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This paper deals with the problem of selective harvesting in a chemostat model. Here, we have
taken the purifying effort as a dynamic variable and tax as a control instrument. The existence of
the possible steady states along with their globally stable equilibrium is discussed. The optimal
tax policy is also discussed with the help of Pontryagin’s maximum principle. Finally, numerical
examples are taken to illustrate some of the key results.

1. Introduction

The chemostat is an important laboratory apparatus used to culture microorganisms [1–4].
Species grow in continuously stirred homogenous fermenters which are fed continuously by
a nutrient and the cells are drawn off continuously. Such models have applications in ecology
to model biological behavior of a simple lake and in biotechnology to model bioreaction in
commercial bioreactors. Predictions based on parameters in the model that can be measured
have been tested experimentally and outcomes have shown to agree rather well with the the-
ory. Therefore, it has been extensively used in agriculture and many industrial applications
(i.e., pharmaceuticals, nutraceuticals, hydrogen production, and waste treatment).

It is well known that extracting microorganisms has a strong impact on the dynamic
behavior of chemostat, and microorganism resources in the chemostat are usually harvested
with the purpose of achieving the economic interest. Achieving a high productivity in a
bioreactor plays a crucial role in determining the economics of bulk biochemical products
such as ethanol. For the purpose of continuously culturing the microorganism and reaching
the maximum profit, it is necessary to establish a constructive management of commercial
extraction of the microorganism resources. The techniques and issues associated with the
bioeconomic exploitation have been discussed in detail by Clark [5]. Taxation and market
price usually are considered as possible factors affecting the producers’ profit. However,
because of the economic flexibility of the Taxation [5], economists are particularly attracted
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to taxation because a competitive system can be better maintained under taxation rather than
other regulatory methods.

Recently, there has been a considerable interest in the modeling of harvesting of
biological resources [6–9]. The harvest effort is considered to be a dynamic variable; several
kinds of harvesting policies are utilized to study the dynamical behavior of the model system.
Furthermore, the optimal harvesting dynamical behavior of a harvested prey-predator model
policies with taxation is also discussed. However, to the authors’ best knowledge, there is no
attempt focusing on discussing the optimal tax policy in the chemostat. In this paper, an
extracted chemostat model is established in Section 2. The stability analysis of the equilibria
is performed in Section 3. Furthermore, an optimal extracting policy for microorganism is
also discussed in Section 4.

2. Model Formulation and Stability of the Equilibria

The general model of continuously culturing microorganism in a chemostat is given by the
following form of differential equations [10]:

dS

dt
= D

(
S0 − S

)
− μSx

δ(Ks + S)
,

dx

dt
=

μSx

Ks + S
−Dx,

(2.1)

where S(t) denotes the concentration of the substrate and x(t) denotes the concentration of
the microorganism in the chemostat at time t. D is the dilution rate of the chemostat. S0 is
the concentration of the input substrate. The constant δ is the yield constant. μ is called the
maximal specific growth rate of the microorganisms. Ks is the self-saturation constant. In
practice, when the microorganism has been cultured, it should be purified from the vessel.
Hence, we suppose E(t) represents the harvest (or extraction) effort in order to purify the
microorganism. To conserve the resource, the regulatory agency imposes a tax τ > 0 per unit
biomass (τ < 0 denotes the subsidies given to the harvest (or extraction) effort). Based on the
above aspects, the model can be governed by the following differential equations:

dS

dt
= D

(
S0 − S

)
− μSx

δ(Ks + S)
,

dx

dt
=

μSx

Ks + S
−Dx − Ex,

dE

dt
= kE

((
p − τ

)
x − c

)
,

(2.2)

where p is the price of the unit harvest effort and c is the cost of the unit effort. Other
parameters are the same as system (2.1).

By simple computation, we obtain that system (2.2) has a trivial equilibrium
P0(S0, 0, 0) and P1(KsD/(μ−D), δ(S0−KsD/(μ−D)), 0), where P1 exists if S0 > KsD/(μ−D).
System (2.2) has a positive equilibrium P ∗

2 (S
∗, x∗, E∗) if S∗ > KSD/(μ − D), where S∗ =

(−(μc/((p − τ)Dδ) + Ks − S0) +
√
Δ)/2, Δ = (μc/((p − τ)Dδ) + Ks − S0)2 + 4KsS

0, x∗ =
c/(p − τ), E∗ = μS∗/(KS + S∗) −D. Owing to ∂S∗/∂τ < 0, there exists a maximum value τmax
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such that 0 ≤ τ ≤ τmax. It provides the range of tax for the existence of interior equilibrium,
which is of inspiration for people to regulate the extraction effort by means of economic
instrument. Furthermore, it is easy to show the positivity and boundedness of solutions of
the model system (2.2).

Remark 2.1. It is biologically meaningful to interpret the positivity and boundedness of
solutions of the model system (2.2). Since the component (S(t), x(t)) of the solution of system
(2.2) represents the relation between the microorganism and substrate, the positivity of
solutions reflects the survival of microorganism in the cultured vessel and the boundedness
of solutions reveals a natural restriction to growth as a consequence of limited resources.
Furthermore, due to the limitation of the microorganism, the extraction effort cannot increase
without any restriction.

Next, we begin to analyze the stability of the equilibria.
The characteristic equation of equilibrium P0 is

(λ +D)(λ + kc)

(
λ +D − μS0

KS + S0

)
= 0; (2.3)

obviously, (2.3) has two negative roots λ = −D, λ = −kc. The stability of the equilibrium
P0(S0, 0, 0) is determined by λ = μS0/(KS+S0)−D. Therefore, we have the following theorem.

Theorem 2.2. If μS0/(KS + S0) < D holds, then the microorganism-free equilibrium P0(S0, 0, 0) is
stable. It is unstable if μS0/(KS + S0) > D.

The characteristic equation of equilibrium P1 is

(
λ2 +

(
D +

μKsx∗
δ(KS + S∗)

)
λ +

μKSx∗
δ(Ks + S∗)3

)[
λ − k

((
p − τ

)
x∗ − c

)]
= 0. (2.4)

The stability of the equilibrium P1 is determined by

λ2 +
(
D +

μKsx∗
δ(KS + S∗)

)
λ +

μKSx∗
δ(Ks + S∗)3

= 0, (2.5)

and λ = k((p−τ)x∗−c). According to the relation between roots and coefficients, all the eigenvalues of
system (2.5) has negative real parts. If λ = k((p−τ)x∗−c) = k((p−τ)δ(S0−KSD/(μ−D))−c) < 0,
that is, (p − τ)δS0 < (p − τ)δKSD/(μ −D) + c, then the equilibrium P1 is locally stable.

Theorem 2.3. If (p − τ)δS0 < (p − τ)δKSD/(μ −D) + c holds, then the equilibrium P1 is globally
asymptotically stable.

Proof. The local stability has been proved above. Next, we prove the attractivity. Construct a
Lyapunov function

V (S, x, E) = c1

∫S

S∗

η − S∗
η

dη + c2

∫x

x∗

η − x∗
η

dη + c3E(t), (2.6)

where the nonnegative constants ci (i = 1, 2, 3) will be determined later.
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We compute the derivative V (S, x, E) along the system (2.2)

dV

dt
=

c1(S − S∗)
S

dS

dt
+
c2(x − x∗)

S

dx

dt
+ c3

dE

dt

= − c1
(S − S∗)2

S
+
c1μ(S − S∗)

S

Ks(S∗x∗ − Sx) − S∗S(x − x∗)
(KS + S)(KS + S∗)

+
c2μKS(S − S∗)(x − x∗)
(KS + S)(KS + S∗)

− c2E(x − x∗) + c3kE
(
p − τ

)
(x − x∗) + c3kE

((
p − τ

)
x∗ − c

)

= − c1(S − S∗)2

S
− KSμx∗c1(S − S∗)2

(KS + S)(KS + S∗)
− μc1(S − S∗)(x − x∗)

δ(KS + S)
+

c2μKS

KS + S∗
(x − x∗)(S − S∗)

KS + S

− c2E(x − x∗) + c3kE
(
p − τ

)
(x − x∗) + c3kE

((
p − τ

)
x∗ − c

)
;

(2.7)

let c1 = δ(μ−D)/μ, c2 = 1, c3 = 1/k(p− τ), we can obtain dV/dt < 0 for pδS0 < pδKSD/(μ−
D) + c.

Hence, we obtain the equilibrium P1which is globally asymptotically stable for (p −
τ)δS0 < (p − τ)δKSD/(μ −D) + c.

The proof is completed.

Next, we consider the stability of the positive equilibrium.

Theorem 2.4. If μS∗/(KS + S∗) > D holds, the positive equilibrium P2(S∗, x∗, E∗) is globally
asymptotically stable, where S∗ = (−(μc/((p− τ)Dδ)+Ks −S0)+

√
Δ)/2, Δ = (μc/((p− τ)Dδ)+

Ks − S0)2 + 4KsS
0.

Proof. The characteristic equation of equilibrium P2 is

λ3 + a1λ
2 + a2λ + a3 = 0, (2.8)

where a1 = D + μKSx
∗/δ(KS + S∗)2, a2 = μ2KSS

∗x∗/δ(KS + S∗)3 + k(p − τ)E∗x∗, a3 = (D +
μKSx

∗/δ(KS + S∗)2)k(p − τ)E∗x∗.
According to the Routh-Hurwitz criterion [11], all the roots of the characteristic

equation have negative real parts for the above cubic equation and the following criteria
a1 > 0, a1a2 − a3 > 0 should be satisfied. Hence, the equilibrium P2(S∗, x∗, E∗) is locally
asymptotically stable.

Define a function

V (S, x, E) = c1

∫S

S∗

η − S∗

η
dη + c2

∫x

x∗

η − x∗

η
dη + c3

∫E

E∗

η − E∗

η
dη, (2.9)
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where the nonnegative constants ci (i = 1, 2, 3) are positive. We compute the derivative
V (S, x, E) along the system (2.2)

dV

dt
=

c1(S − S∗)
S

dS

dt
+
c2(x − x∗)

S

dx

dt
+
c3(E − E∗)

E

dE

dt

= − c1D
(S − S∗)2

S
+
c1μ(S − S∗)

S

Ks(S∗x∗ − Sx) − S∗S(x − x∗)
(KS + S)(KS + S∗)

+
c2μKS(S − S∗)(x − x∗)
(KS + S)(KS + S∗)

− c2(E − E∗)(x − x∗) + c3k(E − E∗)
(
p − τ

)
(x − x∗)

= − c1D(S − S∗)2

S
− KSμx

∗c1(S − S∗)2

(KS + S)(KS + S∗)
− μc1(S − S∗)(x − x∗)

δ(KS + S)
+

c2μKS

KS + S∗
(x − x∗)(S − S∗)

KS + S

− c2(E − E∗)(x − x∗) + c3k(E − E∗)
(
p − τ

)
(x − x∗).

(2.10)

Let c1 = δKS/(KS + S∗), c2 = 1, c3 = 1/k(p − τ), we can obtain dV/dt < 0. Therefore, the
positive equilibrium P2(S∗, x∗, E∗) is globally asymptotically stable.

3. Optimal Extraction Policy during the Bioprocess

Fermentation technology is a response for producing the majority of bioproducts. Since some
substrates of bioprocess are expensive, it is important to optimize the process to maximize
the desired products and profits. The objective of the regulatory agency is to maximize the
total discounted net revenues that the factory derives from the microorganism fermentation.
Symbolically, this objective amounts to maximizing the present value J of a continuous time-
stream of revenues given by

J =
∫∞

0
e−δt

(
px − c

)
Edt, (3.1)

where δ denotes the instantaneous annual rate of discount. c is the extraction cost per unit
effort. p is the price per unit biomass of x. To solve this optimization problem, we utilize
Pontryagin’s maximal principle [12].

We treat τ as the control variable and wish to determine a suitable effort which
maximizes J subject to the system (2.2) and the control constraints

τmin ≤ τ(t) ≤ τmax. (3.2)

τmin and τmax represent a feasible upper and lower limit of tax for the harvest effort,
respectively. Specially τmin < 0 implies that subsidies have the effect of increasing the rate
of expansion of the extraction.

The Hamiltonian function is given by

H = e−δt
(
px − c

)
E + λ1

(
DS0 −DS − μSx

δ(KS + S)

)
+ λ2

(
μSx

KS + S
−Dx − Ex

)

+ λ3kE
((
p − τ(t)

)
x − c

)
,

(3.3)
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where λi(t) (i = 1, 2, 3) are additional unknown functions called the adjoint variables.
The Hamiltonian (3.3) must be maximized for τ ∈ [τmin, τmax]. Assuming that the control
constraints are not binding (i.e., the optimal solution does not occur at τ = τmin or τ = τmax).
we have a singular control given by ∂H/∂τ = 0. Hence, we can obtain λ3 = 0.

The adjoint equations are

∂H

∂λ1
= −∂H

∂S
= λ1

(
D +

KSμx

δ(KS + S)2

)
− λ2

KSμx

(KS + S)2
, (3.4)

∂H

∂λ2
= −∂H

∂x
= −pe−δtE +

λ1μS

δ(KS + S)
− λ2

(
μS

KS + S
−D − E

)
, (3.5)

∂H

∂λ3
= −∂H

∂E
= −eδt(px − c

)
+ λ2x. (3.6)

We obtain from (3.6) that

λ2 = e−δt
(
p − c

x

)
. (3.7)

In order to obtain an optimal equilibrium solution, by considering the interior equilibrium
P2, (3.4) can be rewritten as

∂H

∂λ1
= λ1

(
D +

KSμx
∗

δ(KS + S∗)2

)
− e−δt

(
p − c

x∗
) KSμx

∗

(KS + S∗)2
. (3.8)

we can obtain

λ1(t) =

(
p − c/x

)(
KSμx

∗/(KS + S∗)2
)

A
e−δt, (3.9)

where A = D +KSμx
∗/(δ(KS + S∗)2). Substituting (3.7) and (3.9) into (3.5), we have

δ
(
p − c

x∗
)
= pE∗ −

(
p − c/x∗)KSμ

2x∗S∗

δA(KS + S∗)3
+
(
p − c

x∗
)( μS∗

KS + S∗ −D − E∗
)
, (3.10)

which provides an equation to the singular path and gives the optimal equilibrium levels of
microorganism S∗ = S∗

δ
, x∗ = x∗

δ
. Then the optimal equilibrium levels of the harvest effort and

tax can be obtained as follows:

E∗
δ =

μS∗
δ

KS + S∗
δ

−D, τδ = p − c

x∗
δ

. (3.11)

Next, with the help of MATLAB, a simulation work with a hypothetical set of parameters is
performed to understand the theoretical results which have been established.

Let the parameters be S0 = 5, KS = 0.2, μ = 1, p = 3, D = 0.6, δ = 0.6, and c = 2. For
the system (2.2), the range of the taxation can be obtained τ ∈ [0, 2.267399] in view of the
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Figure 1: The positive equilibrium of the optimal purification. (a) Time series of the substrate concentra-
tion. (b) Time series of themicroorganism concentration. (c) Time series of the purification effort. (d) Phase
space trajectories corresponding to the optimal τ = 0.2443807704.

positive equilibrium P2(S∗, x∗, E∗). According to the parameters given above, (3.10) can be
numerically computed as follows:

3
−2.778/(3 − τ) +A

2.65 − 2.77/(3 − τ) +A − 3.6

− τ(−2.77/(3 − τ) + 2.35 +A)
(3 − τ)(0.6 + 1/((3 − τ)(2.65 − 2.77/(3 − τ) +A)))(2.65 − 2.77/(3 − τ) +A)

= 0,

(3.12)

where A denotes (1/2)
√
(5.55/(3 − τ) − 4.7)2 + 6. By solving the above equation, two real

roots can be obtained, τ = 0.2443807704 and τ = 5.204521452. It is obvious that only
τ = 0.2443807704 satisfies the range τ ∈ [0, 2.267399]. Consequently, the optimal tax is
τ = 0.2443807704, then the optimal equilibrium levels of the population and harvest effort
can be also obtained (S∗

δ
, x∗

δ
, E∗

δ
) = (3.158783855, 0.7257896803, 0.3132643112) (see Figure 1).
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Figure 2: The dynamic behavior of the microorganism-free equilibrium with the parameters D = 0.4,
S0 = 0.3, δ = 1, Ks = 0.9, c = 1, k = 0.1, and p = 0.3. (a) Time series of the substrate concentration. (b) Time
series of the microorganism extinction. (c) Time series of the effort loss. (d) Phase space trajectories of the
microorganism-free equilibrium.

4. Discussion

In this paper, a bioeconomic model is established to investigate the effects of the harvest effort
on the dynamic behavior of the chemostat. In Theorem 2.2, we obtain the microorganism-free
equilibrium P0(S0, 0, 0) is stable if μS0/(KS + S0) < D holds, which is simulated in Figure 2.
Theorem 2.3 shows that the equilibrium P1 is globally asymptotically stable, if (p − τ)δS0 <

((p − τ)δKSD)/(μ − D) + c holds (see Figure 3). The existence and global stability of the
positive equilibrium is proven in Theorem 2.4.

Nowadays, the biological resources in the chemostat model are mostly harvested with
the aim of achieving economic interest and the taxation is used as an economic control
instrument to protect the resources from overexploitation, which motivates the introduction
of the harvest effort and tax into the proposed model. The application of the control theory
enabled us to show the existence of a unique optimal equilibrium point which is stable. These
results can be used as a microorganism culture such as ethanol fermentation and lactic acid
fermentation to obtain a more economic profit.
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Figure 3: The dynamic behavior of the effort-free equilibrium with the parameters D = 0.4, S0 = 2, δ = 1,
Ks = 0.5, c = 3, k = 0.3, and p = 3. (a) Time series of the substrate concentration. (b) Time series of the
microorganism concentration. (c) Time series of the effort loss. (d) Phase space trajectories of the effort-free
equilibrium.
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