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Using functions in some function classes and a generalized Riccati technique, we establish interval
oscillation criteria for second-order nonlinear dynamic equations on time scales of the form
(p(t)ψ(x(t))xΔ(t))Δ + f(t, x(σ(t))) = 0. The obtained interval oscillation criteria can be applied
to equations with a forcing term. An example is included to show the significance of the results.

1. Introduction

In this paper, we study the second-order nonlinear dynamic equation

(
p(t)ψ(x(t))xΔ(t)

)Δ
+ f(t, x(σ(t))) = 0, (1.1)

on a time scale T.
Throughout this paper we will assume that

(C1) p ∈ Crd(T, (0,∞));

(C2) ψ ∈ C(R, (0, η]), where η is an arbitrary positive constant;

(C3) f ∈ C(T × R,R).

Preliminaries about time scale calculus can be found in [1–3] and hence we omit them
here. Without loss of generality, we assume throughout that supT = ∞.

Definition 1.1. A solution x(t) of (1.1) is said to have a generalized zero at t∗ ∈ T if
x(t∗)x(σ(t∗)) ≤ 0, and it is said to be nonoscillatory on T if there exists t0 ∈ T such that
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x(t)x(σ(t)) > 0 for all t > t0. Otherwise, it is oscillatory. Equation (1.1) is said to be oscillatory
if all solutions of (1.1) are oscillatory. It is well-known that either all solutions of (1.1) are
oscillatory or none are, so (1.1) may be classified as oscillatory or nonoscillatory.

The theory of time scales, which has recently received a lot of attention, was introduced
by Hilger in his Ph.D. thesis [4] in 1988 in order to unify continuous and discrete analysis, see
also [5]. In recent years, there has been much research activity concerning the oscillation and
nonoscillation of solutions of dynamic equations on time scales, for example, see [1–27] and
the references therein. In Došlý and Hilger’s study [10], the authors considered the second-
order dynamic equation

(
p(t)xΔ(t)

)Δ
+ q(t)x(σ(t)) = 0, (1.2)

and gave necessary and sufficient conditions for the oscillation of all solutions on unbounded
time scales. In Del Medico and Kong’s study [8, 9], the authors employed the following
Riccati transformation:

u(t) =
p(t)xΔ(t)
x(t)

, (1.3)

and gave sufficient conditions for Kamenev-type oscillation criteria of (1.2) on a measure
chain. And in Yang’s study [27], the author considered the interval oscillation criteria of
solutions of the differential equation

(
p(t)x′(t)

)′ + q(t)f(x(t)) = g(t). (1.4)

In Wang’s study [24], the author considered second-order nonlinear differential equation

(
a(t)ψ(x(t))k

(
x′(t)

))′ + p(t)k(x′(t)
)
+ q(t)f(x(t)) = 0, t ≥ t0, (1.5)

used the following generalized Riccati transformations:

v(t) = φ(t)a(t)
[
ψ(x(t))k(x′(t))

f(x(t))
+ R(t)

]
, t ≥ t0,

v(t) = φ(t)a(t)
[
ψ(x(t))k(x′(t))

x(t)
+ R(t)

]
, t ≥ t0,

(1.6)

where φ ∈ C1([t0,∞),R+), R ∈ C([t0,∞),R), and gave new oscillation criteria of (1.5).
In Huang and Wang’s study [16], the authors considered second-order nonlinear

dynamic equation on time scales

(
p(t)xΔ(t)

)Δ
+ f(t, x(σ(t))) = 0. (1.7)



Discrete Dynamics in Nature and Society 3

By using a similar generalized Riccati transformation which is more general than (1.3)

u(t) =
A(t)p(t)xΔ(t)

x(t)
+ B(t), (1.8)

whereA ∈ C1
rd(T,R+ \{0}), B ∈ C1

rd(T,R), the authors extended the results in Del Medico and
Kong [8, 9] and Yang [27], and established some new Kamenev-type oscillation criteria and
interval oscillation criteria for equations with a forcing term.

In this paper, we will use functions in some function classes and a similar generalized
Riccati transformation as (1.8) and was used in [24, 25] for nonlinear differential equations,
and establish interval oscillation criteria for (1.1) in Section 2. Finally in Section 3, an example
is included to show the significance of the results.

For simplicity, throughout this paper, we denote (a, b)
⋂

T = (a, b), where a, b ∈ R,
and [a, b], [a, b), (a, b] are denoted similarly.

2. Main Results

In this section, we establish interval criteria for oscillation of (1.1). Our approach to oscillation
problems of (1.1) is based largely on the application of the Riccati transformation.

Let D0 = {s ∈ T : s ≥ 0} and D = {(t, s) ∈ T
2 : t ≥ s ≥ 0}. For any function f(t, s):

T
2 → R, denote by fΔ

1 and fΔ
2 the partial derivatives of f with respect to t and s, respectively.

For E ⊂ R, denote by Lloc(E) the space of functions which are integrable on any compact
subset of E. Define

(A,B) =
{
(A,B) : A(s) ∈ C1

rd(D0,R+ \ {0}), B(s) ∈ C1
rd(D0,R) ,

ηA(s)p(s) ± μ(s)B(s) > 0, s ∈ D0
}
;

H∗ =
{
H(t, s) ∈ C1(D,R+) : H(t, t) = 0, H(t, s) > 0, HΔ

2 (t, s) ≤ 0, t > s ≥ 0
}
;

H∗ =
{
H(t, s) ∈ C1(D,R+) : H(t, t) = 0, H(t, s) > 0, HΔ

1 (t, s) ≥ 0, t > s ≥ 0
}
;

H = H∗⋂H∗.

(2.1)

These function classes will be used throughout this paper. Now, we are in a position to give
our first lemma.

Lemma 2.1. Assume that (C1)–(C3) hold and that there exist c1 < b1 < c2 < b2, α ≥ 1, functions
q, g ∈ Crd(T,R) such that q(t) ≥ 0/≡ 0 for t ∈ [c1, b1]

⋃
[c2, b2],

g(t)

{
≤ 0, t ∈ [c1, b1],
≥ 0, t ∈ [c2, b2],

(2.2)

f
(
t, y
)

y
≥ q(t)∣∣y∣∣α−1 − g(t)

y
, (2.3)
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for all t ∈ [c1, b1]
⋃
[c2, b2] and y /= 0. If x(t) is a solution of (1.1) such that x(t) > 0 on [c1, σ(b1)]

(or x(t) < 0 on [c2, σ(b2)]), for any (A,B) ∈ (A,B) one defines

u(t) = A(t)
p(t)ψ(x(t))xΔ(t)

x(t)
+ B(t), (2.4)

on [ci, bi], i = 1, 2, and Φ1(t) = Aσ(t)(q(t) − (B(t)/A(t))Δ), Aσ(t) = A(σ(t)). Then for any
(A,B) ∈ (A,B),H ∈ H∗, andM1(t, ·) ∈ L([0, ρ(t)]), one has

Ψ1(ci, bi) ≤ H(bi, ci)u(ci), i = 1, 2, (2.5)

whereΦ2(s) = Aσ(s)(α(α−1)(1−α)/α[q(s)]1/α|g(s)|1−1/α−(B(s)/A(s))Δ) for α > 1,Φ2(s) = Φ1(s)
for α = 1, and

Ψ1(ci, bi) =
∫bi
ci

H(bi, σ(s))Φ2(s)Δs −
∫ρ(bi)
ci

M1(bi, s)Δs

+HΔ
2
(
bi, ρ(bi)

)(
ηA
(
ρ(bi)

)
p
(
ρ(bi)

) − μ(ρ(bi)
)
B
(
ρ(bi)

))
, i = 1, 2,

M1(t, s)

�

(
H(t, s)A(s)B(s)+H(t, σ(s))Aσ(s)B(s)+ηA(s)p(s)(H(t, s)A(s))Δs

)2

4H(t, σ(s))A(s)min
{
A(s)

[
ηA(s)p(s)−μ(s)B(s)], Aσ(s)

[
ηA(s)p(s)+μ(s)B(s)

]} .
(2.6)

Proof. Suppose that x(t) is a solution of (1.1) such that x(t) > 0 on [c1, σ(b1)]. First,

μu − μB +Apψ(x) = μ
Apψ(x)xΔ

x
+Apψ(x) = Apψ(x)

xσ

x
> 0. (2.7)

Hence, we always have

μu − μB + ηAp ≥ μu − μB +Apψ(x) > 0, (2.8)

x

xσ
=

Apψ(x)
μu − μB +Apψ(x)

≥ Apψ(x)
μu − μB + ηAp

. (2.9)
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Then differentiating (2.4) and using (1.1), it follows that

uΔ = AΔ

(
pψ(x)xΔ

x

)
+Aσ

(
pψ(x)xΔ

x

)Δ

+ BΔ

=
AΔ

A
(u − B) +Aσ

(
pψ(x)xΔ)Δx − pψ(x)(xΔ)2

xxσ
+ BΔ

=
AΔ

A
u + BΔ − AΔ

A
B −Aσ f(t, x

σ)
xσ

−Aσpψ(x)

(
xΔ)2
x2

x

xσ
.

(2.10)

(i) α > 1. Noting that g(t) ≤ 0 on [c1, b1], from (2.10), we have

uΔ ≤ AΔ

A
u +Aσ

(
B

A

)Δ

−Aσ

[∣∣g∣∣
xσ

+ q(xσ)α−1
]
−Aσpψ(x)

(
xΔ)2
x2

x

xσ

≤ AΔ

A
u +Aσ

(
B

A

)Δ

− α(α − 1)(1−α)/αAσ[q]1/α∣∣g∣∣1−1/α −Aσpψ(x)

(
xΔ)2
x2

x

xσ

≤ AΔ

A
u − Aσ

A

(u − B)2
μu − μB + ηAp

−Φ2.

(2.11)

That is, for α > 1,

uΔ(t) + Φ2(t) +
A(t)u2(t) − [(Aσ(t) +A(t))B(t) + ηAΔ(t)A(t)p(t)

]
u(t) +Aσ(t)B2(t)

A(t)
(
μ(t)u(t) − μ(t)B(t) + ηA(t)p(t)

) ≤ 0.

(2.12)

(ii) For α = 1, from (2.10), we have

uΔ ≤ AΔ

A
u +Aσ

(
B

A

)Δ

−Aσ

[∣∣g∣∣
xσ

+ q

]
−Aσpψ(x)

(
xΔ)2
x2

x

xσ

≤ AΔ

A
u −Aσpψ(x)

(
xΔ)2
x2

x

xσ
+Aσ

[(
B

A

)Δ

− q
]
.

(2.13)

Then (2.12) also holds.
From (i) and (ii) above, we see that (2.12) holds for α ≥ 1. For simplicity in the

following, we letHσ = H(b1, σ(s)),H = H(b1, s),HΔ
2 = HΔ

2 (b1, s), and omit the arguments in
the integrals. For s ∈ T,

Hσ −H = HΔ
2 μ. (2.14)
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SinceHΔ
2 ≤ 0 on D, we see thatHσ ≤ H. Multiplying (2.12), where t is replaced by s, byHσ ,

and integrating it with respect to s from c1 to b1, we obtain

∫b1
c1

HσΦ2Δs ≤ −
∫b1
c1

(
Hσu

Δ +Hσ

Au2 − [(Aσ +A)B + ηAΔAp
]
u +AσB2

A
(
μu − μB + ηAp

)
)
Δs. (2.15)

Noting thatH(t, t) = 0, by the integration by parts formula, we have

∫b1
c1

HσΦ2Δs ≤ H(b1, c1)u(c1) +
∫b1
c1

(
HΔ

2 u −Hσ

Au2 − [(Aσ +A)B + ηAΔAp
]
u +AσB2

A
(
μu − μB + ηAp

)
)
Δs

≤ H(b1, c1)u(c1) +
∫b1
ρ(b1)

HΔ
2 uΔs

+
∫ρ(b1)
c1

(
HΔ

2 u −Hσ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

)
)
Δs.

(2.16)

SinceHΔ
2 ≤ 0 on D, from (2.8), we see that

∫b1
ρ(b1)

HΔ
2 uΔs = H

Δ
2
(
b1, ρ(b1)

)
u
(
ρ(b1)

)
μ
(
ρ(b1)

)

≤ −HΔ
2
(
b1, ρ(b1)

)(
ηA
(
ρ(b1)

)
p
(
ρ(b1)

) − μ(ρ(b1)
)
B
(
ρ(b1)

))
.

(2.17)

For s ∈ [c1, ρ(b1)), and u(s) ≤ 0, we have

HΔ
2 u −Hσ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

)

= − H

μu − μB + ηAp
u2 +

HAB +HσA
σB + ηAp(HA)Δ

A
(
ηAp − μB) u

− HAB +HσA
σB + ηAp(HA)Δ

A
(
ηAp − μB)

μu2

μu − μB + ηAp
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≤ −HσA
σ
(
ηAp + μB

)

A
(
ηAp − μB)2

u2 +
HAB +HσA

σB + ηAp(HA)Δ

A
(
ηAp − μB) u

= −HσA
σ
(
ηAp + μB

)

A
(
ηAp − μB)2

⎡
⎢⎣u −

(
ηAp − μB)

(
HAB +HσA

σB + ηAp(HA)Δ
)

2HσAσ
(
ηAp + μB

)

⎤
⎥⎦

2

+

(
HAB +HσA

σB + ηAp(HA)Δ
)2

4HσAσA
(
ηAp + μB

)

≤

(
HAB +HσA

σB + ηAp(HA)Δ
)2

4HσAmin
{
A
(
ηAp − μB), Aσ

(
ηAp + μB

)} =M1.

(2.18)

For s ∈ [c1, ρ(b1)), and u(s) > 0, we have

HΔ
2 u −Hσ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

)

= − H

μu − μB + ηAp

[
u − HAB +HσA

σB + ηAp(HA)Δ

2HA

]2

+

(
HAB +HσA

σB + ηAp(HA)Δ
)2

4HA2
(
μu − μB + ηAp

)

≤

(
HAB +HσA

σB + ηAp(HA)Δ
)2

4HσAmin
{
A
(
ηAp − μB), Aσ

(
ηAp + μB

)} =M1.

(2.19)

Therefore, for s ∈ [c1, ρ(b1)), we have

HΔ
2 u −Hσ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

) ≤M1. (2.20)

Then from (2.16), (2.17), and (2.20), we obtain that (2.5) holds for i = 1.
If x(t) < 0 on [c2, σ(b2)], then we see that g(t) ≥ 0 on [c2, b2] and

uΔ ≤ AΔ

A
u +Aσ

(
B

A

)Δ

−Aσ

[
g

|xσ | + q|x
σ |α−1

]
−Aσpψ(x)

(
xΔ)2
x2

x

xσ
. (2.21)

Following the steps above, we have that (2.5) holds for i = 2. The proof is complete.

Next, we have the second lemma.
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Lemma 2.2. Assume that (C1)–(C3) hold, and that there exist a1 < c1 < a2 < c2, α ≥ 1, functions
q, g ∈ Crd(T,R) such that q(t) ≥ 0/≡ 0 for t ∈ [a1, c1]

⋃
[a2, c2] and

g(t)

{
≤ 0, t ∈ [a1, c1],
≥ 0, t ∈ [a2, c2],

(2.22)

and (2.3) holds for all t ∈ [a1, c1]
⋃

[a2, c2] and y /= 0. If x(t) is a solution of (1.1) such that x(t) > 0
on [a1, σ(c1)](or x(t) < 0 on [a2, σ(c2)]), define u(t) as in (2.4) on [ai, ci], i = 1, 2. Then for any
(A,B) ∈ (A,B),H ∈ H∗,M2(·, t) ∈ Lloc([σ(t),∞)), one has

Ψ2(ai, ci) ≤ −H(ci, ai)u(ci), i = 1, 2, (2.23)

where Φ2 is defined as before, and

Ψ2(ai, ci) =
∫ ci
ai

H(σ(s), ai)Φ2(s)Δs −
∫ ci
σ(ai)

M2(s, ai)Δs

−
[
ηp(ai)HΔ

1 (ai, ai)A
σ(ai) +

H(σ(ai), ai)Aσ(ai)B(ai)
A(ai)

]
, i = 1, 2,

M2(s, t)

�

(
H(s, t)A(s)B(s) +H(σ(s), t)Aσ(s)B(s) + ηA(s)p(s)(H(s, t)A(s))Δs

)2

4H(s, t)A(s)min
{
A(s)

[
ηA(s)p(s) − μ(s)B(s)], Aσ(s)

[
ηA(s)p(s) + μ(s)B(s)

]}
(2.24)

Proof. Suppose that x(t) is a solution of (1.1) such that x(t) > 0 on [a1, σ(c1)]. For simplicity
in the following, we let H ′

σ = H(σ(s), a1), H ′ = H(s, a1), HΔ
1 = HΔ

1 (s, a1), and omit
the arguments in the integrals. Multiplying (2.12), where t is replaced by s, by H ′

σ , and
integrating it with respect to s from a1 to c1 and then using the integration by parts formula
we have that

∫ c1
a1

H ′
σΦ2Δs ≤ −

∫ c1
a1

(
H ′

σu
Δ +H ′

σ

Au2 − [(Aσ +A)B + ηAΔAp
]
u +AσB2

A
(
μu − μB + ηAp

)
)
Δs

≤ −H(c1, a1)u(c1)

+

(∫σ(a1)
a1

+
∫ c1
σ(a1)

)(
HΔ

1 u −H ′
σ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

)
)
Δs.

(2.25)
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For s ∈ [a1, c1),

H ′
σ −HΔ

1 μ = H ′. (2.26)

Hence,

∫σ(a1)
a1

(
HΔ

1 u −H ′
σ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

)
)
Δs

=

(
H ′

σA
σB + ηAp(H ′A)Δ

)
uμ

A
(
μu − μB + ηAp

)

∣∣∣∣∣∣∣
s=a1

≤ ηp(a1)HΔ
1 (a1, a1)A

σ(a1) +
H(σ(a1), a1)Aσ(a1)B(a1)

A(a1)
.

(2.27)

Furthermore, for s ∈ [σ(a1), c1), and u(s) ≤ 0,

HΔ
1 u −H ′

σ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

)

= − H ′

μu − μB + ηAp
u2 +

H ′AB +H ′
σA

σB + ηAp(H ′A)Δ

A
(
ηAp − μB) u

− H ′AB +H ′
σA

σB + ηAp(H ′A)Δ

A
(
ηAp − μB)

μu2

μu − μB + ηAp

≤ −H
′
σA

σ
(
ηAp + μB

)

A
(
ηAp − μB)2

u2 +
H ′AB +H ′

σA
σB + ηAp(H ′A)Δ

A
(
ηAp − μB) u

= −H
′
σA

σ
(
ηAp + μB

)

A
(
ηAp − μB)2

⎡
⎢⎣u −

(
ηAp − μB)

(
H ′AB +H ′

σA
σB + ηAp(H ′A)Δ

)

2H ′
σAσ

(
ηAp + μB

)

⎤
⎥⎦

2

+

(
H ′AB +H ′

σA
σB + ηAp(H ′A)Δ

)2

4H ′
σAσA

(
ηAp + μB

)

≤

(
H ′AB +H ′

σA
σB + ηAp(H ′A)Δ

)2

4H ′Amin
{
A
(
ηAp − μB), Aσ

(
ηAp + μB

)} =M2.

(2.28)
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For s ∈ [σ(a1), c1), and u(s) > 0,

HΔ
1 u −H ′

σ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

)

= − H ′

μu − μB + ηAp

[
u − H ′AB +H ′

σA
σB + ηAp(H ′A)Δ

2H ′A

]2

+

(
H ′AB +H ′

σA
σB + ηAp(H ′A)Δ

)2

4H ′A2
(
μu − μB + ηAp

)

≤

(
H ′AB +H ′

σA
σB + ηAp(H ′A)Δ

)2

4H ′Amin
{
A
(
ηAp − μB), Aσ

(
ηAp + μB

)} =M2.

(2.29)

Hence, for s ∈ [σ(a1), c1), we have

HΔ
1 u −H ′

σ

Au2 − [(Aσ +A)B + ηAΔAp
]
u

A
(
μu − μB + ηAp

) ≤M2. (2.30)

From (2.25), (2.27), and (2.30), we have that (2.23) holds for i = 1.
If x(t) < 0 on [a2, σ(c2)], then we see that g(t) ≥ 0 on [a2, c2]. Following the steps

above, we have that (2.23) holds for i = 2. The proof is complete.

Theorem 2.3. Assume that (C1)–(C3) and the following two conditions hold:

(C4) For any T ≥ t0, there exist T ≤ a1 < b1 ≤ a2 < b2, α ≥ 1, functions q, g ∈ Crd(T,R) such
that q(t) ≥ 0/≡ 0 for t ∈ [a1, b1]

⋃
[a2, b2] ,

g(t)

{
≤ 0, t ∈ [a1, b1],
≥ 0, t ∈ [a2, b2],

(2.31)

and (2.3) holds for all t ∈ [a1, b1]
⋃
[a2, b2] and y /= 0.

(C5) There exist ci ∈ (ai, bi), i = 1, 2, (A,B) ∈ (A,B), H ∈ H, M1(t, ·) ∈ L([0, ρ(t)]),
M2(·, t) ∈ Lloc([σ(t),∞)) such that for i = 1, 2,

1
H(bi, ci)

Ψ1(ci, bi) +
1

H(ci, ai)
Ψ2(ai, ci) > 0, (2.32)

whereM1,M2, Ψ1(ci, bi) and Ψ2(ai, ci) are defined as before.

Then (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1) which is eventually positive, say
x(t) > 0 when t ≥ T ≥ t0 for some T depending on the solution x(t). From the assumption
(C4), we can choose a1, b1 ≥ T so that g(t) ≤ 0 on the interval I = [a1, b1] with a1 < b1.
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From Lemmas 2.1 and 2.2, we see that (2.5) and (2.23) hold for i = 1. By dividing (2.5)
and (2.23) by H(b1, c1) and H(c1, a1), respectively, and then adding them, we obtain a
contradiction to assumption (2.32)with i = 1.

When x(t) is eventually negative, we choose a2, b2 ≥ T so that g(t) ≥ 0 on [a2, b2] to
reach a similar contradiction. Hence, every solution of (1.1) has at least one generalized zero
in (a1, b1) or (a2, b2).

Pick a sequence {Tj} ⊂ T such that Tj ≥ T and Tj → ∞ as j → ∞. By assumption,
for each j ∈ N there exists aj , bj , cj ∈ R such that Tj ≤ aj < cj < bj and (2.32) holds, where
a, b, and c are replaced by aj , bj , and cj , respectively. Hence, every solution x(t) has at least
one generalized zero tj ∈ (aj , bj). Noting that tj > aj ≥ Tj , j ∈ N, we see that every solution
has arbitrarily large generalized zeros. Thus, (1.1) is oscillatory. The proof is complete.

Corollary 2.4. Assume that (C1)–(C4) hold and that
(C6) there exist ci ∈ (ai, bi), i = 1, 2, (A, B) ∈ (A,B),H ∈ H,M1(t, ·) ∈ L([0, ρ(t)]),

M2(·, t) ∈ Lloc([σ(t),∞)) such that for i = 1, 2,

Ψ1(ci, bi) > 0, (2.33)

Ψ2(ai, ci) > 0, (2.34)

whereM1,M2, Ψ1(ci, bi) and Ψ2(ai, ci) are defined as before. Then (1.1) is oscillatory.

Proof. By (2.33) and (2.34), we get (2.32). Therefore, (1.1) is oscillatory by Theorem 2.3. The
proof is complete.

When q ∈ Crd(T,R+), g(t) ≡ 0, α = 1, we have the following corollary.

Corollary 2.5. Assume that (C1)–(C3) hold and that there exists a function q ∈ Crd(T,R+) such
that uf(t, u) ≥ q(t)u2. Also, suppose that there exist (A,B) ∈ (A,B), H ∈ H, M1(t, ·) ∈
L([0, ρ(t)]),M2(·, t) ∈ Lloc([σ(t),∞)) such that for any l ∈ T

lim sup
t→∞

{∫ t
l

H(σ(s), l)Φ1(s)Δs −
∫ t
σ(l)

M2(s, l)Δs

−
[
ηp(l)HΔ

1 (l, l)A
σ(l) +

H(σ(l), l)Aσ(l)B(l)
A(l)

]}
> 0,

(2.35)

lim sup
t→∞

[∫ t
l

H(t, σ(s))Φ1(s)Δs −
∫ρ(t)
l

M1(t, s)Δs

+ HΔ
2
(
t, ρ(t)

)(
ηA
(
ρ(t)

)
p
(
ρ(t)

) − μ(ρ(t))B(ρ(t)))
]
> 0.

(2.36)

Then (1.1) is oscillatory.
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Proof. When (C3) holds and there exists a function q ∈ Crd(T,R+) such that uf(t, u) ≥ q(t)u2,
it follows that (C4) holds for g(t) ≡ 0 and α = 1. NowΦ1(s) = Φ2(s). For any T ≥ t0, let a1 = T .
In (2.35), we choose l = a1. Then there exists c1 > a1 such that

Ψ2(a1, c1) > 0. (2.37)

In (2.36), we choose l = c1. Then there exists b1 > c1 such that

Ψ1(c1, b1) > 0. (2.38)

Combining (2.37) and (2.38)we obtain (2.32) with i = 1.
Next, in (2.35) we choose l = a2 = b1. Then there exists c2 > a2 such that

Ψ2(a2, c2) > 0. (2.39)

In (2.36), we choose l = c2. Then there exists b2 > c2 such that

Ψ1(c2, b2) > 0. (2.40)

Combining (2.39) and (2.40) we obtain (2.32) with i = 2. The conclusion thus follows from
Theorem 2.3. The proof is complete.

3. Example

In this section, we will show the application of our oscillation criteria in an example. The
example is to demonstrate Theorem 2.3.

Example 3.1. Consider the equation

(
p(t)

(
2 + cos 2x(t) +

sinx(t)
1 + x2(t)

)
xΔ(t)

)Δ

+ q(t)x3(σ(t))

[
2 + x2(σ(t))
1 + x2(σ(t))

]
+ cos

π

16
t = 0, (3.1)

where p ∈ Crd(T, (0, η0]), t ∈ T, ψ(x(t)) = 2 + cos 2x(t) + sinx(t)/(1 + x2(t)),

q(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
π

16
t, t ∈ [32n, 32n + 12],

2 +
√
2

8
(t − 32n − 12), t ∈ [32n + 12, 32n + 16],

− cos
π

16
t, t ∈ [32n + 16, 32n + 28],

2 +
√
2

8
(t − 32n − 28), t ∈ [32n + 28, 32n + 32], n ∈ N0,

(3.2)

and g(t) = − cos(π/16)t. So we have η = 4.
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For any T > 0, there exists n ∈ N0 such that 32n > T . Let α = 3, a1 = 32n, b1 =
32n+8, c1 = 32n+4, a2 = 32n+16, b2 = 32n+24, c2 = 32n+20, (A,B) = (1, 0), H(t, s) = (t−s)2,
we have

g(t)

{
≤ 0, t ∈ [32n, 32n + 8],
≥ 0, t ∈ [32n + 16, 32n + 24].

(3.3)

(i) Consider T = R+,

Ψ2(a1, c1) ≥ 3
3
√
4

∫32n+4

32n
(s − 32n)2 cos

π

16
s ds −

∫32n+4

32n

4η0(s − 32n)2

(s − 32n)2
ds

=
192 6

√
32

π3

(
π2 + 8π − 32

)
− 16η0,

Ψ2(a2, c2) ≥ − 3
3
√
4

∫32n+20

32n+16
(s − 32n − 16)2 cos

π

16
s ds

−
∫32n+20

32n+16

4η0(s − 32n − 16)2

(s − 32n − 16)2
ds

=
192 6

√
32

π3

(
π2 + 8π − 32

)
− 16η0,

Ψ1(c1, b1) ≥ 3
3
√
4

∫32n+8

32n+4
(32n + 8 − s)2 cos π

16
s ds −

∫32n+8

32n+4

4η0(32n + 8 − s)2
(32n + 8 − s)2

ds

=
192 6

√
32

π3

(
−π2 + 8π − 32

(√
2 − 1

))
− 16η0,

Ψ1(c2, b2) ≥ − 3
3
√
4

∫32n+24

32n+20
(32n + 24 − s)2 cos π

16
s ds

−
∫32n+24

32n+20

4η0(32n + 24 − s)2
(32n + 24 − s)2

ds

=
192 6

√
32

π3

(
−π2 + 8π − 32

(√
2 − 1

))
− 16η0.

(3.4)

So for i = 1, 2, we have

1
H(bi, ci)

Ψ1(ci, bi) +
1

H(ci, ai)
Ψ2(ai, ci) ≥ 192 6

√
32

π3

(
π − 2

√
2
)
− 2η0. (3.5)

When 0 < η0 < (96 6
√
32/π3)(π−2√2) ≈ 1.728, we have (192 6

√
32/π3)(π−2√2)−2η0 > 0,

so (2.32) holds, whichmeans that (C5) holds. By Theorem 2.3, we have that (3.1) is oscillatory.
However, when η0 ≥ (96 6

√
32/π3)(π − 2

√
2), we do not know whether (3.1) is oscillatory.



14 Discrete Dynamics in Nature and Society

(2) Consider T = N0,

Ψ2(a1, c1) ≥ 3
3
√
4

32n+3∑
k=32n

(k + 1 − 32n)2 cos
π

16
k − η0

32n+3∑
k=32n+1

(2k − 64n + 1)2

(k − 32n)2
− 4η0

=
3
3
√
4

(
1 + 4 cos

π

16
+ 9 cos

π

8
+ 16 cos

3π
16

)
− 889

36
η0,

Ψ2(a2, c2) ≥ − 3
3
√
4

32n+19∑
k=32n+16

(k + 1 − 32n − 16)2 cos
π

16
k − η0

32n+19∑
k=32n+17

(2k − 64n − 32 + 1)2

(k − 32n − 16)2
− 4η0

=
3
3
√
4

(
1 + 4 cos

π

16
+ 9 cos

π

8
+ 16 cos

3π
16

)
− 889

36
η0,

Ψ1(c1, b1) ≥ 3
3
√
4

32n+7∑
k=32n+4

(32n + 8 − k − 1)2 cos
π

16
k − η0

32n+6∑
k=32n+4

(64n + 16 − 2k − 1)2

(32n + 8 − k − 1)2
− 4η0

=
3
3
√
4

(
9 cos

π

4
+ 4 cos

5π
16

+ cos
3π
8

)
− 889

36
η0,

Ψ1(c2, b2) ≥ − 3
3
√
4

32n+23∑
k=32n+20

(32n + 24 − k − 1)2 cos
π

16
k

− η0
32n+22∑
k=32n+20

(64n + 48 − 2k − 1)2

(32n + 24 − k − 1)2
− 4η0

=
3
3
√
4

(
9 cos

π

4
+ 4 cos

5π
16

+ cos
3π
8

)
− 889

36
η0.

(3.6)

So we have

1
H(bi, ci)

Ψ1(ci, bi) +
1

H(ci, ai)
Ψ2(ai, ci)

≥ 3

16 3
√
4

[(
1 + 4 cos

π

16
+ 9 cos

π

8
+ 16 cos

3π
16

)

+
(
9 cos

π

4
+ 4 cos

5π
16

+ cos
3π
8

)]
− 889
288

η0, i = 1, 2.

(3.7)

When 0 < η0 < (54/889 3
√
4)(1+4 cos(π/16)+9 cos(π/8)+16 cos(3π/16)+9 cos(π/4)+

4 cos(5π/16) + cos(3π/8)) ≈ 1.359, we have (3/16 3
√
4)[(1 + 4 cos(π/16) + 9 cos(π/8) +

16 cos(3π/16)) + (9 cos(π/4) + 4 cos(5π/16) + cos(3π/8))] − (889/288)η0 > 0, so (2.32)
holds, which means that (C5) holds. By Theorem 2.3, we have that (3.1) is oscillatory.
However, when η0 ≥ (54/889 3

√
4)(1+4 cos(π/16)+9 cos(π/8)+16 cos(3π/16)+9 cos(π/4) +

4 cos(5π/16) + cos(3π/8)), we do not know whether (3.1) is oscillatory.
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