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A neural network taken as a model of a trainable system appears to be nothing but a
dynamical system evolving on a tangent bundle with changeable metrics. In other words to
learn means to change metrics of a definite manifold.
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I. INTRODUCTION

An application of differential or integro-differential
calculus for modeling of dynamical and self-
organizing processes in social and natural systems
has become a tradition since the works of A. Lottca
who released a book “Elements of Physical Biol-
ogy” (Baltimore, 1925) and W. Waltterra whose
paper “Sulla periodicita delle fluttuazioni bio-
logiche” appeared in 1927. Lots of complicated
problems in mathematics, physics, astronomy,
chemistry and biology find their decisions (Hilborn
and Tufillaro, 1997) when implementing the
modern sophisticated and carefully elaborated
nonlinear-dynamical approach. It combines dy-
namical systems (Katok and Hasselblatt, 1995) and
category theories, topology (Akin, 1993) and dif-
ferential geometry, ergodic (Pollicott and Michiko,
1997) and fixed point theories, combinatorics
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(Harper and Mandelbaum, 1985), representation
theory (Vershik, 1992), domain theory (Potts, 1995)
etc. Pleiad of these theories works wonderful for
natural phenomena and is absolutely helpless as
only one tries to apply one of them to social and
cultural events.

Today one should ask oneself whether a formal-
ism of integro-differential equations he applies in
social realm is sufficient for adequate synergetic
exposition of phenomenon, for example, socio-
economic development? To be fair the most often
answer is going to be “no”. The reason is in man.

Models of some natural, socioeconomic, political
etc. dynamical and self-organizing processes should
take into account a presence of anthropological
factor intrinsic to these ones. A man with his diverse
set of behavioral patterns enriches any kind of
human-loaded phenomena (HLP) with unpredict-
ability and enormous complexity.
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In particular, in this humanitarian context a
cognitive activity of a human being appears to be
a part of HLP almost the most difficult for
explication and at the same time to be a generic
feature of a carrier of cultural patterns and
archetypes. In modeling of synergetic aspects in
physical, chemical and other “behavioral systems”
there is no such difficulty. Therefore a due regard
for cognition in social-synergetic models, being an
independent scientific problem, is suitable to be a
criterion of their completeness.

The article presents some kind of an elabora-
tion of HLP models that use differential calculus
by introducing a mathematical caption of cogni-
tion due to consideration of a dynamical system
embedded in a manifold with inconstant metrics.
The author shows that such system is nothing but
an “intellectually and mentally inspired” neural
network (Buffalov, 1998) capable of learning
(Mitchell, 1997), recognition (Ripley, 1996), gen-
eralizing and forecasting. It is also shown that
metrics alteration actually is the training of this
neural network.

There is an alternative attempt of Scott and
Fucks (1995) to depict some features of human
brain using the theories of attractors and Sil'nikov
chaos. It gives a notion about dynamics complexity
and perpetuity by means of the dynamical systems
theory, and we try using the same theory and
differential geometry to show how to provide a
dynamical system with intellectual and mental
properties to make it suitable for modeling of social
and cultural HLP.

Intellectual systems with cognition and self-
regulation usually represent a wide class of complex
adaptive living beings studied by humanitarian,
medical and biological sciences. Machine learning
theory (Mitchell, 1997) reflects on manmade self-
training devices analogue to their biological proto-
types. We address a neural network studied by this
theory as one of such artificial systems endowed
with a synthetic intellect and cognition suitable
for “intellectual” sophistication of the ordinary
differential calculus.

II. NEURAL NETWORKS

Neural networks (Ripley, 1996) are an information
processing technique based on the way biological
nervous systems, such as the brain, process infor-
mation. The fundamental concept of neural net-
works is the structure of the information processing
system. Composed of a large number of highly
interconnected processing elements or neurons, a
neural network system uses the human-like tech-
nique of learning by example to resolve problems.
The neural network is configured for a specific
application, such as data classification or pattern
recognition, through a learning process called
training. Just as in biological systems, learning
involves adjustments to the synaptic connections
that exist between the neurons. Neural networks
can differ on: the way their neurons are connected;
the specific kinds of computations their neurons do;
the way they transmit patterns of activity through-
out the network; and the way they learn including
their learning rate.

In this article we are going to use the differential-
geometrical formalism to describe neural networks
of a certain architecture outlined in Petritis (1995)
and to implement them for “intellectualization” of
differential formalism and dynamical systems, in
particular. This approach is rather new though
there were some attempts in Potts (1995) concern-
ing forgetful neural networks to derive the embed-
ding strength decay rate of the stored patterns using
recent advances in domain and topology theories.

We consider neural networks, which can be
defined as a cascade conjunction of several properly
constructed layers. The typical one has the follow-
ing structure (Petritis, 1995):

(1) A4 level of input neurons fed with a vector of
external signals.

(2) A4 linear transformation level. Here the input
vector is multiplied on a matrix of synaptic
weights responsible for information storing.

(3) Nonlinear transformations level (a set of neu-
rons with nonlinear transfer functions). Here a
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linearly transformed signal is nonlinearly
converted.
(4) A level of output neurons.

The last layer is fedback to the first one.

The previous passage outlines the neural net-
work’s description framework giving a strict defini-
tion to its structure what’s of fundamental meaning
in neural network technique. Relaying on that fact
we assume that any system including a dynamical
one, which allows a description within that frame-
work can be treated as “intellectual” and possessing
cognition so far as neural network.

Now one can transfer the concept of cognition to
the scene of the differential calculus and the theory
of dynamical systems in a very simple and universal
fashion. Just develop a generalized description of
the dynamical systems in such a manner that it
incorporates the neural network’s description as
particular case. Such unifying generalization will
automatically assign all properties of the neural net-
work to the dynamical system and vice versa. The
context accompanying the assignment will define
the differential-geometric content of cognition.

I1II. DIFFERENTIAL GEOMETRY
BACKGROUND

Given a set M one say that there is a structure of
n-dimensional differentiable manifold on M if for
each x € M there exists a neighborhood U of x
and homeomorphism % from U to an open ball in
R". We call (U,h) a chart (or system of local
coordinates) about x.

If M is a manifold and x € M is a point, then we
define the rangent space to M at x (denote T, M) to
be the set of all vectors tangent to M in x.

The tangent bundle of M, denote TM, is defined
to be the disjoint union over xe M of T, M, i.e.
TM =scpm T-M. We think of TM as the set of
pairs (x,v), where x € M and v & T, M. The tangent
bundle is in fact a manifold itself. One can introduce
the cotangent bundle if we consider a covector
instead of a vector.

Topological space is a set I of points with subsets
indicated to be open. It is required that an arbitrary
intersection or disjoint union of any final number of
open sets should be open as well. The set 7 itself and
empty set should be open. We will work with
important particular case of topological space —
metric space for any two points x and y of which
there is defined a function p(x, y) called a distance
between x and y with the following properties:

L p(x, y) = p(y, x);
2. p(x,x)=0and p(x,y)>0,if x#y;
3. Triangle inequality: p(x, ) < p(x, z) + p(z, ).

Let M be a differentiable manifold. We say that
M is a Riemannian manifold if there is an inner
product g,(-, -) defined on each tangent space 7, M
for x € M such that for any smooth vector fields
X and Y on M the function x+— g (X(x),Y(x)) is
a smooth function of x.

In every neighborhood U; with local coordinates
(x¢)"_, a positively defined symmetrical matrix
gs(x}, ..., x) sets a Riemannian metrics so that for
any vector £ in a point x the equality |£ |2 = ggﬂ 5;6 «ff’
holds.

Metrics g;(y',...,)") is said to be Euclidean if
there exists a system of coordinates XX

x'=x'(y',...,»"), i=1,...,n, such that
Ox! . 9xk oxk
det . 0 d g;= —_—
¢ (Gyf) 70 and g ,; Ay' Ay

These coordinates x', ..., x" are called Euclidean.

IV. DYNAMICAL SYSTEMS BACKGROUND

For the purpose of this paper a dynamical system is
a topological metric space X and a continuous
vector field F. The system is denoted as a pair
(X, F). Locally it is described by a system of
ordinary differential equations of the first order.
There exist two principal approaches for dy-
namical systems, which suppose a construction of
developed theoretical base. Actually these are
Lagrangian and Hamilton formalisms. The first is
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the particular case of the last. That is why we restrict
ourselves to Hamiltonian dynamical systems.

In any space R” with coordinates (y', ..., ") and
metrics gy, i,j=1,...,n, it is possible to define a
scalar product and index raising up. So the gradient

Vf of the function f{y', ..., ") looks like
. of
1 — y_ ) .
(V1) =25,

Vector field Vf has a corresponding system of
differential equations y' = (Vf)' called gradient
system.

The space with a skew-symmetrical metrics
G=(g" )?;.1:1 is called a phase space if it allows such
coordinates (q, p) that:

0 1
o (40)

where I is the unit matrix, p is a covector and (q, p)
belongs on a cotangent bundle of a configuration
manifold.

A gradient system in a phase space is called a
Hamiltonian dynamical system. In general an even-
dimensional manifold (phase space), a symplectic
structure on it (integral Poincare invariant) and a
function on it (Hamiltonian) completely define a
Hamiltonian system.

V. “INTELLECTUALIZATION” OF
DYNAMICAL SYSTEMS

We are avoiding of considering of an arbitrary dy-
namical system so far and address the Hamiltonian
one embedded in a cotangent bundle of a con-
figuration manifold with the Riemannian skew-
symmetrical metrics G = (g7 )i;':] Let it be
described by the Hamilton equations for general-
ized coordinates ¢' and impulses p;, which can be

written in the following form:
y = GF(y, 1), (1)

where y'=¢', y'ti=p, i=1,...
OH(y,1)/0y’,j=1,...,n.

n, Fi(y, 1) =

In the case of an arbitrary nonobligatory
gradient dynamical system

qi:Qi(yat)’ pi:Pi(y:Z)’ i=1,...,n,

in a cotangent bundle quantities in Eq. (1) will
have the following denotation: F(y,?)=Q(y, 1),
Fiy, /)= P,(y.1), and G(y, 1) = (35" /9y/) ., is the
Jacobi matrix of frame transformation (GG is the
Euclidean metrics).

Equation (1) can be written in a form of a finite
difference scheme with a sufficiently small time dis-
cretization step 7. According to the Euler method
we obtain an iterative process with nth step giving

Yo =Yu1 + TGnF(Yn~1’ tn—l)' (2)

It can be easily interpreted in terms of a neural
network with input vector y, linear transformation
G, nonlinear transformation, i.e. a set of transfer
functions F;, and a feedback signal decay rate 7.

It is known from numerical methods that
accuracy of the approximation (2) can be substan-
tially improved if to add in the right part of (2) a
vector of errors calculated using the first formula of
Runge

yT _ ykf
R=T—1 G)
where y” and y*” are approximations calculated
with decay rates 7 and k7 for any integer k.

This procedure can be interpreted as a fruitful
discussion between two neural networks with
different decay rates (or “intellectual levels”).

The discretization of Eq. (1) provides two ways
for displaying of cognition in the framework of
dynamical systems by means of interpretations held
in terms of neural network theory:

Mathematical caption of cognition through
metrics alterations Any Hamiltonian dynamical
system (X, F) evolving in the phase space X with
the changeable Riemannian skew-symmetrical
metrics G defines a neural network with the set of
transfer functions F;, i=1,...,2n, and G as the
matrix of synaptic weights.
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Mathematical caption of cognition through frame
alterations Both an arbitrary non-Hamiltonian
dynamical system (X, F) evolving in the metric
space X and an inconstant Jacobi matrix G of
frame transformation define a neural network
with the set of transfer functions F;, i=1,...,2n,
and G as the matrix of synaptic weights.

Resting upon one of these interpretations one can

e treat a dynamical system in a differentiable
manifold with a changeable metrics as a neural
network along a training process;

e give more explicit solution of the central problem
of the neural network theory: memorization of an
arbitrary set of patterns and determination of
their attraction basins. With a certain network’s
architecture in hand this problem is solved by
appropriate choosing of its transfer functions (i.e.
avector field F;, i=1, ..., n, which is a dynamical
system in fact) and training algorithm (a law of
evolution of a manifold metrics). In other words
the solution is given by correct setting up of a
dynamical system (X, F'), where X'is a metric space
with ametrics G providing the best (according toa
given criterion) patterns’ memorization;

e take use of rich toolkit of topology and smooth
theories for investigation of “knowledge” struc-
tures generated by neural network invariant to
continuous and smooth changes of coordinates,
i.e. patterns remaining stable in the memory of
the network under its training. Such patterns can
be called unconditioned reflexes;

e address the fixed point theory as the most
powerful tool for perception of patterns stable
under network’s “cognitive” dynamics when
recognizing, generalizing, predicting and etc. In
particular, these patterns can be called condi-
tioned reflexes obtained throughout learning for
certain external inputs;

e sophisticate and deepen. a research of neural
networks using Lie algebras of vector fields and
a phase portrait of the trained neural network (its
output signal’s dynamics during recognizing and
etc.), namely, of appropriate dynamical system in
a curved manifold;

e generalize one’s investigations due to categories
of topological spaces and vector fields elaborated
in the category theory.

VI. METRICS ALTERATION VERSUS
TRAINING

“Intellectualization” endows a dynamical system
(X, F) with one more degree of freedom revealed in
plasticity of quantities defining the metrics of X.
This plasticity reflects training abilities of the neural
network associated with the dynamical system.
Let us consider autonomous differential equa-
tions establishing an arbitrary training algorithm:

G = Gy (y) > (4)

where y is defined through integral with G in
integrand [refer Eq. (2)].

If close enough to an end of the training process
the integro-differential equation (4) pertaining to G
can be simplified to an ordinary differential equa-
tion (see Appendix)

where

. led
RZr(y,t)z—a—lt: F(y,0), ijkr=1,...,2n.
Yy

Here and further we mean a summation all over
dummy indexes values.
As you can see the metrics evolution equations
(5) describe the motion of 2n* coupled oscillators.

VII. SOLUTION OF THE METRICS
EVOLUTION EQUATIONS

We rewrite Egs. (5) in a concise matrix form:

g =Rg, (6)

where g is a vector representation of the metric

i\ D, .
tensor G = (g”)i;;l and R is an operator represen-

tation of the tensor R}{r.
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If R is implicitly time-dependent and g(yo, to) =
g0, g(yo, to) = g, are entry conditions then Eq. (6)
has a solution:

&(y. 1) = cos[W(t — 10)]& + W' sin[W(r — 10) &,

()
where W(y) = vR and
C = cos(Wr) = I— : Rl +i|R2t -
W !sin(We) = It — %Rt + 51, R —

We can always find such nonsingular matrix X
that g, = XgO (for example, X = g0g+) Inducing
X = CXC™! we rewrite Eq. (7) as follows:

g(y, 1) ={Xcos]

Using the well-known trigonometric relations we
obtain

gy, 1) = A(y)sin[W(z — 1) + F(y)lg, (8)
where A = v/ X + R™! and F =arcctg[WX].

Equation (8) is the solution of the metrics
evolution equation (6). It describes a complicated
oscillatory dynamics of the neural network’s
synaptic weights defining the metrics of the mani-
fold. Such solution is very interesting from the
neuro-dynamical point of view since it allows to
speak about existence in the neural network theory
of analog of unfading oscillatory neocortex electro-
chemical activity, i.e. brain’s rhythms (Haken and
Stadler, 1990).

During the training the behavior of g(y,?) is
rather complicated because of constantly varying
amplitudes, frequencies and phases of coupled
harmonics in (8). But in the very moment when
the neural network is trained all these magnitudes
accept fixed values and do not vary in time any
more. The network passes in a phase of unfading
oscillations which parameters reflect an informa-
tion stored by it.

W(t — t0)] + Wl sin[W(z — 1)) } &

VIII. CATASTROPHE

As soon as the dynamical system (2) settles down to
some fixed point y’, i.e. F(y’, f) =0, the elements of
the metric tensor (or matrix of synaptic weights) are
subjected to an unbounded linear growth in time.
It becomes evident if to consider Eq. (6) where the
right part is set to zero.

Such a catastrophic outcome occurs only if y’ is a
stable fixed point and the “cognitive” dynamics of
the neural network fades (assume that our brain
stops functioning. It’s impossible!). Otherwise,
when y’ is unstable the output signals of the
network evolve endlessly and never settle down.
The catastrophe never occurs but another problem
of everlasting dynamics appears.

To solve this problem and to make the procedure
of training of the neural network declining one have
to restrict a scope of synaptic weights evolution
in light of a special kind of dynamical system (2).
One of the possible ways, which lies in wonderful
agreement with experiment is to consider a dynam-
ical system displaying the Sil’nikov chaos (Scott
and Fucks, 1995). In this case it never actually
settles in a stable fixed point at all, but continuously
evolves in the vicinity of a saddle focus.

So to avoid the catastrophe and to provide an
adequate memorization of a given set of patterns we
should construct an appropriate dynamical system
(2) exhibiting the Sil’'nikov chaos and a training
algorithm (4) in such a manner that

e any given pattern is a stable fixed point of the
map Gy

e any stable fixed point of the map Gy, coincides
with one of the saddle focuses laying on homo-
clinic orbits of the dynamical system, i.e. transfer
functions of the neural network.

Now we say that the neural network is trained
when its output signal dynamics is restrained to a
vicinity of one of the saddle focuses. In this very
moment amplitudes, frequencies and phases of
coupled harmonics in (8) accept “fixed” values but
vary insignificantly in time. The network passes in a
phase of unfading slowly varying oscillations which
parameters reflect an information stored by it.
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IX. CONCLUSION

We tried to make a due regard for cognition in
social-synergetic models of HLP that use differen-
tial calculus by introducing a mathematical caption
of cognition due to consideration of a dynamical
system embedded in a manifold with changeable
metrics.

Any dynamical system (X, F) evolving in the
phase space X with changeable Riemannian metrics
G appears to be a neural network with transfer
functions F,, i=1,...,n, and G as the matrix of
synaptic weights. Such interpretation has two very
important consequences:

e It enriches exceedingly the neural network
theory by the theoretical and computational
power of topology and smooth theories, cate-
gory and ergodic theories, dynamical systems
and fixed point theories, Lie algebras, phase
portrait technique etc.

e It endows social-synergetic models with extra
“cognitive” degrees of freedom giving a real pos-
sibility to grasp anthropological dimension of
some natural, cultural, socioeconomic, political,
dynamical and self-organizing processes etc.

When close enough to a fixed point the dynamics
of synaptic weights defining the metrics G is
described by the system of differential equations
for 2n* coupled oscillators. We find this solution to
be in wonderful coherence with the fact of the
neocortex oscillatory activity.

The idea of the dynamical system embedded in
the manifold with inconstant metrics plays con-
siderable role in the new understanding of neural
networks and the nature of training. The inter-
pretation offered here does not apply for generality
and completeness of an exposition of all details. Its
main purpose is to designate the new approach to

e comprehension of anthropological dimension in
social-synergetic models;

e understanding of neural networks within
the framework of the nonlinear dynamics
(synergetics).
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APPENDIX

For simplification of Eq. (4) we use G(y) expan-
sion in the Tailor series in a vicinity of a fixed point
y/. So Gy(y”) =0 implies that the neural network
is trained or metrics evolution came into a station-
ary state:

oGY.

gUz‘W (yk_yfk>+‘“’ iﬂj’k:L""zn'

yf
We neglect by derivatives of the second and

highest orders and then differentiate by time. Here
we use the fact that [see Eq. (4)]

a [oGY

— = ] =o0.
ot \ oyk
Yoy

After this we consider the system of ordinary
differential equations (5).



