . , xp), q dependent variables u = (u1, . . . , uq),
and the derivatives of u with respect to x up to n, where u(n) represents all the derivatives of
u of all orders from 0 to n.
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We consider a one-parameter Lie group of infinitesimal transformations acting on the
independent and dependent variables of (2.1):

x̂i = xi + εξi(x, u) +O
(
ε2
)
, i = 1, . . . , p,

ûj = uj + εηj(x, u) +O
(
ε2
)
, j = 1, . . . , q,

(2.2)

where ε is the parameter of the transformation and ξi, ηj are the infinitesimals of the
transformations of the independent and dependent variables, respectively. The infinitesimal
generator X associated with the above group of transformations can be written as

X =
p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
j=1

ηj(x, u)
∂

∂uj
. (2.3)

A symmetry of differential equation is a transformation whichmaps solutions of the equation
to other solutions.

The invariance of system (2.1) under the infinitesimal transformations leads to the
invariance condition

pr(n)X
[
Δν

(
x, u(n)

)]
|Δν(x,u(n))=0 = 0, ν = 1, . . . , l, (2.4)

where pr(n) is the nth-order prolongation of the infinitesimal generator given by

pr(n)X = X +
q∑
α=1

∑
J

ψ
J
α

(
x, u(n)

) ∂

∂uαJ
, (2.5)

where J = (j1, . . . , jk), and 1 ≤ jk ≤ p, 1 ≤ k ≤ n,

ψ
J
α

(
x, u(n)

)
= DJ

(
ψα −

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i, (2.6)

where

uαi =
∂uα

∂xi
, uαJ,i =

∂uαJ

∂xi
. (2.7)
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For (1.2), following the general Lie’s algorithm [19, 20], we consider the one-parameter
Lie group of infinitesimal transformation in (x, t, u) given by

x̂ = x + ξ(x, t, u)ε +O
(
ε2
)
,

t̂ = t + τ(x, t, u)ε +O
(
ε2
)
,

û = u + η(x, t, u)ε +O
(
ε2
)
,

(2.8)

where ε is the group parameter. The infinitesimal generator of the symmetry algebra takes
the form

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
, (2.9)

where ξ, τ, η are the same as those in (1.2). And the first prolongation is

pr(1)X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ ηx

∂

∂ux
+ ηt

∂

∂ut
. (2.10)

Equation (1.2) can be written as

� = ut(x, t) + g(u)ux(x, t) = 0. (2.11)

The invariance of (1.2) under the infinitesimal transformations (2.8) needs

pr(1)X[�]|�=0 = 0. (2.12)

From (2.11) and (2.12), we get

ηt + g(u)ηx + ηg ′(u)ux = 0, (2.13)

where

ηx =
∂

∂x

(
η − ξux − τut

)
+ ξ

∂

∂x
(ux) + τ

∂

∂t
(ux),

ηt =
∂

∂t

(
η − ξux − τut

)
+ ξ

∂

∂x
(ut) + τ

∂

∂t
(ut).

(2.14)

Conditions on the infinitesimals ξ, τ , and η are determined by equating coefficients of like
derivatives of monomials in ux and ut and higher derivatives by zero. This will produce a
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series of PDEs; by analyzing these equations, we can get that ξ, τ , and η have the following
form:

ξ = C8x
2 + C7xt + C3x + C4t + C1,

τ = C8xt + C7t
2 − C5x + (C3 − C6)t + C2,

η =
C7x + C4 + (C8x − C7t + C6)g(u) + (−C8t + C5)g(u)2

g ′(u)
.

(2.15)

Here we omit the redundant computational process for simplification. Associated with this
Lie group, we have an 8-dimensional Lie algebra that can be represented by the generators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+ t

∂

∂t
, X4 = t

∂

∂x
+

1
g ′(u)

∂

∂u
,

X5 = −x ∂
∂t

+
g2(u)
g ′(u)

∂

∂u
, X6 = −t ∂

∂t
+
g(u)
g ′(u)

∂

∂u
,

X7 = xt
∂

∂x
+ t2

∂

∂t
+
x − tg(u)
g ′(u)

∂

∂u
, X8 = x2 ∂

∂x
+ xt

∂

∂t
+
g(u)

(
x − tg(u))

g ′(u)
∂

∂u
.

(2.16)

3. Discrete Symmetries

In this section, we will derive the discrete symmetries of (1.2), which has a 6-dimensional Lie
subalgebra L : {X1, X2, X3, X4, X5, X6}. we Will calculate the discrete symmetry following the
method presented in [11].

By the commutator relation

[
Xi,Xj

]
= ckijXk, i < j, i, j = 1, 2, . . . , 6, (3.1)

we can get the nonzero commutators in the following form:

[X1, X3] = X1, [X1, X5] = −X2, [X2, X3] = X2, [X2, X4] = X1,

[X2, X6] = −X2, [X4, X5] = 2X6 +X3, [X4, X6] = X4, [X5, X6] = −X5.
(3.2)

Then the nonzero structure constants are

C1
13 = 1, C2

15 = −1, C2
23 = 1, C1

24 = 1, C2
26 = −1, C6

45 = 2, C3
45 = 1,

C4
46 = 1, C5

56 = −1, C1
31 = −1, C2

51 = 1, C2
32 = −1, C1

42 = −1, C2
62 = 1,

C6
54 = −2, C3

54 = −1, C4
64 = −1, C5

65 = 1.
(3.3)



6 Discrete Dynamics in Nature and Society

The matrices C(j) are

C(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, C(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

C(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, C(4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 −2
0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

C(5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 2
0 0 0 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, C(6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.4)

The next step is to calculate the matricesA(ε, j). Exponentiating the matrices εC(j), we obtain

A(1, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
−ε 0 1 0 0 0
0 0 0 1 0 0
0 ε 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, A(2, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 −ε 1 0 0 0
−ε 0 0 1 0 0
0 0 0 0 1 0
0 ε 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (3.5)

A(3, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

eε 0 0 0 0 0
0 eε 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, A(4, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
ε 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −ε ε2 1 −2ε
0 0 0 −ε 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

A(5, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −ε 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 ε 1 ε2 2ε
0 0 0 0 1 0
0 0 0 0 ε 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, A(6, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 e−ε 0 0 0 0
0 0 1 0 0 0
0 0 0 eε 0 0
0 0 0 0 e−ε 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.6)
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From the nonlinear constants

cnlmb
l
ib
m
j = ckijb

n
k, 1 ≤ i < j ≤ 6, 1 ≤ n ≤ 6, (3.7)

and using the adjoint matrices A(i, ε), i = 1, . . . , 6, the matrix B can be simplified as the
following two nonsingular forms:

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

β
0 0 0 0 0

0 α 0 0 0 0
0 0 1 0 0 0

0 0 0
1
β

0 0

0 0 0 0 β 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −α
β

0 0 0 0

α 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 β−1 0
0 0 0 β 0 0
0 0 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, α, β ∈ R. (3.8)

The determining equations for the discrete symmetries are given by the system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û

X4x̂ X4t̂ X4û

X5x̂ X5t̂ X5û

X6x̂ X6t̂ X6û

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̂1x̂ X̂1t̂ X̂1û

X̂2x̂ X̂2t̂ X̂2û

X̂3x̂ X̂3t̂ X̂3û

X̂4x̂ X̂4t̂ X̂4û

X̂5x̂ X̂5t̂ X̂5û

X̂6x̂ X̂6t̂ X̂6û

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
x̂ t̂ 0

t̂ 0
1

g ′(û)

0 −x̂ g(û)2

g ′(û)

0 −t̂ g(û)
g ′(û)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.9)

First we consider B = B1. From (3.9), we obtain the following system

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û

X4x̂ X4t̂ X4û

X5x̂ X5t̂ X5û

X6x̂ X6t̂ X6û

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

β
0 0

0 α 0
x̂ t̂ 0
t̂

β
0

1
βg ′(û)

0 −βx̂ βg(û)2

g ′(û)

0 −t̂ g(û)
g ′(û)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.10)

The solution to system (3.10) is

x̂ =
α

β
x, t̂ = αt, û = g−1

(
1
β
g(u)

)
, (3.11)
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where α, β are arbitrary constants. We can prove that (3.11) satisfies the invariant condition

ût̂ + g(û)ûx̂ = 0, when ut + g(u)ux = 0. (3.12)

Therefore, the first group of discrete symmetries is

Γ1 : (x, t, u) �−→
(
α

β
x, αt, g−1

(
1
β
g(u)

))
. (3.13)

Then we consider B = B2. From (3.9), we obtain the following system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X1x̂ X1t̂ X1û

X2x̂ X2t̂ X2û

X3x̂ X3t̂ X3û

X4x̂ X4t̂ X4û

X5x̂ X5t̂ X5û

X6x̂ X6t̂ X6û

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −α
β

0

α 0 0
x̂ t̂ 0

0 − x̂
β

g(û)2

βg ′(û)

β t̂ 0
β

g ′(û)

−x̂ 0 − g(û)
g ′(û)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.14)

The solution to system (3.14) is

x̂ = αt, t̂ = −α
β
x, û = g−1

(
− β

g(u)

)
, (3.15)

where α, β are arbitrary constants. We can prove that (3.15) also satisfies the invariant
condition

ût̂ + ûûx̂ = 0, when ut + uux = 0. (3.16)

Therefore, the first group of discrete symmetries is

Γ2 : (x, t, u) �−→
(
αt,−α

β
x, g−1

(
− β

g(u)

))
. (3.17)

Here, we have obtained two groups of discrete symmetries of (1.2). Using them, we
can simplify the numerical computation in solving (1.2), create new exact solutions from
known solutions and so on. In later chapters, we will introduce how they generate new
solutions.
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3.1. Lie Symmetries of (1.2)

To obtain the group transformation which is generated by the infinitesimal generators (2.16),
we need to solve the system of first-order ordinary differential equations:

dx̂

dε
= ξ
(
x̂, t̂, û

)
, x̂(0) = x,

dt̂

dε
= τ
(
x̂, t̂, û

)
, t̂(0) = t,

dû

dε
= η
(
x̂, t̂, û

)
, û(0) = u.

(3.18)

Then, we can get the one-parameter groups Gi generated by Xi for i = 1, . . . , 8:

G1 : (x, t, u) �−→ (x + ε, t, u),

G2 : (x, t, u) �−→ (x, t + ε, u),

G3 : (x, t, u) �−→ (xeε, teε, u),

G4 : (x, t, u) �−→
(
x + εt, t, g−1(ε + g(u))

)
,

G5 : (x, t, u) �−→
(
x, t − xε, g−1

(
g(u)

1 − εg(u)
))

,

G6 : (x, t, u) �−→
(
x, te−ε, g−1(g(u)eε)

)
,

G7 : (x, t, u) �−→
(

x

1 − εt ,
t

1 − εt , g
−1(g(u) + (x − tg(u))ε)

)
,

G8 : (x, t, u) �−→
(

x

1 − εx ,
t

1 − εx , g
−1
(

g(u)
1 − (x − tg(u))ε

))
.

(3.19)

In addition, we have two groups of discrete symmetries

Γ1 : (x, t, u) �−→
(
α

β
x, αt, g−1

(
1
β
g(u)

))
,

Γ2 : (x, t, u) �−→
(
αt,−α

β
x, g−1

(
− β

g(u)

))
.

(3.20)
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If u = f(x, t) is a solution of (1.2), so are the functions

G1 · f(x, t) = f(x + ε, t),

G2 · f(x, t) = f(x, t + ε),
G3 · f(x, t) = f(xeε, teε),

G4 · f(x, t) = g−1(g(f(x + εt, t)
) − ε),

G5 · f(x, t) = g−1
(

g
(
f(x, t − xε))

1 + εg
(
f(x, t − xε))

)
,

G6 · f(x, t) = g−1(e−εg(f(x, te−ε))),

G7 · f(x, t) = g−1
(
g
(
f(x/(1 − εt), t/(1 − εt))) − xε

1 − tε

)
,

G8 · f(x, t) = g−1
(

(1 − εx)g(f(x/(1 − εx), t/(1 − εx)))

1 − εtg(f(x/(1 − εx), t/(1 − εx)))
)
,

Γ1 · f(x, t) = g−1
(
βg

(
f

(
α

β
x, αt

)))
,

Γ2 · f(x, t) = g−1
(
− β

g
(
f
(
αt,−(α/β)x))

)
.

(3.21)

To illustrate how this technique may be of great interest, we let u(x, t) = 1 is a constant
solution of (1.2). We conclude trivial solutions Γ1 · 1, Γ2 · 1, Gi · 1, i = 1, . . . , 6, and nontrivial
solutions for (1.2):

G7 · 1 = g−1
(
g(1) − εx
1 − εt

)
,

G8 · 1 = g−1
(
(1 − εx)g(1)
1 − εtg(1)

)
.

(3.22)

Now, by applying Γ2, we get the following solutions:

Γ2 ·G7 · 1 = g−1
(

αεx + β
αεt − g(1)

)
,

Γ2 ·G8 · 1 = g−1
(

αεg(1)x + β
αεg(1)t − g(1)

)
.

(3.23)

If we let g(u) = u, (1.2) becomes

ut(x, t) + uux(x, t) = 0. (3.24)
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From (3.23), we get that

u =
αεx + β
αεt − 1

=
ax + b
at − 1

(3.25)

is a solution to (3.24), where a, b are arbitrary constants.
If we let g(u) = (1 − u)/(1 + u), (1.2) becomes

ut(x, t) +
1 − u
1 + u

ux(x, t) = 0. (3.26)

From (3.23), we get

u =
a(t − x) − b
a(t + x) + b

(3.27)

is a solution to (3.26), where a, b are arbitrary constants.

4. Reduction and Invariant Solutions of (1.2)

The first advantage of symmetry group method is to construct new solutions from known
solutions. The second is when a nonlinear system of differential equations admits infinite
symmetries, so it is possible to transform it to a linear system. In this section, symmetry group
method will be applied to the inviscid Burgers equation to be connected directly to some
order differential equations. To do this, particular linear combinations of infinitesimals are
considered and their corresponding invariants are determined. Using discrete symmetries, a
series of new interesting results are obtained.

4.1. Reduction with X2 +X4

As a first example, we perform a reduction of (1.2) using the generator

X2 +X4 = t
∂

∂x
+
∂

∂t
+

1
g ′(u)

∂

∂u
. (4.1)

Having determined the infinitesimals, the symmetry variables can be found by solving the
characteristic equation

dx

t
=
dt

1
= g ′(u)du. (4.2)

The similarity transformation is

ξ =
1
2
t2 − x, u = g−1(t − f(ξ)). (4.3)
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The similarity representation is

1 − f(ξ)f ′(ξ)
g ′(u)

= 0. (4.4)

The similarity solution is

f(ξ) = ±
√
2ξ + C1. (4.5)

In the end, we obtain that

u = g−1
(
t ±
√
t2 − 2x + C1

)
(4.6)

is a solution of (1.2). Now, by applying Γ1, Γ2 to (4.6), we conclude the other two solutions

Γ1 : u = g−1
(
αβt ± β

√
α2t2 − 2α

β
x + C1

)
,

Γ2 : u = g−1

⎛
⎜⎝ β
(
α/β
)
x ±
√
((α/β)x)2 − 2αt + C1

⎞
⎟⎠.

(4.7)

If we let g(u) = u in (1.2), from (4.6), (4.7), we can get the following solutions:

u1,2 = t ±
√
t2 − 2x + C1, u3,4 = αβt ± β

√
α2t2 − 2α

β
x + C1,

u5,6 =
β

(
α/β
)
x ±
√
(
(
α/β
)
x)2 − 2αt + C1

,

(4.8)

where α, β, C1 are arbitrary constants.
If we let g(u) = (1− u)/(1+ u) in (1.2), from (4.6), (4.7), the following solutions can be

obtained:

u1,2 =
1 − t ±

√
t2 − 2x + C1

1 + t ±
√
t2 − 2x + C1

, u3,4 =
1 − αβt ± β

√
α2t2 − 2αx/β + C1

1 + αβt ± β
√
α2t2 − 2αx/β + C1

,

u5,6 =
αx ± β

√
−((−α2x2 + 2αβ2t − C1β2

)
/β2
) − β2

αx ± β
√
−((−α2x2 + 2αβ2t − C1β2

)
/β2
)
+ β2

,

(4.9)

where α, β, C1 are arbitrary constants.
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4.2. Reduction with X2 +X5

Similarly, the generator

X2 +X5 = (1 − x) ∂
∂t

+
g2(u)
g ′(u)

∂

∂u
(4.10)

with similarity transformation

ξ = x, u = g−1
(

1 − x
(1 − x)f(ξ) − t

)
(4.11)

leads to the solution

u = g−1
(
x − 1
t + C1

)
. (4.12)

By applying Γ1, Γ2 to (4.12), we obtain the invariant solution

u = g−1
(
αx − β
αt + C1

)
. (4.13)

If g(u) = u/(1 + u2) in (1.2), then we have the solutions

u1,2 =
αt + C1 ±

√
(αt + C1)2 − 4

(
αx − β)2

2
(
αx − β) . (4.14)

4.3. Reduction with X1 +X6

In the last, we discuss the generator

X1 +X6 =
∂

∂x
− t ∂

∂t
+
g(u)
g ′(u)

∂

∂u
. (4.15)

The similarity transformation is

ξ = x + ln(t), u = g−1
(
1
t
f(ξ)

)
, (4.16)

which leads to the solution

u = g−1
(
1
t
LW
(
tex+C1

))
, (4.17)
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where LW is the Lambert W-function, which satisfies

LW(x)eLW(x) = x. (4.18)

By applying Γ1, Γ2 to this solution, we conclude other two solutions:

u1 = g−1
(
β

αt
LW
(
αte(α/β)x+C1

))
, u2 = g−1

(
αx

LW
(−(α/β)xeαt+C1

)
)
. (4.19)

Comparing (4.17) and (4.19), we can see (4.17) is a special case of (4.19).
In (1.2), if we let g(u) = (1 − u)/(1 + u), (4.19) lead to the following solutions

u1 =
αt − βLW(αte(αx+C1β)/β

)

αt + βLW
(
αte(αx+C1β)/β

) , u2 =
LW
(−αxeαt+C1/β

) − αx
LW
(−αxeαt+C1/β

)
+ αx

. (4.20)

If we let g(u) = u/(1 + u2), we can get the following solutions:

u1,2 =
αt ±

√
α2t2 − 4β2LW

(
αte(αx/β)+C1

)2

2βLW
(
αte(αx/β)+C1

) ,

u3,4 =
LW
(−αxeαt+C1/β

) ±
√
LW
(−αxeαt+C1/β

)2 − 4α2x2

2αx
.

(4.21)

5. Summary and Discussion

In this paper, we obtain eight infinitesimal generators for (1.2) by means of the Lie symmetry
method. Considering it is 6-dimensional Lie subalgebra, we get two groups of discrete
symmetries following the method presented by Hydon. Using the symmetry group, the
similarity variable, similarity transformations, and the reduced equations are given. Solving
the reduced equations, from the similarity transformations, we get the solutions of the
inviscid Burgers equation. In additional, by applying discrete symmetries, we conclude other
new solutions. If given g(u) different forms in (1.2), many different types of solutions can
be obtained directly. In forthcoming days, we will further discuss the problem. It is also
interesting for us to see how the discrete symmetries will be under the 8-dimensional Lie
algebra case.
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