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This is a review of recent studies of extended oscillatory systems that are subjected to peri-
odic temporal forcing. The periodic forcing breaks the continuous time translation symmetry
and leaves a discrete set of stable uniform phase states. The multiplicity of phase states allows
for front structures that shift the oscillation phase by &/n where n =1, 2, . .., hereafter n/n-
fronts. The main concern here is with front instabilities and their implications on pattern
formation. Most theoretical studies have focused on the 2: 1 resonance where the system
oscillates at half the driving frequency. All front solutions in this case are n-fronts. At high
forcing strengths only stationary fronts exist. Upon decreasing the forcing strength the
stationary fronts lose stability to pairs of counter-propagating fronts. The coexistence of
counter-propagating fronts allows for traveling domains and spiral waves. In the 4: 1 reso-
nance stationary w-fronts coexist with z/2-fronts. At high forcing strengths the stationary
n-fronts are stable and standing two-phase waves, consisting of successive oscillatory
domains whose phases differ by n, prevail. Upon decreasing the forcing strength the station-
ary n-fronts lose stability and decompose into pairs of propagating 5/2-fronts. The instabil-
ity designates a transition from standing two-phase waves to traveling four-phase waves.
Analogous decomposition instabilities have been found numerically in higher 2n:1 reso-
nances. The available theory is used to account for a few experimental observations made
on the photosensitive Belousov—Zhabotinsky reaction subjected to periodic illumination.
Observations not accounted for by the theory are pointed out.
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I. INTRODUCTION

A conspicuous property of systems driven far from
equilibrium is the possible appearance of persis-
tent oscillations [1-5]. The onset of oscillations has
extensively been studied in the context of chemical
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reactions. In spatially extended reactions it often
involves spatial phase variations that lead to travel-
ing wave phenomena. Biological rhythms provide
another manifestation of persistent oscillatory
dynamics. They occur in unicellular and multi-
cellular organisms and cover a wide range of
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periodicities, tens of milliseconds to years. The
oscillating systems encountered in nature are not
isolated and quite often the interaction with the
environment takes the form of a periodic forcing in
time. One example is the entrainment of cardiac
cells in the atrioventricular node to signals gener-
ated at the sinoatrial node. Circadian rhythms
entrained by the 24 h day—night periodicity provide
another example.

Most theoretical studies of periodically forced
oscillatory systems have focused on frequency lock-
ing phenomena and the onset of chaos in single
oscillator models (or circle maps) [4,6—10]. Fre-
quency locking refers to the property of a forced
system to oscillate at a frequency w which is a
rational fraction of the forcing frequency wy in
some range of the latter. These ranges of reso-
nant behavior get wider as the forcing strength is
increased, and are commonly refer to as Arnold
tongues. The fractional frequencies a forced sys-
tem can realize follow the Farey rule: between the
tongues wr:w=n:mand wp: w=k : [ there exists the
(n+k):(m+1) tongue.

Another property of forced systems is the coexis-
tence of multiple stable phase states, corresponding
to uniform oscillations with different fixed phases.
The multiplicity of phase states becomes particu-
larly significant in coupled oscillator arrays or in
oscillatory media, for different oscillator groups
or spatial domains may oscillate with different
phases, forming spatial patterns [11]. In the 2:1
tongue there are two stable phase states whose
phases differ by =w. They allow for two-phase
patterns involving alternating domains of the two
phase states. The boundaries between these alter-
nating domains, hereafter n-fronts, have been
studied recently by Coullet et al. [12]. They have
found a front bifurcation reminiscent of the Ising—
Bloch transition in ferromagnets with weak aniso-
tropy. The bifurcation, now referred to as the
nonequilibrium Ising—Bloch (NIB) bifurcation,
renders a stationary (Ising) front unstable as the
forcing strength is decreased, and gives rise to a
pair of counter propagating (Bloch) fronts (see
Fig. 3). The bifurcation designates a transition from

standing two-phase patterns to traveling two-phase
patterns [13].

In the 3:1 tongue there are three stable phase
states giving rise to traveling three-phase patterns
[14]. The boundaries between any pair of phase
states form 27/3-fronts (shift the phase of oscilla-
tion by 27/3). The four stable phases in the 4:1
tongue allow for either two-phase or four-phase
patterns depending on the forcing strength. At
strong forcing stationary w-fronts are stable and
standing two-phase patterns prevail. As the forcing
strength is decreased stationary n-fronts lose stabil-
ity and decompose into pairs of propagating w/2-
fronts (see Fig. 8). The n-front instability designates
a transition from standing two-phase patterns to
traveling four-phase patterns [15]. Recent experi-
ments on the photosensitive Belousov—Zhabotinsky
reaction subjected to periodic illumination demon-
strate the existence of two and three-phase patterns
[19]. Some of the observed patterns are shown in
Fig. 1.

In this paper I will review the mathematical
analysis of the front instabilities described above,
discuss the implications they bear on pattern for-
mation, and use them to interpret some of the
experimental observations. The mathematical ana-
lyses to be reviewed rely on continuum models of
oscillatory systems. Such models apply not only
to continuous media, such as chemical reactions,
but also to discrete systems like coupled oscillator
arrays when the coupling is strong enough. We will
assume an instability of a uniform stationary state
to uniform oscillations. Near the instability (the
Hopf bifurcation) the system’s dynamics is govern
by a universal equation for the envelope (or ampli-
tude) of the oscillations. We begin with a discussion
of this equation.

II. ENVELOPE EQUATION APPROACH

Let C(x, 1) represent the set of dynamical variables
of a given system, and let C=C, be a stationary
uniform state of the system. We assume that the
state Cy loses stability, as a control parameter R
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Experimental phase diagram for the ruthenium catalyzed Belousov—Zhabotinsky reaction periodically forced with

pulses of spatially uniform light from a video projector. The diagram shows frequency locked regimes observed as a function of
the forcing frequency, f,, (wr in the text). Patterns are shown in pairs, one above the other, at times separated by Ar= 1/f,, except
for the 1:1 resonance where Ar=1/2f,,. Striped boxes on the horizontal axis mark forcing frequency ranges with the same
frequency-locking ratio. Reprinted by permission from Nature (Petrov et al., 388, 655-657) copyright (1997) Macmillan Maga-

zines Ltd.

exceeds a critical value R, to uniform oscillations at
frequency wy (Hopf bifurcation at zero wavenum-
ber). Beyond the bifurcation and close to R, the set
C(x, 1) can be represented as an asymptotic expan-

sion in powers of A = /(R — R.)/R, < 1
C(x,7) = Co+ ACy + NCy + N C3+ -+, (1)
where
Cy = CyoA(x, 1) exp iwyt + c.c. (2)

Here Cyy is a set of constants and “c.c.” stands for
the complex conjugate. The amplitude A(x,¢) :=
A(X,T), where X =+Xx and T=\t, depends
weakly on space and time. The slow temporal varia-
tions of A stem from the small growth rates of per-
turbations near the bifurcation point, and the weak
spatial dependence is a consequence of the narrow
band of growing wavenumbers.

Assume now that the system is periodically
forced at frequency wy= nwy where n is an integer.

The equation for 4 admits then the universal form

A= (p+)A+ (1 +ia) A
—(1+iB)AP A+ 7", (3)

where the subscripts ¢ and x denote partial deriva-
tives with respect to time and space, and all the
parameters are real. The proximity to the Hopf
bifurcation implies u< 1. The amplitude equa-
tion (3) can be derived for specific models using
standard methods [20]. The general form of the
equation can be deduced from symmetry considera-
tions. In particular, the forcing term 4*"~' follows
from the discrete time translation symmetry,  —
t + 2m/wyr (the amplitude equation should be invari-
ant under the transformation 4 — A4 exp i27/n)[21].
In practical situations the periodic forcing often
contains harmonics of the main frequency wy. Thus,
forcing a system at wr~w,, for example, may
contain forcing components at 2wy, 3wy, ..., and
the corresponding terms, v,4*,v34*,... in the
amplitude equation should be considered as well.
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III. THE 2:1 RESONANCE

A. The NIB Bifurcation

An oscillating system that is forced at approxi-
mately twice its natural frequency is described by
the amplitude equation (3) with n=2. This equa-
tion has two stable phase states (uniform solutions)
whose phases arg(A) differ by 7. In addition, the
equation supports front solutions connecting the
two phase states as the spatial coordinate goes from
—00 to +o00. The front solutions of Eq. (3) have
been studied by Coullet et al. [12]. Consider first the
gradient version of this equation, obtained by set-
tingv=a=,0=0/[22]

A= pA+ Ao — |APA+ 74" (4)

The term “gradient” refers to the existence of a
Lyapunov (or free energy) functional for (4) which
is minimized by the dynamics [23]. The two stable
phase states of Eq. (4) are A =+4, where Ay =
Vi + 7. One type of front solution connecting
these states exists for all (positive) v, values. It is
given by

A(x) = I(x;0) = 0dAp tanh <%A0x>, (5)

where o ==1 is the front polarity associated with
the reflection symmetry x — —x of the Egs. (3)
and (4). The front solution (5) has a zero phase,
arg(l) =0, and is referred to as Ising front in anal-
ogy to Ising walls in ferromagnets.

At v, =p/3 the Ising front loses stability and a
pair of new fronts solutions appear (for a given
polarity)

A(x) = Bi(x;0) = 0Ag tanh(kx) % insech(kx),
(6)

where n =/ — 37, and k = \/27,. The phases,
arg(B.), associated with these front solutions are
not zero but rather rotating clockwise and anti-
clockwise by 7 as x increases from —oo to +o00.

It is in this sense that these front solutions resemble
the Bloch domain walls in ferromagnets. They are
consequently referred to as Bloch fronts.

Because of the gradient nature of (4) and the
symmetry of the two phase states, all fronts solu-
tions are stationary. The remarkable finding of
Coullet et al. [12] was that any of the nongradient
terms in Eq. (3) with n =2 whose coefficients are v,
« and § makes the two Bloch fronts propagating
in opposite directions while leaving the Ising front
stationary. The coexistence of counter-propagating
Bloch fronts is a nongradient effect that does not
exist in equilibrium systems. The Bloch front
velocities are given by

31 Ay

c=40—+—F"—
2k(3p = 2)

(v +Bp+(a=P)m). (7)

Figure 2 shows a bifurcation diagram for the NIB
bifurcation based on Eq. (7). Equation (7) can be
derived by writing a front solution of Eq. (3) with
n=2 1in the form

A(x,t) = Ag(x — ct) + €R, (8)

assuming the coefficients v, «, and 3 are of order
e < 1. Here, Ay(z) is either the Ising front solution
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FIGURE 2 The NIB bifurcation for front solutions of
Eq. (3) with n=2. For v>~,=p/3 there is a single stable
Ising front with zero speed (solid line). For <+, the Ising
front is unstable (dashed line) and a pair of stable counter-
propagating Bloch fronts appears (solid lines). Parameters:
#=1.0,v=0.01, «=F=0.0. (The parameter = is 7y, in the text.)
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FIGURE 3 The NIB bifurcation in the 2:1 resonance:
space—time plots of arg (4) showing an unstable stationary

Ising front evolving into left (a) and right (b) traveling Bloch
fronts beyond the NIB bifurcation.

of (4), I(z; 0), or the Bloch front solutions, B.(z; o),
and R represents higher order corrections. Using
this form in (3) and applying solvability conditions
at order ¢ lead to the result ¢ =0 for 4y =/, and the
expression (7) for Ay= B.. Another view of the
NIB bifurcation is shown in Fig. 3 which shows
space time plots of unstable Ising fronts that evolve
into counter-propagating Bloch fronts. As will be
discussed in the next section the NIB front bifurca-
tion has significant effects on pattern formation.

B. Implications on Pattern Formation

Before embarking on pattern formation aspects of
the amplitude equation (3) (with n=2) let us con-
sider the more generic case where the two uniform
phase states are not symmetric (under 4 — —A).

The symmetry can be broken by adding to the
forcing a component at the system’s oscillation
frequency, wrc~w. The amplitude equation will
now read

A= (p+w)A~+ (1 + o) Axy
— (L +iB)APA+ A +y.  (9)

The effect of the 1:1 forcing term, ~y, is to grant
velocities to all front solutions, even in the gradient
case. The expression (7) for the Bloch front veloc-
ities now reads

3mnA
¢ = ia——_—.—Zk(g—O’yz) (—v+Bu+ (a—F)n)

3o Ao ’ (10)
k(3p—72)
assuming -y, is small.

Imagine now a pair of Ising fronts with different
polarities o. Such a pair forms a domain of one
phase state in a background of the other. Depend-
ing on the sign of «y; this domain either expands or
shrinks. In both cases a uniform phase state will
eventually prevail. In the symmetric case, v, =0, the
attractive interactions between Ising fronts should
lead in principle to a uniform state, but since the
interactions are exponentially small most often
patterns appear as frozen standing-wave patterns.
The situation changes beyond the NIB bifurcation
(2 < p/3) where counter-propagating Bloch fronts
coexist. For now, a combination of two distinct
Bloch fronts with different polarities form a travel-
ing domain. Due to the different propagation
speeds of the two Bloch fronts the traveling domain
may either expand or shrink. In the former case a
uniform state will be reached, but the shrinking
domain may reach an equilibrium shape that tra-
vels invariably, because of the repulsive interac-
tions between Bloch fronts. Asymptotic traveling
domain solutions are shown in Fig. 4. Thus, the
coexistence of the counter-propagating Bloch
fronts allows for asymptotic traveling patterns [13].

The interaction between a pair of Bloch fronts
and the formation of a stable traveling domain can
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FIGURE 4 Traveling domain solutions to Eq. (9) near the
NIB bifurcation. (a) A stable “up” domain, v, <0. (b) A stable
“down” domain ~; > 0.

be studied by writing a traveling domain solution
as [13]

A(x,t) = By[x — x1(2); +1] + B_[x — x(1); —1]
— Ao+ R(x, 1), (11)

where the variables, x, and x, are the positions of
the leading (right) and trailing (left) Bloch fronts,
B, are given by (6), and Ris a small correction term.
The two polarities (0 ==41) are necessary to con-
struct a domain bounded by the fronts. The two
types of Bloch fronts, B_and B, make the domain
traveling. We assume that the system is nearly sym-
metric (|| < 1), that it is close to the NIB bifur-
cation and that the domain is much wider than the
width of the fronts. Following the methods of [24]
the following equation for the domain width, L=
X — X1, has been derived:

kAoL = 3y — 1245e 2 + 64on%e L. (12)

The first term on the right hand side describes the
effect of the broken symmetry between the two

0.05 0.10 0.15 0.20 0.25 0.30 0.35

7

FIGURE 5 The distance, L, between the front and back of
a traveling domain solution for ~, near the NIB bifurcation.
The solid and dashed lines represent the stable and unstable
branches solutions from Eq. (13). The crosses are data from
direct numerical solution of Eq. (9). Parameters: u=1, v=
0.01, vy =—0.001, a = 3=0. (The parameter ~ is v, in the text).

Bloch fronts; the initial domain expands (v, > 0) or
shrinks (v; <0) in time when the leading front is
faster or slower than the trailing one. The second
term describes an attractive front interaction gen-
erated by the real parts of the Bloch front solutions.
The last term, generated by the imaginary parts of
the Bloch front solutions, describes a longer range
repulsive interaction. The repulsive interaction
strengthens as -, is decreased below the NIB bifur-
cation point, v, = /3, and becomes dominant at
sufficiently small v, values.

Solutions describing domains traveling at con-
stant speeds are obtained by setting L = 0 in (12).
The solutions to the resulting quadratic equation in
z=-exp(—kL) are

L=—k"'In (n2 /0?1 440, ) + 2k~ In24,.
(13)

Consider the case where wide domains shrink, or
71<0. At the NIB bifurcation point, 7°=
1 —3v,=0, traveling domain solutions do not yet
appear unless y; =0. They appear in a saddle-node
bifurcation only for v, <v,(y1) < p/3 where v,(v1)
solves (u — 3'y1,)2 =4,/;+ 7, |71|. Graphs of these
solutions in the L—, plane are shown in Fig. 5.
The upper and lower branches represent stable and
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unstable solutions. Also shown in Fig. 5 are results
from direct numerical solutions of Eq. (9) showing
the stable traveling domain branch. The shape of
the stable traveling domain is shown in Fig. 4(a).
In two space dimensions the NIB bifurcation has
another interesting implication: it allows for spiral
wave solutions. Figure 6 shows the time evolution

FIGURE 6 Simulation of the two-dimensional version of
Eq. (3) with n =2 showing the development of a rotating spiral
wave beyond the NIB bifurcation (v, < u1/3). The left column
is |A4| and the right column arg(4) in the x—y plane. (a) An
unstable Ising front consisting of two segments perturbed so as
to initiate convergence to different Bloch fronts. (b), (c) and (d)
The subsequent evolution toward a rotating spiral wave.

of a m-front for v, < /3. The initial front consists
of two segments that converge to different Bloch
fronts. This leads to a twist motion that evolves into
a rotating spiral wave [29].

IV. THE 4:1 RESONANCE

A. The Decomposition Instability

The dynamics within the 4:1 resonance tongue is
governed (close to the Hopf bifurcation and for
small detuning) by Eq. (3) with n=4. The param-
eter u can be scaled out by rescaling time space and

amplitude as t =7, x = \/p/2zand B=A/\/iu
B, = (1 4 ivg) B + 3(1 + ic) By
— (L +i®)|BB+7B”,  (14)

where vy =v/u. Consider first the gradient version
obtained by setting vo=a=8=0:

B, =B+1B.. — |B/B+vB". (15)

Equation (15) has four stable phase states for
0 < 4 < 1 shown by solid circles in Fig. 7: B, = +\

1.0
I(a)

0.0 1

—1.0

-1.0 0.0 1.0
R(A)

FIGURE 7 Uniform states and front solutions of Eq. (15)
in the complex B plane. The dots represent the 4 spatially uni-
form phase states. The solid lines are the 7-front solutions and
the dashed lines are the 7/2-fronts. The thin lines in the circle
are phase portraits of front solutions at successive time steps
showing the collapse of a 7-front into a pair of 7/2-fronts.
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and Bi;=+i)\, where A = 1/4/T — 4. Front solu-
tions connecting pairs of these states divide into
two groups, m-fronts and 7/2-fronts. The 7-fronts,
shown in Fig. 7 as solid lines, are given by

B_i1_1 = B tanh x,

(16)

ij*)+l' = B+l’ tanh x.

The 7/2-fronts are shown in Fig. 7 by the dashed
curves. For the particular parameter value 74:%
they have the simple forms

1 /3
B+]_,+,':§ 5[1 —|—l— (1 —l)tanhx],

1 /3
B = 5\[5[1 —i+(1+itanhx], (17)

B+i4>71 = “B*i—>+l P

B =By

Additional front solutions follow from the invari-
ance of Eq. (15) under reflection, x — —x. For
example, the symmetric counterparts of B, (x)
and By, ;(x) are By (x)=B,; 1 1(—x) and
B i 1(X)=B . i(—x).

Consider now the nongradient system (14). The
main effect of the nongradient terms is to make the
n/2-fronts traveling. The nongradient terms have
no effect on the m-fronts which remain stationary.
To see this assume a traveling solution B(x — cf)
of Eq. (14) and project this equation on the
translational mode B’. For n-fronts the resulting
condition

¢(B) =0 By(z) = Atanhz, (18)
implies ¢ =0 (the brackets denote integration over

the whole line). For n/2-fronts with 74:% the fol-
lowing expression is found:

le[ =

<B_)(‘32> [(VO _ %vﬁ) (B}) — %ﬂ<B§Bo’>

where A = /3/2. A perturbation analysis around
74:% shows that the expression (19) for the speed
remains valid for small deviations of 4 from 1.
The w-fronts (16) are similar to the Ising front in
the 2: 1 resonance and like the Ising front they lose
stability as the forcing strength, -4, is decreased.
Stability analysis of the n-fronts indicates that
the instability occurs at v4=1. The nature of the
instability, however, is quite different. It is a degen-
erate instability leading to asymptotic solutions
that are not smooth continuations of the unstable
stationary m-fronts, unlike the NIB pitchfork bifur-
cation. Figure 8 shows a space-time plot of arg(A4)
analogous to Fig. 3. The initial unstable 7-front
decomposes into a pair of w/2-fronts traveling to the

300

200

- 100

0 2 4 6 81012 0 2 4 6 8 1012
X X

FIGURE 8 The decomposition instability in the 4:1 reso-
nance: Space—time plots of arg(4) (solutions of Eq. (3) with
n=4) showing the decomposition of an unstable n-front into
a pair of 7/2-fronts traveling to the left (a) or to the right (b).
The pairs of 7/2-fronts enclose grey colored domains whose
oscillation phases are shifted by 7/2 with respect to the black
and white domains. Parameters in Eq. (3): p=1.0, v=0.02,
74:03
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right or to the left depending on initial conditions.
Along with the #-front decomposition an inter-
mediate phase state (the grey domain) appears. This
behavior is found arbitrarily close to the instability
point, and in this sense the new solutions are not
smooth continuations of the w-front solution. The
instability has been analyzed by Elphick et al.
[15,25] using Eq. (14) near 74:§. A brief descrip-
tion of this analysis follows.

Again, we consider first the gradient version (15).
Introducing the new variables

U=R(B)+3(B) V==R(B) —3(B), (20

Equation (15) is written as

1 2
UF:U+—UW——U3—§aﬂ—3V%u (21a)
2 3 2
1 2 3 d 2 2
Vi= V4V —=V3—Z(V*=3U%)V, (21b)
2 3 2
where
d=’74—1/3.

At the instability point, v4=41, the two equations
decouple and admit solutions of the form

U= o1By(x — x1),

(22)
V= 0’230()6 — Xz),

where By(x) = /3/2tanhx, oy, ==+1, and x, and
x, are arbitrary constants. An intuitive under-
standing of this family of solutions can be obtained
by expressing these solutions back in terms of the
complex amplitude B. For o; = —0, =1 for exam-
ple, the solution (22) is equivalent to

B(x;x1,x2) = B_jiq1(x — x1)

+ Biiogi(x —x2) — A

When |x, — x;| — oo this form approaches a pair of
isolated 7/2-fronts:

B=B_ii(x—x1), x=xi,

and

B~ Biyi(x — x2), x=x.

When x, — x; =0 it reduces to the w-front B_; .
Defining a mean position, ¢, and an order param-
eter, x, by

(=31 +x), x=1(x—-x),

the one-parameter family of solutions, { B(x; ¢, x) |
X € R}, where E(x; ¢, x) = B(x; x1, x2), represents
m/2-front pairs with distances, 2y, ranging from
zero to infinity.

For |y, — 4| =|d| < 1, the weak coupling between
the two Egs. (21a) and (21b) induces slow drift
along the solution family B(x; xy, x;). A pair solu-
tion is now written as

U= o1By|x — x1(8)] + u,

V = 03 Bo[x — x2(8)] + v, (23)

where u and v are corrections of order d. Equations
of motion for x; and x, or for ¢ and y follow by
inserting these forms in Egs. (21a) and (21b) and
applying solvability conditions at order d:

(=0, (24)

. dv 27 X
(=g V=1gd [ @z @)

where

J(x) =6(a" —a )+ (1 = 3a2)G(a),
G(a) = (1 — a“z)ln(i —I—a>,

—da

with a =tanh 2x. Note that Egs. (24) and (25) are
valid to all orders in y and to linear order around
74:%, Figure 9 shows the potential V(x) for d>0
(y4> —;—) and d<0. There is only one extremum
point, x =0, of V. For d> 0 it is a minimum and x
converges to zero. Pairs of 7/2-fronts with arbitrary
initial separation, x, — xi, attract one another and
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FIGURE 9 The potential ¥(x). (a) For d>0 the extremum
at xy=0 is a minimum and x converges to 0 (a 7-front).
(b) For d<0 the extremum is a maximum and x diverges to
+oo (isolated pair of 7/2-fronts).

eventually collapse to a single m-front (x; =x, or
x = 0). In practice, the collapse process is noticeable
only for relatively small separations. For d<0
the extremum point, x =0, is a maximum and x
diverges to +oo. A w-front decomposes into a pair
of 7/2-fronts which repel one another as shown in
Fig. 8 for the nongradient system (3). In the gra-
dient case both 7 and =/2-fronts are stationary
(in the absence of interactions). Since the potential
V(x) becomes practically flat at finite x values, the
pair of w/2-fronts do not seem to depart from one
another at long times. Figure 7 shows the decom-
position process of a m-front in the complex B plane.
Starting with the B_;_,,; n-front, represented by
the thick solid phase portrait, the time evolution
(thin solid phase portraits) is toward the fixed point
B, ; and the dashed phase portraits representing

the pair of n/2-fronts B, _,,;and B,; , |. Because
of the parity symmetry y — —Y, an appropriate
perturbation of the initial B__,,, w-front could
have led the dynamics toward the pair B, _, ;and
B_, . Notice that for d=0, ( =0, x = 0, and
we recover the two-parameter family of pair solu-
tions B(x; ¢, x) with arbitrary ¢ and .

The derivation of Egs. (24) and (25) can easily
be extended to the nongradient case assuming v,
a and (@ are small. The x equation remains
unchanged. The ¢ equation takes the form

j—jc‘ = UF,(x) + aF.(x) + BF5(x),  (26)

where F,, F,, and Fj are odd functions of y and do
not vanish when d =0 [25]. When |x| — oo the right
hand side of (26) converges to 3(vo — 3), the speed
of a 7/2-front solution of Eq. (14). The x =0 solu-
tion (representing a w-front) remains stationary
(¢ =0) in the nongradient case as well. At v,=1
(d=0) it loses stability and decomposes into a pair
of w/2-fronts which approach the asymptotic speed
(vo—B).

The degeneracy of solutions at 4 =1 is lifted by
adding higher order terms to the amplitude equa-
tion (14). These terms are smaller by a factor of
1< 1 than the terms appearing in (14) and their
effect is noticeable only in a p-neighborhood of
74:%. Apart from this small parameter range the
overall behavior does not change [25].

B. Implications on Pattern Formation

Like in the 2:1 resonance the w-front instability
designates a transition from frozen standing waves
to traveling waves. The coexistence of 7w-fronts and
m/2-fronts, however, allows in principle both two-
phase and four-phase patterns. The w-front decom-
position instability contains information not only
about the transition from standing to traveling
waves, but also about the parameter regimes where
two-phase and four-phase patterns are expected to
be seen. For v4 > % the interaction between a pair of
propagating m/2-fronts is attractive as indicated
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by the single minimum of the potential V() (see
Fig. 9). The minimum at y =0 corresponds to a
n-front and according to Eq. (26) the n-front is
stationary. As a result, traveling four-phase pat-
terns consisting of 7/2-fronts converge to stationary
two-phase patterns consisting of 7m-fronts. When
Y4 <% the interaction between 7/2-fronts becomes
repulsive. Stationary w-fronts, corresponding to
the maximum of V(x) at x =0, are unstable and
decompose into pairs of traveling 7/2-fronts. As a
result stationary two-phase patterns destabilize and
evolve into four-phase traveling patterns.

Figure 10(a) shows a stably rotating four-phase
spiral wave for 74<%. Figure 10(b—d) show the
collapse of this spiral wave into a stationary two-
phase pattern as 4 is increased past % The collapse
begins at the spiral core where the 7/2-front inter-
actions are the strongest. As pairs of 7/2-fronts
attract and collapse into 7-fronts, the core splits
into two vertices that propagate away from each
other leaving behind a two-phase pattern.

V. HIGHER 2#:1 RESONANCES

Numerical studies of amplitude equations for
higher resonances suggest the existence of w-front
decomposition instabilities in 2x : 1 resonances with
n > 1. The following generalization has been conjec-
tured: within the 27 : 1 tongue (n > 1), upon decreas-
ing 7,,, a m-front may lose stability by decomposing
into n propagating w/n-fronts. Consider for exam-
ple the equation

B, = 1B+ (1 +ivy)B+ pa| BB
+ 6| BI* B+ B + 6B (27)

The normal form equation up to fifth order con-
tains many more terms whose coefficients were set
to zero for simplicity. Figure 11 shows the decom-
position in the complex B plane of a =w-front
within the 6 : 1 tongue (¢ # 0) into three 7/3-fronts.
Figure 12 shows a space—time plot of the decom-
position instability within the 6:1 tongue. The
initial unstable w-front decomposes into three

FIGURE 10 Numerical solution of a two-dimensional ver-
sion of Eq. (14) showing the collapse of a rotating four-phase
spiral-wave into a stationary two-phase pattern. The left col-
umn is |A4| and the right column arg(4) in the x—yp plane.
(a) The initial four-phase spiral wave (computed with 74<%).
(b) The spiral core, a 4-point vertex, splits into two 3-point
vertices connected by a w-front. (c) A two-phase pattern
develops as the 3-point vertices further separate. (d) The final
stationary two-phase pattern. Parameters: y4=0.6, vo=0.1,
a=03=0, x=[0,64], y=[0, 64].

m/3-fronts, traveling to the left or to the right
depending on initial conditions. Along with this
process two intermediate phase states appear
between the original white and black phases. A
similar decomposition instability has been observed
within the 8: 1 tongue.
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FIGURE 11 Phase portraits of front solutions at successive

time steps (thin solid lines) showing the decomposition of a
n-front (thick solid line) into three 7/3-fronts (dashed lines) in
the 6:1 resonance tongue. Parameters in Eq. (27): v,=0.9,
ta=—1.0, pe=—1.0. All other parameters are zero.
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FIGURE 12 Decomposition of a z-front into three =/3-
fronts in the 6:1 resonance band. The figures show space—
time plots of arg(B) using numerical solutions of Eq. (27) with
parameters v5=0.9, ps=-1.0, us=-1.0, v=0.1. All other
parameters are zero.

VI. THEORY VS. EXPERIMENT

The main difficulty in confronting the available
theory with the experiments on the forced
Belousov—Zhabotinsky reaction is that the experi-
ments were carried out far from the Hopf bifur-
cation while the theory is valid only close to the
bifurcation. At high forcing strengths, within the
2:1 tongue, standing two-phase patterns were
observed. This observation is consistent with the
behavior in the Ising regime that the theory pre-
dicts. At sufficiently lower forcing strengths a tran-
sition to traveling waves is observed [16], as the
theory predicts too. However, no indications for
Bloch phase fronts and phased locked domains have
so far been found. This behavior may be attributed
to the relaxational nature of the oscillations far
from the Hopf bifurcation, and consequently to
large phase gradients that develop. These gradients
may prevent convergence to the two uniform phase
states at low forcing strengths.

Direct studies of the NIB bifurcation have been
carried out on liquid crystals subjected to rotating
magnetic fields [17,18]. This system, like forced
oscillatory media, can be modeled by Eq. (3) with
n=2 [17]. Experimental observations of decom-
position instabilties of w-fronts have not been
reported so far. The lowest resonance to display
such an instability, 4 : 1, was beyond the scope of the
experiments on the forced Belousov—Zhabotinsky
reaction reported in [19].

Some of the experimental observations shown in
Fig. 1 can nevertheless be accounted for using the
available theory. The absence of multiple stable
phase states within the 1:1 resonance does not
allow for domain patterns as in higher resonances
(although nonuniform phase dynamics arising from
phase instabilities of the uniform state may occur).
This is consistent with the uniform oscillations
shown in the first pair of frames on the left. The
two phase states that coexist within the 2:1 reso-
nance allow for two-phase patterns as shown in
the third and fourth pairs of frames (from left).
These patterns are standing waves suggesting that
these observations were taken at high illumination
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intensities within the Ising regime. The two other
patterns shown in Fig. 1 (second and fifth pairs of
frames) correspond to the 3:2 and 3: 1 resonances.
In both cases three uniform phase states coexist.
Three phase patterns have been observed within
the 3: 1 resonance only. They consist of successive
domains with shifts of 27r/3 in the oscillation phases.
The boundaries of these domains (27/3-fronts) were
found to drift very slowly. In other experiments
within the 3 : 1 tongue traveling three phase patterns
were observed [16]. Numerical studies of Eq. (3)
with n =3 have indeed found three phase traveling
waves (spiral waves) [14].

Some other experimental observations are not
yet understood. The bubble patterns within the 3: 2
resonance (second pair of frames in Fig. 1) are not
simple three-phase patterns although the power
spectrum at any spatial point shows well defined
peaks at multiples of w/3. The bubbles randomly
appear and disappear and the mechanism that gov-
erns this behavior is not known. The transition to
labyrinthine patterns within the 2 : 1 resonance as the
forcing frequency, wy, is increased is also not fully
understood. Simulations of a forced Brusselator
model within the 2:1 resonance reproduced the
transition to labyrinthine patterns [33,34]. The tran-
sition has been attributed to a transverse instability
of an Ising front. Transverse front instabilities lead-
ing to labyrinthine patterns through fingering and
tip spliting have been found earlier in bistable
(unforced) reaction—diffusion models [26—-28]. A
neccessary condition is repulsive front interactions
that rule out merging of growing fingers, but the
origin of such interactions in the context of Eq. (3)
is not clear. The decoration that appears on the
experimental 27/3-fronts within the 3: 1 resonance
suggest the existence of a transverse instability but
no theoretical account has yet been offered.

There are also theoretical predictions that have
not been tested yet in experiments like the 7-front
decomposition instability in the 4 : 1 resonance and
its implications on pattern formation. In the vicin-
ity of the NIB bifurcation complex spatio-temporal
behavior involving spontaneous nucleation of spi-
ral waves may arise [27,29]. A theoretical account of

this behavior has been given in the context of
activator—inhibitor systems [30-32]. Complex
spatio-temporal dynamics near the transition from
standing to traveling waves within the 2:1 reso-
nance have also been found experimentally in the
periodically illuminated Belousov-Zhabotinsky
reaction [16], but no attempt has yet been made to
interpret these observations.

VII. CONCLUSION

I have presented here a short review of recent stud-
ies of extended dissipative oscillatory media sub-
jected to temporal periodic forcing. Most attention
has been given to the analysis of w-front instabilities
within even 2n:1 resonances and to the implica-
tions they bear on pattern formation. Despite the
theoretical progress described in this review many
aspects of periodically forced oscillatory systems
are still not understood. The discussion of experi-
mental findings in the previous section points
toward a few of them. In particular, the effect of the
distance to the Hopf bifurcation has to be studied.
Additional open questions include: (i) dynamics
within overlapping resonances which becomes rele-
vant at high forcing strengths, (ii) forcing at multi-
ple frequencies, e.g. periodic forcing that contains
harmonics and (iii) coupled front-phase dynamics
(involving instabilities of uniform phase states)
which may shed light on the onset of spatio-
temporal chaotic behaviors.

I did not discuss here periodic forcing of non-
oscillatory extended media such as excitable media
[35] and granular systems [36—39]. Nor did I discuss
conservative or nearly conservative systems that are
periodically forced [40—44]. All these systems share
common features but also differ in many aspects.
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