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We investigate the ability of artificial neural networks to reconstruct discrete chaotic
maps with singular points. We use as a simple test model the Cusp map. We compare
the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet
Neural Network. The numerical scheme for the accurate determination of a singular
point is also developed. We show that combining a neural network with the numerical
algorithm for the determination of the singular point we are able to accurately
approximate discrete chaotic maps with singularities.
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1. INTRODUCTION

In the past few years new methods for the
analyzing and simulating complex processes based
on artificial neural networks are being intensively
developed. Feed-forward layered neural networks
based on back-propagation learning have been
applied to a number of problems [1-3].

We have proposed [4] a new approach for the
reconstruction and prediction of discrete chaotic
maps based on the Chebyshev Neural Network
(CNN) network. We have compared the perfor-
mance of the CNN network with a conventional
Multi-Layer Perceptron (MLP) and demonstrated

* Corresponding author. e-mail: iantonio@vub.ac.be

147

that the CNN exceeded significantly the MLP in
the learning rate and in the accuracy of approx-
imation. As the CNN provides better approxi-
mation of time series analyzed, we have new
possibilities for long-term prediction.

During the last years a new technique, the
wavelet networks [5], based on the recently
developed wavelet theory (e.g., see [6,7]) and
neural networks has been developed for chaotic
time series prediction and data classification [8, 9].

In [10] we proposed a feed-forward neural
network realizing the approximation of one-
dimensional function based on the wavelet decom-
position of the corresponding time series. This
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Wavelet Neural Network (WNN) has been applied
to the electrocardiogram (ECG) analysis problem
(see, for instance, [11]).

We investigate here the abilities of different
neural networks to identify discrete chaotic maps
containing singular points. We compare the MLP,
CNN (Section 3) and Wavelet Neural Network
(WNN) (Section 4) for the identification/recon-
struction of the well-known Cusp map which
arises as an approximation of the Poincare section
of the Lorentz attractor [12] (Section 2). The
numerical scheme for the determination of singu-
lar point location is developed in Section 5.

2. ACCURATE COMPUTATION
OF THE CUSP MAP

We shall consider a simple but important map,
namely, the Cusp map [12], on the interval [—1,1]:

Xpp = S[X,] =1-2X,|'%, n=0,1,2,... .
(1)

By assuming a starting value X in [—1,1], the n-th
iteration is

X, = S"[Xo).

1.0

Although the dynamical law S[-] is simple (from
the computational point of view), the resulting
evolution is complex, because the Cusp map with
invariant density p..(x)=(1/2)(1—x) is an exact
dynamical system [13] with positive Kolmogorov-
Sinai entropy production [14, 15].

If N is the number of digits corresponding to the
required accuracy and M is the maximal number
of digits available by our machine (limited by the
memory of the computer), then there is a maximal
number 7 of iterations preserving the accuracy
N. This number 7 is known as the horizon of
Predictability [16]. For N > 7 there is no reliable
prediction with respect to the accuracy N.

In order to compute the reliable number of
iterations for the initial value Xy,=0.51 with
accuracy N=10, we used the Multiple-Precision
Floating-Point Arithmetic: the MPA package,
Algorithm A105 from the CERN Library [17].
This package provides the possibility to perform
all necessary operations with variables of arbi-
trary base and number of digits, and as a
consequence to make computations with needed
precision.

In this way we obtained a reliable time series, see
Figure 1, for at least 2000 iterations for the chaotic
Cusp map which will be processed by the three
neural networks.
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FIGURE 1 The initial part (150 iterations) of the Cusp-map time series.
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3. IDENTIFICATION OF THE CHAOTIC
MAP USING THE MLP AND CNN
NETWORKS

The MLP and CNN networks were described in
details in our previous paper [4]. Here we give their
brief description, the procedure for the map
identification and present the results of approx-
imation of the analyzed time series.

3.1. The MLP Neural Network

The MLP is a feed-forward multi-layer network,
which involves an input layer corresponding to the
data to be processed, an output layer dealing with
the results, and hidden layers. A network scheme is
presented in Figure 2.

Here xi, h; and y; denote the input, hidden and
output neurons, respectively; wy and w;; are the
weights of connections between neurons.

The adaptation of the MLP to the problem to be
solved is performed by the minimization of the
error functional with respect to the weights
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p

applying the back-propagation algorithm [18].
Here p=1,2,..., Ngyain is the number of training
patterns, f(xp) is the target value of the output
signal.

FIGURE 2 Scheme of the MLP network with one hidden
layer.

In this work we used the MLP neural network
from the JETNET package [19] with the following
the architecture: one input neuron, one output
neuron and a single hidden layer with a variable
number of neurons.

3.2. The CNN Network

Consider a function f{x) defined on a finite set of
values of x: f(xg), f(x1), - -.,f(x,). We look for the
interpolation function ¢,(x) based on orthogonal
Chebyshev polynomials 7,,(x) of the I-st kind:

on(x) = coTo(x) + c1T1(x)
+ oTa(x) + - + enTu(x), (3)

where T,(x)=cos(n arccos x), |x| < 1.

To calculate the coefficients ¢, of (3) one have to
know the values of the function f(x) at the nodal
points [20]. However, in practice this is hardly
possible. In order to simplify the calculation of the
coefficients c;, we proposed the CNN network with
architecture presented in Figure 3.

The argument x is sent from the input neuron to
the neurons of the hidden layer. Each i-th neuron
of the hidden layer transforms the received signal
in accordance with the transfer function g{(x) in
the form of a Chebyshev polynomial g{x) = T(x),
where i=0,...,n. Then, the sum of weighted
signals from the neurons of the hidden layer a =
Yo owi - Ti(x) is supplied to the output neuron

yt(z)

Ta(z)

!
T

FIGURE 3 Architecture of the CNN network.
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from which the computed value of function y(x) is
obtained.

The weights w;, which play the role of expan-
sion coefficients, are obtained by the CNN
“training” applying also the back-propagation
algorithm [18].

3.3. Procedure of the Map Identification

A procedure of identification of the map under-
lying a series of numbers being the input to a
neural network (NN) consists in the following.

(1) We divide the series of numbers in two parts.
For example the first 1000 numbers and the
second 1000 numbers if we have 2000 numbers.

(2) We use the first part of the series for the
training of the NN and the second part of
the series for the testing of the performance of
the NN.

(3) The training of the NN is performed by
considering all couples (x;, x;, 1) of the first
part of the series of numbers.

(4) We supply the first argument of each couple
(x;, x; 1) as an input to the NN and obtain the
output y(x;). The output is compared with
x;,1 and the weights are corrected so that y(x;)
coincides with x;,;. A single run over all
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points of the set composes one training
epoch.

(5) After each training epoch the weights are fixed
and the quality of the map reconstruction
(one-step prediction) by the neural network
was estimated. The second part of the data was
used for this purpose.

(6) Then, the neural network training is repeated
again. The procedure terminates when the
desired correspondence between output signals
y(x) and target values S[x] is achieved for the
whole set of training data.

3.4. Results for the MLP and CNN Networks

In Figures 4 and 5 we present the distributions of
errors for the MLP and CNN networks: (1) Error
is the deviation of the actual value S[x] from the
value y(x) predicted by the network, and (2)
Relative error is the relative deviation: Error/S[x].
These distributions concern the testing set. The
histograms were fitted by Gaussian functions and
the value of the standard deviation (Sigma in
figures) can be used as the estimator of the
accuracy for one-step prediction.

Comparing Figures 4 and 5 we can see that the
CNN network fits better the analyzed time series
compared with the MLP network.
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FIGURE 4 Distributions of Error and Relative error for the MLP neural network.
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FIGURE 5 Distributions of Error and Relative error for the CNN neural network.

4. THE WAVELET NEURAL NETWORK

The “wavelet decomposition” of an one-dimen-
sional square integrable function f{x)€ L,(R) at
(multi-resolution) level J is given by the series:

f(x)=Di+Dy+---+Dj+S5y, (4)
where
Z cp(¥x —k),
Dj(x) = Zd Y(Px—k), j=1,J
and the basis functions {¢(x)=dx—k),

Yi(x) = Y(¥x—k), j,k € Z} are obtained from the
father and mother wavelets ¢(x) and (x), respec-
tively, by the binary dilation 2/ and the dyadic
translation k/2 [6].

In Eq. (4) terms D, D,,...,D; and S; are
responsible, respectively, for the detail and smooth
approximations. The reduced sum of the expan-
sion (4) restricted by the smooth approximation
term is

=Y cs2'x—k), (5)
k

where ¢(x) is also known as the scaling function
corresponding to the mother wavelet function (x)
[6, 7].

Often ¢(x) is taken as the m-th order cardinal
B-splines N,,, where m is an arbitrary positive
integer. The B-spline has compact support
suppN,, =10, m], it is positively determined inside
this interval, symmetrical regarding the center
of the support (where it has the maximum), and
restricts the unit area. In each interval [k, k+1],
k=0,...,m, N,(x) is a polynomial of (m—1)
order. These peculiarities provide remarkable
smoothing properties of B-splines [6, 21].

Suppose that the analyzed time series can
be fitted by a second order polynomial
fix)ma+b(x—£€)>* So we can take the scaling
functions as B-splines of the 3-rd order N3(x):

x2/2 if xe[0,1);
Ns(x) = —x?+3x—3/2, if xell,2);

x?/2-3x+9/2 if x€[2,3);

0 elsewhere.

The determination of the coefficients {c’k} in
formula (5) is obtained from the minimization of
the difference between the function f{x) and the
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linear combination of splines {N3(2x—k), ke Z}
in the Ly-norm [22]:

E({wi}) = If(x) = D w3 (Zx = k)l
k

where wy = c’k

As we have a limited number N of values of
function f(x) (fa=f(xp), p=1,2,...,N) the ap-
proximated values of the coefficients can be
obtained by minimizing the functional:

N 2

Ev({wi}) = [f,, —> " wN3(2x, — k)] . (6)

k

p=1

The functional (6) can be interpreted as the error
functional of the feed-forward neural network of a
specific architecture (see below). Its minimization
is reduced to the network learning based upon
known values of function f{(x).

The approximation of the signal at level j is:

£(x) =Y wiN3(Zx — k). (7)
k

Let’s suppose that experimental data correspond
to the time interval [0, 1]. As in this interval only
terms with numbers k= —3, -2, —1,...,2 give
their contribution into the expression (7) the

t fi(z)

Ns(-)

trans-
action
function

bz

FIGURE 6

coefficients with other numbers k£ can be assumed
to be equal to zero. The series (7) can be re-written
in the terms of the three-layered perceptron. Then
an argument x is given to its input and the fitted
signal is taken from its output.

The architecture of this network looks similar to
the architecture of the CNN network described in
[4] (see Fig. 6).

The number of neurons in the hidden layer is
equal to the number of terms in the expression (7),
moreover, each k-th neuron corresponds to the k-
th term in (7). The weights and thresholds between
the input layer and the hidden layer are fixed and
are set to be equal to the values o =2, 0= —k.
The transfer functions of hidden neurons are the
third-order B-splines. The thresholds between the
hidden layer and the output neuron are taken
equal to zero, and each k-th coefficient corre-
sponds to each k-th weight. Thus, training this
neural network on the experimental data and using
standard back-propagation method [18] for the
minimization of functional (6) we can receive the
needed set of coefficients.

Figure 7 presents the distributions of errors for
the WNN network. These distributions demon-
strate that the WNN network fits significantly
better the analyzed time series compared with the
MLP and CNN networks.

holding thresholds
0. = —k

holding weights
O = 2j

The architecture of the WNN neural network.
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FIGURE 7 Distributions of Error and Relative error for the WNN network.

At the same time, one may notice long tails
which are caused by couples concentrated in the
region close to the singular point. This point is
characterized by discontinuities of all derivatives,
and, due to this reason, the Cusp-map can not
be reconstructed and approximated by a neural
network with accuracy close to that obtained for
the Logistic map (see [4]).

5. NUMERICAL SCHEME
FOR DETERMINATION
OF THE LOCATION
OF THE SINGULAR POINT

Due to discontinuities of the derivatives at the
singular point, the approximation of time series in
the neighborhood of this point using standard
approach (based on smooth functions) gives large
errors.

Here we present a numerical scheme for the ac-
curate calculation of the position of the singular
point based on specially chosen basis functions.

Let G = {(xt,yx),k = T,L} be the set of argu-
ments and values of the unknown function y(¢) we
are searching for in the neighborhood of the
singular point. In our case y(x;)=yr=xr,1. Let

us choose the set of basis functions {fi(¢,z),/ =
1,2Ny} as follows:

=%y 72
yZ) =
1 (t—Z)I, téz’ l:l,,NO;
0, 1<z
t,z) = -
fl( Z) {(t-—Z)I NO, t>z, 1:N0-|-1,...,2No.

Let F(-) be the functional:

2N, 2
F(Oé(), s 7042N0’Z) = Z Zalﬁ(xlﬁz) — Xk+1
k=1 | I=0
(8)

Here fo(f)=1, the constant function. The mini-
mum of F(-)is reached for {«,} and z satisfying the
following equations:

dF(ao, N ,OzzNo,Z)
dO[,’

dF (o, . .., 00Ny, Z)
dz

= 0, i= 0, 2N0;
©)
=0.

The nonlinear system (9) can be solved numeri-
cally applying Newton’s method. The set {o¥,i =
0,2N;} and {zF} corresponding to the k-th
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iteration satisfy the following linear equations:

%A sz ao, ,a’cho,Zk)
% dOtdeLj
d’F(ak, ... oy %)
Azk 0 ) 2Ny
* dojdz
dF(alg,...,oQNg,zk)
dOé,' (10)
%A d2F ao, ,aé’No,Zk)
Y dOtde
d*F(ak, ... ok,  Z
3 dF(alg,...,az,\,g,zk)
N dz ’
where Aa jk“ a}‘, Azk—z'“rl X, The

numbers {a i =0,2Np}, z° are arbitrary chosen
initial values.

Let x* be the calculated value of the singular
point, and let z* and {a},i = 0,2Np} be the solu-
tion of system (10) obtained from the iterations.

[ D 20
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Then the function

2N,

=Y aifilt,=") (11)
1=0

gives the approximation of function y(¢) in the
neighbourhood of point x*.

We applied the above described procedure to
the sample, which was prepared on the basis of
the original time series containing N couples:
{xi,xi+1, i = 1,N}. The couples forming the new
sample were selected using the following condi-
tion: |x; <A, where A=0.2. The value of A was
chosen empirically aiming to calculate the singular
point position with minimal error.

TABLE I Results of the calculations for time series of
different size N

n/n N L(N) x*

1 125 34 0.2968E — 01
2 250 63 0.3712E-01
3 500 126 0.3769E — 01
4 1000 242 0.1694E — 03
5 2000 455 —0.11357E-03
6 5000 1064 0.11394E - 03

3500
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FIGURE 8 Distributions of Error and Relative error for the WNN network: only first part (see text) of the Cusp map has been

used.
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In Table I we present the results of our
calculations for time series of different size N
and for Ny=3. Here L(N) is the size of a new
sample formed from the initial time series of N
elements, and x* is the calculated value of the
singular point.

6. CONCLUSION

When the location of the singular point is
determined with a reliable accuracy, we may
sub-divide the whole time series into two sets: the
first one, for which the arguments less then the
singular point value, and the second one with
arguments greater than the singular point value.
Then, these two sets can be approximated
independently and with higher accuracy using
traditional numerical schemes or applying neural
networks [4].

We applied the above described algorithm to
the Cusp map with 2000 couples and selected 2
sets: the first set included 1436 pairs, and the
second had 564 pairs. Then the first set (as it
included more patterns) was processed with the
help of the WNN network. Figure 8 shows the
distributions of the deviations and the relative
deviations for the WNN network. These distribu-
tions show that the first set can be significantly
better approximated compared with the whole
time series.

Our work is summarized as follows:

(1) We used neural networks (MLP, CNN,
WNN) for a qualitative identification of the
dynamical process underlying a complex time
series.

(2) We roughly estimated the location of the
singular point.

(3) We developed a numerical algorithm for the
accurate determination of the location of the
singular point.

(4) Afterwards, we proceed to the identification of
the smooth dynamics between the singularity.
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