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The paper describes the sequence of bifurcations leading to multistability of periodic and
chaotic synchronous attractors for the coupled Rossler systems which individually demon-
strate the Feigenbaum route to chaos. We investigate how a frequency mismatch affects this
phenomenon. The role of a set of coexisting synchronous regimes in the transitions to and
between different forms of synchronization is studied.
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1 INTRODUCTION

Synchronization of chaotic systems has become a
significant field of research in recent years. Dif-
ferent approaches to chaotic synchronization, its
criteria and peculiarities of bifurcation mecha-
nisms of desynchronization have been developed in
[1-18]. It seems that the classical concept of syn-
chronization related to the locking of the basic
frequencies and instantaneous phases of oscilla-
tions or the suppression of the basic frequencies is
acceptable for a certain class of chaotic systems
those wherein the basic frequencies can easily be
distinguished in the power spectrum [6—11]. The
basic frequency corresponds to the period of the
initial limit cycle which produces a chaotic attractor
via a cascade of period-doubling bifurcations
(Feigenbaum scenario). The transition from non-
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synchronous chaos to synchronous behavior may
be diagnosed by different methods. Anishchenko
et al. [7,17] compare the results from numerical
simulation as well as from full-scale experiments
and diagnose the boundary of chaotic synchroniza-
tion when the locking of the basic frequencies of
chaotic oscillations takes place. In [9—11] this
transition is determined from the behavior of the
instantaneous mutual phases of oscillations.
Finally, in [16,18] the authors suggest a method
based on calculation of the characteristic time of a
system as the mean return time to a Poincaré surface.

In the parameter space of a system there exist
regions which correspond to the frequency and/or
phase locking (Arnol’d tongues). Chaotic oscilla-
tions inside these regions are synchronous. For
identical interacting chaotic systems complete (full)
synchronization is observed for a strong enough
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coupling strength [2,3,5]. It implies that time-
series of corresponding dynamical variables of
subsystems coincide completely: x;(7) = x5(1).
When a weak frequency mismatch is introduced
lag synchronization appears, as a coincidence of
the states of two systems: X((¢ + 7) =X,(¢) when
shifted in time [11].

Multistability is another typical phenomenon
observed in nonlinear dynamical systems. Itis found
commonly in many fields of science [19—-23]. Many
processes in nature are characterized by a large
number of coexisting regimes for a fixed set of
parameters but for different initial conditions. Due
to a weak interaction multistability of periodic
and chaotic attractors can be observed inside the
synchronization region of mutually coupled units
which individually follow the Feigenbaum period-
doubling route to chaos [17,24-27]. Let us call
this type of multistability as the phase one because it
is related to mutual synchronization with different
phase relationships between oscillations, whose
spectrum contains subharmonics of the basic
frequency wy. Possible synchronous regimes are
increased in number when more subharmonics of
the basic frequency can be distinguished in the
power spectrum.

For initial periodic oscillations with period T a
phase difference ¢ between subsystems is equiva-
lent a phase difference ¢y + 2mm, m=1,2,... For
oscillations with doubled period 27, whose spec-
trum contains subharmonic wg/2, two different limit
cycles in the phase space of interacting systems
correspond to the phase differences ¢ and ¢g + 27.
Thus, for two synchronized oscillators whose spec-
trum includes subharmonics wy/2" (n=1,2,...) of
the basic frequency, the phase difference between
interacting units can attain 2" different values, i.e.
o=¢o+2mm, m=0,1,2,..., 2" — 1. Phase multi-
stability also takes place for weak chaos, that
demonstrates an N-band structure. Hierarchy of
multistability in identical interacting systems with
dissipative coupling has been studied numerically
and experimentally by Astakhov et al. [24—-26]. It
has been shown in [17,27] that this type of multi-
stability is structurally stable with respect to a weak

mismatch between the basic frequencies. But the
sequence of bifurcations is changed when the
mismatch and the coupling strength are increased.
Postnov et al. [27] described the nested structure
of the phase synchronized region.

In this paper we study multistability phenom-
enon for two coupled Réssler systems. We show
how a frequency mismatch affects a sequence of
bifurcations leading to the growth of a number
of coexisting attractors. We investigate different
forms of synchronization which are related to the

coexisting oscillatory regimes with different phase
shifts.

2 MODEL

Synchronization is a universal nonlinear phenom-
enon, and its key features are typically indepen-
dent of a model. As an example, we consider the
system of coupled Réssler oscillators as described
by Rosenblum et al. [9]:

X1 = —wiyr — z1 +y(x2 — x1),
Yy = wixi +ayy,

Z1 =B+ zi1(x1 — p),
X)=—wr ¥y — 22+ ’}/(Xl - XQ),
Vo = waxa + ay,

z= [+ z(x2—p),

(1)

where the parameters «, § and p govern the dy-
namics of each subsystem. + is the coupling param-
eter, w; =N+ A and w, =0 — A are the natural
frequencies, and A is the mismatch between these
frequencies. Throughout the paper we keep a=
0.15, 6=0.2, 2=1.0 and yv=0.02. The equations
in (1) serve as a good model for real systems
demonstrating period-doubling route to chaos,
i.e. for electronic circuits [7,8], chemical [28] and
biological [29] systems. Because synchronization
between two systems involves phase relations the
notion of the phase for chaotic oscillators and
several methods to characterize the phase dynamics
were intensively discussed [9,10,11]. To uniquely
introduce an instantaneous amplitude and phase
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of a chaotic signal one can use the following
representation:

xi(t) = A4,(1) cos @4(2), 5

X = Ai(l) sin ‘1)[([)‘ ( )
Here, A(f) and ®(¢) are the instantaneous ampli-
tude and phase, respectively; X(1) = Hx(t) denotes
Hilbert transformation [30]. This approach to the
investigation of chaotic dynamics was firstly intro-
duced by Rosenblum ez al. [9]. In the case when the
dynamical variables x(¢) and y(f) are connected in
a linear way (as for the Rossler system, for example)
it is easy to apply the following substitution:

Xi(l) = A,‘(l) cos q)[(t),
B . (3)
y,'(t) = A,’([) Sin @,’(Z).
Here, A(f) and ®(¢) are polar coordinates of the
point (x(7), y(¢)) in the XY plane. When phase
locking of chaotic oscillations occurs the phase
difference ®; — ®, is bounded while outside the
synchronization region it is an increasing or
decreasing function of time [9,10]. Phase locking
is related to the locking of basic frequencies in the
power spectrum of chaotic oscillations.

3 DYNAMICS OF TWO COUPLED
IDENTICAL SYSTEMS

In this section we study the dynamics of Eq. (1)
as the parameter p is varied in the case of comple-
tely identical partial oscillators (i.e., A =0). As p is
increased, a sequence of bifurcations leading from
the initial cycle of period T, located in the invari-
ant symmetric subspace U (x| = X5, y1 = V2,2 = 23)
to a set of multistable states is indicated. Before
bifurcating to chaos a number of limit cycles
coexisting in the phase space is increased. Let us
denote the cycle with the period 2" T and the phase
shift ¢ =2mm by the symbol 2"C" (n=0,1,2,...;
m=0,1,2,...). A chaotic attractor with 2" bands
arising from the cycle with the phase shift ¢ =27mm
is labeled as 2"CA™. To illustrate the oscillatory

regimes of the system and transitions between them
we show schematically in Fig. 1 the evolution of
periodic and chaotic regimes when parameter p
is increased while the coupling strength ~ is fixed
at 0.02. Note that the branch A corresponds to
“in-phase” oscillations (i.e., the phase shift between
the oscillations is equal to zero and trajectories lay
in U) while the branches B, C and D illustrate
the “out-of-phase” regimes originated from 2C",
4C? and 8C*, respectively.

As p increases, the “in-phase” limit cycle C°
undergoes a period-doubling bifurcation. A cycle
(2C°) of twice the period emerges smoothly. The
cycle C? which becomes saddle continues to exist
and undergoes another period-doubling bifurca-
tion. As a result of this bifurcation a saddle cycle
2C" of twice the period is born. This cycle is
not located any longer in the symmetric subspace
U but it is self-symmetric with respect to the in-
variant manifold U (i.e., x;1=-—X3, yi=-—)2,
zy=—2z,). It becomes stable via inverse subcriti-
cal pitchfork bifurcation as p is further increased.
In the same manner, each “in-phase” limit
cycle 2"C° gives rise the corresponding branch
of “out-of-phase” regimes. For the above “out-of-
phase” cycles the replacement of the next period-
doubling bifurcation by torus birth bifurcation
takes place. The torus birth bifurcation leads to
quasiperiodicity, frequency locking and emergence
of new “out-of-phase” families of attractors which
follow the period-doubling route to chaos. Beyond
the threshold, a set of chaotic attractors coexists.
As p increases, there are the merging bifurcations
where the number of bands in the attractor is
halved. Besides this, a crises of chaotic limit sets
leading to the merging of attractors of different
branches take place. Finally, the only one-band
global chaotic attractor CA* including the chaotic
sets of all branches emerges in the phase space of
the system.

A phase shift 27m between the oscillations of
subsystems that defines the corresponding branch
of regimes cannot be found using instantaneous
phases @, from (2) or (3). The instantaneous
phases and their difference are determined with
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FIGURE 1

Evolution of oscillatory regimes for the identical coupled Rossler systems. The solid and dashed lines correspond to

bifurcational transitions of attractive and saddle solutions, respectively.

the accuracy of +27nk, k=1,2,... Therefore, the
difference of instantaneous phases for the attrac-
tors of all branches is limited within the range
[ — 7, 7] if its initial value is chosen in this interval.
To find a phase shift 27m it is necessary to deter-
mine a shift value in time (when A = 0) and re-write
it in polar coordinates. Taking into account that
“out-of-phase” regimes are located out of the
symmetric subspace U, we may introduce a time
shift when states of subsystems coincide but lagged
with respect to each other. It can be calculated via
the global minimum of a similarity function S as
described in [11]:

sy it 7) =@
(3N

where the angular brackets assume the averaging
over time.

Let us consider the evolution of chaotic attrac-
tors in detail. Note, that there are three types of
crises labeled in Fig. 1 as “cross”: a transformation
of a chaotic attractor into a chaotic saddle, a
merging of chaotic attractors of the same branch,
and merging of a chaotic attractor of one branch
with a chaotic attractor of another branch. As p is
increased, at the branch A a chaotic attractor which
appears via a period-doubling cascade of “in-
phase” regimes and which is located in the subspace
U bifurcates in a chaotic saddle. At this moment,
the second positive Lyapunov exponent of chaotic
trajectories in U is indicated. It corresponds to the
additional unstable direction which is transverse
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to U. This transition leads to the loss of complete
synchronization. The mechanism of similar transi-
tions was studied in [31-35]. When an initial point
on U is slightly perturbed and after a long transient
time, a phase trajectory tends to stay at a stable
cycle 8C* of the branch D. When y is further
increased, a sequence of bifurcations of this cycle
leads to chaotic attractor 8CA* (Fig. 2(a)) which at
1= 6.036 undergoes a crisis with a chaotic saddle of
the branch A as well as a band merging As a result,
the branches A and D merge together with appear-
ance of a chaotic attractor 4CA3% (Fig. 2(b)). This
merging crisis is accompanied by “on-off” inter-
mittency. Then 2CA} appears from 4CA%. At
p~26.06 a chaotic attractor 2CA} becomes a
saddle. After this transition, phase trajectories
switch to the stable cycle 4C* which belongs to the
branch C. Chaotic attractor 4CA> (Fig. 2(c))
appears from 4C? via a sequence of bifurcations.
At p=6.35, the merging crisis of a chaotic attractor
4CA*and a saddle of the branch D occurs and a new
chaotic attractor 2CA§ emerges (Fig. 2(d)). At u~
6.44, this attractor becomes a saddle but a phase
trajectory jumps to a chaotic attractor 2CA'
(Fig. 2(e)) of the branch B. Then at ;= 6.70, the
merging of the chaotic attractor CA' with a saddle of
the branch C occurs. Thus, a sequence of crises ends
as the one chaotic attractor CA” (Fig. 2(f)) which
involves chaotic trajectories from all branches.

It has been found that the behavior of the phase
difference calculated from (3) is different for a
variety of chaotic attractors inside the synchroni-
zation region. For chaotic attractor located in the
symmetric subspace (4C4°, for instance), it is cons-
tant in time (6@ (7) = ®(r) — P,(r) = 0). For “out-of-
phase” attractors it is not equal to zero and varied
chaotically in time. Width of the distribution of
phase differences P(6®) characterizes the “degree
of antiphase” of an attractor. Figure 3 displays the
distribution of phase differences for the chaotic
attractors 4C 43, 2CA%, and CA”. Tt is clearly seen
that the merging of chaotic sets from different
families (branches) leads to the expansion of the
distribution function. But note, that 6® remains
bounded in the interval [ — 7, 7] since the described
chaotic attractors are synchronous.

The chaotic attractor CA> corresponds to the
regime of hyperchaos. But the regime with two
positive Lyapunov exponents appears before than
CA” is formed. For example, the chaotic attractor
2CA" of the branch B which appears via a merging
of 4CA"' and 4CA? has two positive Lyapunov
exponents. For the branches C and D, the transi-
tion to hyperchaos is observed when a torus is
destroyed.

4 EFFECT OF FREQUENCY MISMATCH

In this section we introduce a mismatch between
the basic frequencies in the system of coupled
oscillators and study the evolution of multistability
and different forms of synchronization.

Figure 4(a) and (b) shows the bifurcation dia-
grams of the synchronization region for attractors
from two branches A and B, respectively. It has
been found that a small frequency mismatch
(|A] <0.001) does not almost affect the evolution
of different oscillatory regime which is observed
in the case of vanishing mismatch. Note, that at
A#0 the invariant subspace U does not exist
any longer and the relations of symmetry for limit
sets are not satisfied. Therefore, pitchfork bifurca-
tions of limit cycles are replaced by tangent
bifurcations leading to the birth of saddle “out-of-
phase” cycles [35].

When a frequency mismatch is increased
(A >0.0015), the period-doubling bifurcations for
cycles 2C 14C2,... are observed instead of torus
birth bifurcations (Fig. 4(b)). Moreover, types of
merging crises of chaotic sets depend on the mis-
match value. With a frequency mismatch, there is
no merging of chaotic attractors 4CA' and 4CA4’
but attractor 4C4° becomes a saddle and then it
merges with the attractor 4CA'. Transition to
hyperchaos occurs before this crisis.

Let us consider the effect of frequency mismatch
in terms of synchronization. Chaotic attractor
4CA° of the branch A, located in the symmetric
subspace U in the case of A =0, does not belong to
U when A # 0. Hence, complete synchronization is
lost. However, for a weak frequency mismatch this
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FIGURE 2 Projections of Poincaré sections of chaotic sets for the identical coupled Réssler systems. Secant plane is specified

as y; =0. Label “CS” is used to identify a saddle set.

regime remains topologically equivalent to the
attractor in U. In this case referred to as lag
synchronization [11], the oscillations of two systems
coincide but shifted in time. For chaotic attractors

of other

families and attractors appearing via
merging of chaotic sets from different branches full
coherence cannot be achieved. They demonstrate
only phase coherence properties.
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FIGURE 3 The distribution of phase difference for “out-of-phase” attractors: (a) 4CAIZ) at 1 =6.038; (b) 2CA§ at u=0.36;
(¢) CA® at ;=6.72. Calculations were performed with the constant step 27/100.
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FIGURE 4 Bifurcation diagram on (A—p) parameter plane for the attractors of the branches A (a) and B (b). Curves of differ-

ent width correspond to different families of attractors.

5 PHASE TRANSITIONS NEAR THE
BOUNDARY OF SYNCHRONIZATION
REGION

A bifurcational mechanism of the phenomena that
take place at the boundary of chaotic phase syn-
chronization is associated with the bifurcations of
the saddle periodic orbits. Anishchenko et al. [7]
have described this boundary as an accumulation

of curves of tangent bifurcations of saddle cycles.
Pikovsky et al. [14] suggest (for the model two-
dimensional map) that attractor—repeller collisions
take place at the transition to chaotic synchroniza-
tion, thus drawing an analogy with the tangent
bifurcation of a limit cycle. Most recently [15], the
transition to phase synchronization was considered
as a boundary crisis mediated by unstable—unstable
pair bifurcations on a branched manifold. We are
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interested in the transition between different coex-
isting regimes near the boundary of the phase
synchronization region.

When a mismatch between the basic frequencies
of interacting oscillators is introduced the regions
of chaotic phase synchronization, similar to Arnol’d
tongues for periodic oscillations, appear on the
parameter plane. Hierarchy of multistability of
synchronous regimes near the boundary (Fig. 5)
differs from the case of A =0. Taking into account
the different sequence of bifurcations for periodic
solutions that has been described in previous sec-
tion, we focus on the peculiarities of the behavior
of chaotic attractors. For a large mismatch, “out-
of-phase” attractors of the branches B and C
become the saddles. When p is increased, they
merge with “in-phase” attractor of the branch A.

Thus, attractor 4CA% appears via merging of
an attractor 4CA4° and a saddle of the branch C.
The band-merging crisis takes place and an attrac-
tor 2CA% arises. At this moment the transition to
hyperchaos occurs. Then the merging crisis of
2CA% and a saddle of the branch B originated
from attractor 4CA" leads to the single attractor
2CA” in the phase space of the system. Figure 6
shows the projections of Poincaré sections of
coexisting chaotic attractors 4CA4% and 4CA'
(Fig. 6(a)) and attractor 2CA4> (Fig. 6(b)) which
born as a result of merging of chaotic sets from all
branches.

Figure 7 represents the bifurcation diagram of
the synchronization region near the boundary. A
nested structure of phase synchronized region for the
attractors of the branches A and B is observed. With

A > -crises of chaotic set
C [%f B merging of chaotic bands
® - period doubling bifurcation
T A - tangent bifurcation
X
2CAL
- - - = = = = = - = —_~— - - - - - = = — = - = =
I
2CA% |
" I
!
ACA% <
€ — — — — — -- - - - = Bl
I
4CA° ,
><
4CA?
Feigenbaum's
scenario .
Feigenbaum's
M scenario Feigenbaum's
scenario
4C?
[ C
2¢"
®
c® A B

FIGURE 5 Evolution of oscillatory regimes when A =0.0093.
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FIGURE 7 Bifurcational diagram near the boundary of the synchronization region. Dotted curves of different width corre-
spond to the attractors of the branches A and B. Numbers 2, 4, and 8 denote the periods of saddle cycles.

this structure, the transition to non-synchronous
behavior in the region of multistability (direction a
in Fig. 7) is determined by the loss of stability for
the most robust synchronous mode (the branch B

in our case). Chaotic attractors of the branch A
found to be structurally stable when p is increased.
Hence, above the region of multistability the
transition from complex chaotic regimes, appearing
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after a set of merging crises, to non-synchronous
dynamics (direction b) is observed.

The boundary of the synchronization region is
diagnosed by the calculation of the spectrum of
Lyapunov exponents and the diffusion coefficient
of a phase difference. The later is described as
follows:

D(A) = lim “—. (s)

Figure 8 displays these characteristics of synchro-
nization along the direction a marked in Fig. 7 at
p=06.8. It is clearly seen (Fig. 8(a)) that one of
the negative Lyapunov exponents becomes equal
to zero at the boundary of the synchronization
region (a vertical dashed line). The same behavior
has been observed for R&ssler system with periodic
forcing [16]. The coefficient of diffusion is vanishing
inside the synchronization region but at the boun-
dary it starts to grow (Fig. 8(b)). Similar calcula-
tions has been performed along the other direction
b marked in Fig. 7. Figure 9(a) and (b) show that
the behavior of Lyapunov exponents is not
changed while the coefficient of diffusion is
very sensitive to the transition to a non-synchro-
nous regime.

Based on the results from [7,14,15] where the
bifurcation mechanism of phase synchronization
is related to the bifurcations of saddle periodic
orbits embedded in a chaotic attractor, we con-
structed the curves of tangent bifurcations of sad-
dle cycles from the branches A and B (bold and thin
dotted lines in Fig. 7, respectively). It is clearly seen
that while multistability exists the curves tend to
be located near the synchronization boundary of
each branch of attractors. However, as soon as
merging crises occur this approach becomes wrong.
The question: what is the bifurcational transition
from the merged synchronous regime which is
characterized by two positive Lyapunov exponents,
to non-synchronous behavior, is still open.

6 SUMMARY OF THE RESULTS

The phenomenon of phase multistability is the
significant feature of phase synchronization in the
systems with Feigenbaum route to chaos. Phase
multistability determines the variety and complex-
ity of bifurcation transitions inside the synchroni-
zation region and near its boundary. From the
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results presented above we can draw the following
conclusions.

Two mutually coupled identical oscillators
individually following the period-doubling route
to chaos demonstrate the phenomenon of phase
multistability, i.e. simultaneous existence of differ-
ent periodic and chaotic attractors in the phase
space of the system. This phenomenon is related to
the possibility of various phase shifts between
the oscillations of the partial systems. The number
of coexisting regimes on the threshold of chaos
inside the synchronization region for a weak
coupling may be huge. As the control parameter
is increased within the chaotic region a sequence
of crises takes place: band-merging bifurcation
that reduces the number of possible synchronous

regimes by two; a merging of the different chaotic
attractive and saddle sets. These transitions lead
to the formation of a single hyperchactic regime in
the phase space of the system. In coupled Réssler
oscillators the bifurcation scenario leading to multi-
stability is similar to that observed for the other
models with Feigenbaum route to choas and its
main features are independent on the particular
properties of a model.

A set of coexisting attractors of a system is
structurally stable with respect to a mismatch
between the basic frequencies. But the sequence
of bifurcations can be different because of the
symmetry relations are destroyed.

A nested structure of phase synchronized regions
for different coexisting attractors is observed. We
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demonstrate that a regime of complete synchroni-
zation for the “in-phase” attractor is transferred
into lag regime when a frequency mismatch is intro-
duced. At the same time, the “out-of-phase” attrac-
tors also exist. They correspond to the regimes
which are not lag synchronized but remain to be
phase synchronized.

In the region of phase multistability, the transi-
tion to non-synchronous behavior is determined by
the loss of stability for the most stable synchronous
mode. The boundary of synchronization is easily
diagnosed by phase portraits, the behavior of
Lyapunov exponent, etc. The boundary structure
is related to the bifurcations of saddle periodic
orbits embedded in a synchronized chaotic set.
However, in the region of hyperchaos the mech-
anism of the loss of synchronization is not studied
in detail and needs further investigations.
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