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The Resonance Phenomenon in the Reaction—-diffusion
Systems
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A new mechanism of pattern formation different from the Turing and oscillatory instabilities
in the reaction—diffusion systems was found. It is closely connected with the resonance
phenomenon that appears in the models when Jacobi’s matrix of the kinetic part is equivalent
to Jordan cell and diffusion coefficients are cited. Some results of numerical calculations of
the blood coagulation model are discussed. The pattern formation regimes that can be treated
as the results from the resonance phenomenon were observed.
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INTRODUCTION

Most models of chemical and biological systems are
described by the reaction—diffusion type equations.
Numerical experiments and analytical investigations
of such models have not lost their actuality so far
despite the fact that they have already been carried out
for about half a century. The reasons for that are a
great variety of models and an extremely wide range
of their applications. One of the first works devoted to
the investigation of the reaction—diffusion system is a
work by Turing (1952) in which the conditions for
spatially inhomogeneous stationary solutions—the
so-called dissipate structures (DS)—are found. As a
rule, the structures occur in open systems far away
from thermodynamic equilibrium (Glandsdorf and
Prigogine, 1971) and are connected with the diffusion
loss of the homogenous stationary state stability.
The dissipation structures do not embrace all the
variety of complex dynamic regimes in the reaction—
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diffusion systems. Moreover, other ways of pattern
formation different from the Turing type have lately
been attracting the investigators’ attention (Polezhaev,
1991). These mechanisms are closely connected with
processes of self-sustained oscillation (Vasiliev et al.,
1986), which can be treated as spatio-temporal
structures.

With the advent of computing hardware numerical
investigations have started playing a specific role in
the investigation of the pattern formation. New results
obtained with the help of numerical calculations
stimulate searching their analogues in vivo and in
vitro, as well as developing new analytical approaches
to their investigations and improving the old ones.

The numerical experiment with the mathematical
model suggested for describing blood coagulation
processes (Attaulakhanov et al., 1994) shows that the
localized disturbance can result in propagating two
waves: that of the clotting activator and of the clotting
inhibitor. The resultant structure is formed as a trace
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of the activator auto-wave. This model (Attaulakha-
nov et al., 1994) will be further referred to as a double
auto-wave.

‘While trying to investigate the distribution of various
dynamic regimes on the phase plane of the kinetic
parameters and to determine the boundaries separating
one regime from another, it was found that boundaries
are wildly deformed in some places. Narrow solution
regions of one type interfere with the solution region of
another. The pattern looked like resonance “tongues”.
All these pattern characteristics were due to the
resonance phenomenon that occurs when Jacobi’s
matrix of chemical reactions is equivalent to Jordan’s
cell. As analytical investigations have shown, this
mechanism allows forming dissipation structures even
when diffusion coefficients are equal.

For most excitable media the auto-wave indepen-
dence property of initial excitation is typical, it is
important to be above threshold. In numerical
experiments with the double auto-wave pattern of
blood coagulation the self-formation type was found
to depend not only on kinetic parameters and diffusion
coefficients but on the initial data as well.

THE BLOOD COAGULATION PATTERN
AND ITS NUMERICAL SIMULATIONS IN
ONE-DIMENSIONAL CASE

Suggested in Attaulakhanov et al. (1994) the
phenomenological blood coagulation model is the
reaction—diffusion system. The system equations
describe the concentration change of two metabolites:
the clotting process activator (thrombin) and inhibitor
(supposedly, protein C). The set of equation takes the
form of

a6 ab?

—=D-V*0+ — k10—

o 0 0+ 0 k16 — ybo, 0))
3 ® 2%
—_— . 2 . _ + -
Z=pv ¢+BG(1 c)(l (¢O>>

— K. 2)

An equation describing the fibrin formation
dynamics was added to the system (1) and (2)
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here its formation rate is taken to be 1. The last
equation shows that the clotting activator serves, as a
catalyst for polymerization reaction and the fibrin
concentration is an indicating quantity for us.
Experimental data testify to the fact that the fibrin
polymer presence does not affect the value of
metabolites’ diffusion coefficients (Attaulakhanov
et al., 1999).

The most important for further consideration is the
fact that the system has the activator threshold. Any
disturbance exceeding the threshold will increase with
the time. The threshold value can be estimated
approximately as
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In numerical calculations in a one-dimensional-
plane case the evolution of the localized disturbance
of the stationary state was investigated. In one-
dimensional modeling the initial disturbance was a
step of the activator of the form

Oiy OS|x|Sl,
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where L is a characteristic size of the region
concerned; [ is an initial disturbance semi-width, 6;
is initial disturbance amplitude. The conditions of the
flux absence over the boundary were laid down at the
region boundaries (x = £L).

Disturbances small in amplitude or/and width tend
to zero stationary state and are unable to initiate self-
accelerated processes. For under threshold disturb-
ances it is obvious. Reasons for small in width
disturbances to be unable to cause an increase in the
activator concentration are discussed further. In case
of a rather big initial concentration a self-accelerated
activator formation occurs together with the diffusion.
The presence of diffusion and autocatalysis growth
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results in spreading the auto-wave activator front. Its
growth is stopped by the inhibitor, which is formed
with some time delay. This is due to the difference
between the speed constants of and reactions of the
order of three. As it follows from Eq. (2), the inhibitor
auto-wave spreading is possible where the activator
concentration is great.

As a result of the reagents interaction the initially
localized activator concentration structure is divided
into two streations symmetrical as far as the division
center is concerned (point x = 0), see Fig. la. The
reagents’ concentration is gradually decreasing and
the sharp fronts are being smoothed at the cost of
diffusion. Further streation evolution depends on the
pattern parameters.

At some values of the kinetic pattern parameters the
streation amplitude goes below the threshold and the
system tends to the steady state (§=0, ¢=0). Due to
this regime a localized polymer (fibrin) structure is
formed. At other values the activator quantity in the
streations is enough for a self-accelerated process of
its production and further interaction with the
inhibitor to start. Each streation is divided into two
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FIGURE 1

new ones (see Fig. 1b). But they cannot be
symmetrical to the division center because of the
presence of the inhibitor accumulated at the previous
stages of progress. Their further evolution results in
forming the periodic fibrin structure in the form of an
aggregate of stripes in a one-dimensional-plane case
or target-like rings in a one-dimensional axially
symmetric case. The final structure can occupy either
the part of the region concerned or the whole of it.

The structure occupying all the domain of space can
be formed in two ways: in the regime of a running
pulsing wave or in that of an echo-wave production. In
the first case only those streations that are placed
farther from the system disturbance center remain
above the threshold. The process of their growth and
division goes on until the wave reaches the boundaries
of the region involved, with the structure elements
having approximately equal width and amplitude.

In the second case besides the activator wave
propagating from the point of the medium excitation
to the boundaries of the region concerned, a wave
traveling in the opposite direction is formed. This, in
turn, can cause the appearance of a second wave
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Stages of streation development in one-dimensional plane case at the 6, = 3.0nM, ¢y = 0.065 nM. The other parameters were

fixed at the following values & = 2.0min™", 8= 0.0015min"!, y=5.00min"'nM~!, C = 5.0nM, k; = 0.05min"!, x, = 0.35min"!,
Dy = D, = 0.0006 mm? min . The red curve is the inhibitor distribution, the blue one is that of activator. Domain size L = 2 mm, number of

grid points N = 300, step of time integration was 0.01 min.
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following the first one. A complex periodic polymer
structure is being built up. Its elements can have
different amplitudes and widths.

In numerical experiments the following parameters
of the initial disturbance: 6; = 0.8, I = 0.01(3) mm,
L = 2mm were chosen. The values of all the system
forming parameters were fixed, except 6y, ¢o. Here
and further the calculated region in the plane case
constitutes half of the described above.

The distribution of regimes over the parameter
diagram in a one-dimensional-plane case is shown in
Fig. 2. When ¢y is great the spreading of propagating
waves with the amplitude pulsing with the time is
being observed in the system. The regimes with the
echo-waves generation are a bit lower. Further they
are changed by the regimes with the formation of the
final number of structure (fibrin) elements. In our
diagrams the final states with four or five structure
elements are referred to the same sub-region in the
space of parameters. These regimes are below the
echo-waves. Structures of a greater elements number
are possible to form, but they will take up more than
2mm. Below are the regimes with the structure
formation of three, two, and one elements, corre-
spondingly. The echo-waves in the parameter space
form a protruded tongue breaking the regimes with the
final number of elements. The regime alteration is a
bit changing above and below this tongue. The region
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FIGURE 2 Phase diagram (in ¢, ¢o coordinates) of the systems
(1)-(3) in one-dimensional-plane case. The values of other
parameters are the same as in the Fig. 1. The domain “TW”
corresponds to the “travelling waves”; “E” corresponds to the
“echo-waves”; “17, “27, “3”, “4” are in accordance with formation
of the fibrin pattern consisting of corresponding number of elements
(stripes). [¢] = nM, [¢p] = 1072 nM.

causing three-element structure formation practically
disappears above the tongue. The fact that it is present
but becomes very narrow is testified by the existence
of isolated points of other types structures in the one-
dimensional-plane case on passing from the “echo-
waves” to the “pair”.

In the one-dimensional-plane case two tongues of
echo-regimes are seen vividly. One more similar
tongue appears above the main one. The boundaries of
the transition region between the echo-waves and the
final number become sharply irregular, isolated points
on the parameter plane, where the type of the system
behavior is changed, appear. At the boundary there
appear regimes where the auto-scale is broken: the
activator blow-up coordinates do not coincide with the
places of the previous ones. At some boundary points
the regime generating echo-waves demonstrates the
behavior characteristic of the systems with the
chemical turbulence (Yamada and Kuramoto, 1976).
The presence of such tongues seems to indicate to the
presence of the resonance phenomena in the system
concerned. A complicated dependence of structure
forming regimes on the initial conditions observed in
numerical experiments proves it as well.

The distribution of the regimes obtained on the
parameter plane (J,/) is given in Fig. 3, where

l
J= J 6%(x,0) dx
0

is the value of the initial integral disturbance and [ is
the semi-width of the initial step. The most values of
the system parameters are given in the Fig. 1. The
regions in Fig. 3 are denoted in the same way as in Fig.
2. The uneven boundaries between the structure
forming regimes of different types are seen as well as
on the parameter planes.

The qualitative analysis of the blood coagulation
model differs from the standard (linear) one. To study
the model properties at the initial stage of the process
development, while the system lacks the inhibitor, a
non-linear optimization problem was being solved
and thus different types of initial conditions leading to
further differences in the system evolution were
determined. Then, at the second stage, when the
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FIGURE 3 Dependence of solutions of the system (1)—(3) on the
parameters of initial disturbance in one-dimensional-plane case.
The values of other parameters are the same as in Fig. 1, besides
@ = 0.05252 nM. Designations are the same as in the Fig. 2 [[] =
mm, [J] = nM mm.

generated inhibitor concentration exceeded some
threshold value, it was shown by the linear
approximation that heterogeneity could increase in
the system with the same coefficients of metabolite
diffusion. At the last stage of the qualitative analysis
the role of non-linearity and the emergence of blow-
up regimes is discussed.

THE ANALYSIS OF THE PATTERN
FORMATION DEPENDENCE ON THE INITTIAL
DISTURBANCE PARAMETERS

To study the solutions of the system (1) and (2) by its
initial data we have summarized and modernized the
approach (Belinsev et al., 1978) in case of a limited
region. For the sake of convenience let us imagine the
system in a dimensionless form

ou u?
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where u, v dimensionless concentrations of the
activator and coagulation inhibitor, correspondingly,
d is their diffusion coefficient, b, ¢, ¥, ¥, k are kinetic
parameters. Their characteristic values are given in
Table 1.

Due to a low rate of accumulating the inhibitor of
the initial stage of the system evolution (the constant
in the second equation is sufficiently small, b ~ 1072,
and this rate increases at great values of the activator
concentration), the activator concentration change
with a small period of time is approximately described
by the equation:

- Xu. 5

Eq. (5) can be considered separately, as long as the
inhibitor concentration is small enough. The criterion
of this approximation application will be formulated
in the next paragraph. If u decreases at all point of the
area, then the auto-wave origin and pattern formation
will be impossible. To start an auto-catalysis reaction,
it is necessary to call for 0 < y <1 and at least at
some points

X
> =L
U = Ue = %) )
i.e. the value of u must exceed the threshold.

Right after Yamada and Kuramoto (1976) let us
introduce an integral value of K(t)

K@) = J u?dv, ©)
14

where V is the measure of the integration area. At the
boundary of the area 9V let us set up the conditions
when there is no flux (Vu,n) = 0 (n is a vector of the
outside normal to dV).

On multiplying Eq. (5) by u and integrating over the
space, we shall get

1dK
—2-—d_t =1 - YK —F@u) + V,, @)

TABLE I Typical values of dimensionless model

b v K X & d
0.03 0.13125 0.0105

0.175 0.025 0.0003
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where

F(u) = J (—d~uV2u +u+ ﬁ) av, (8)

Vv

Vo is the integration region volume V. (In one-
dimensional-plane case Vy = x¢, and the integration
is carried out over the interval [0, xo].)

One should note that the functional F(u) is
determined by the solution of Eq. (5). However, at
the initial moment the functional is determined over
the set of functions, which are the initial conditions
for Eq. (5). They should not be negative over the
region V and satisfy the boundary conditions and the
condition (6) when ¢t = 0. If we know the values of
F(u) when ¢t =0, we can determine the growth of
changing the integral value K{(¢) in small periods of
time.

Let us estimate qualitatively how different initial
spatial distribution of the activator u;(x ) will affect the
character of its growth rate in Eq. (7) in one-
dimensional-plane case. Let us evaluate the maximum
contribution of the diffusion fluxes. To do it, we shall
find functional extremals of Eq. (8) under the
condition (7).

Denoting the required function by y(x), we get the
Euler—Lagrange equation (Collatz, 1964) for a
conventional extremal

Al _ Y (3+
YT YT T \a )
or
A 1 1
"+ ly=— (11— — 9
Y d Zd( (1+y)2) ©

with the conditions of transversality y.(0) = y.(xo) =
0, which coincide with the boundary ones.

There is a possibility of a qualitative investi-
gation of Eq. (9) as a conservative system with one
degree of freedom (Arnold, 1983). Equation (9)
describes the particle movement in the field with

the potential
=- JG()’) dy

1 1

The potential U has a vertical asymptote with y =
—1. Since we are interested only in non-negative
solutions (9), it is enough to consider the potential
properties at y > — 1. Due to the fact that the potential
U is not restricted from below, smooth solutions occur
only on finite segments and rays on x-axis.

When y =0 and A takes any value U} = 0. The
point y = 0 is an extremum or the inflection of the
potential U. If x> 1 then y=0 is a point of
minimum, the potential maximum occurs when

—1<y<min(, -1+ A'/3).

The form of the potential and the phase portrait (9)
are depicted qualitatively in Fig. 4.

When A =1 the equilibrium point y=20 is
inflection, and when 0 < A < 1 the qualitative phase
diagram shown in Fig. 5 is realized: the point y =0
becomes saddle (the potential maximum), and the
minimum is reached at the point

1++/1+8A

*
N=-1+
y V) i

At last, in case of A = 0 the point of minimum y*,
y = 0 is the only saddle. The form of phase portraits
(9) shows that non-negative continuously differenti-
able solution (9) that satisfy the condition of
transversality are possible only inside the separatrix
loop when 0 < A < 1. In all other cases when A > 0
the piecewise smooth solutions are likely to be
constructed.

Continuously differentiable solutions (9) can be
regarded as small oscillations near the equilibrium
point y*. Then we obtain (here k is an integer
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FIGURE 4 (a) the potential U; (b) The phase portrait of Eq. (9) when A = 2. The dashed line shows asymptote y = —1. The separatrisse of

the saddle are demonstrated by the red curve.
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and A is the root of the transcendental equation
1
A=0+ V1480 d-(mk)> — M3, (1)

which lies in the segment of (0, 1). The amplitude a is

0.0

-1.0-

a

determined from the equation

* a2
K() =x0~<y 2 +7>

(Ko=K(0) is the integral value of the initial
excitation, xg is the region size).

Consider at what values of the problem parameters
Ko, d, xq solutions of this type exist. The condition for
Eq. (11) to have a solution in the range (0,1):
d-(mky* < 2.

When d-(mk)> < 2 the root of Eq. (11) A ~ 0 and
the equilibrium point is y* > 1, Eq. (11) of
oscillations amplitude a (Ko—mano, xo ~ 1) having

b

FIGURE5 (a) The potential U; (b) the phase portrait of Eq. (9) when A = 0.5. The dashed line shows asymptote y = —1. The separatrisse of

the saddle are demonstrated by the red curve.
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no solution. When d-(mk)> ~2 we obtain the
evaluation of the parameter k

k=[;r g].

The solutions are possible only when d < 2/72,
i.e. at the small diffusion coefficients. They constitute
a continuous background with small amplitude
oscillations of the greatest possible (at a given
diffusion coefficient) frequency. Using these type
solutions we find the value of the functional (8) and
substitute it into Eq. (7). The analysis of the
expression obtained for the K change rate at the
initial moment shows that the threshold values of K,
when the activator build-up is possible are shifted.

Since only non-negative solutions (9) are of
interest, we shall look for the functional extremal in
the class of piecewise smooth functions. At the break
points of the first extremal derivative the analogues of
Wierstrass—Erdman conditions should be satisfied
(Korn and Korn, 1968). For the given equation they
take the following form:

Yo" +0)=ya" —0)=0, 12)

[(0)1=0, [1=0, 3)

the latter being optional. (The conditions are obtained

0.0

a

in varying the functional (8) on the piecewise smooth
functions.) Here x* is the break point coordinate,
[F1=fG" +0) ~fG" = 0).

The qualitative picture of the phase plane solutions
satisfying the Wierstrass—Erdman conditions on the
phase plane in case of A > 1 is shown in Fig. 6a, and
when 0 < A < 1 is in Fig. 6b.

For further investigations we shall take A > 1. The
piecewise-smooth non-negative solution (9), satisfy-
ing Egs. (12) and (13) and the boundary conditions is
perfectly approximated by the function taking discrete
values:

2K() ( .X)
y(x) = ‘/———- cos| mn—
X0 X0

and A takes discrete values

2
,\,,=1+d-(1> .
X0

Numerical calculations show that even in case of
big amplitudes the difference between the precise
piecewise smooth Eq. (9) solution and an approximate
one of Eq. (14) is not great.

, REN, (14)

0.0- T
108 0.8 y
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FIGURE 6 Phase diagrams of Eq. (9) with conditions (12) and (13): (a) when A > 1 (at A = 2); (b) when 0 < A < 1 (at A = 0.5). The phase
trajectories are shown by thick color lines. The dashed line is an asymptote y = — 1. The red line represent separatrisses of the saddle.
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The functional (8) on Eq. (14) acquires the
following value

2
2
F=d (;”3) Ko+~ v/2Kox0
0

+ 2—;9 'f< ?) (15)
0
where
«/1—+‘{2’ -arccos (z), z2<1;
f(z) = 1, =1

\/;21:—1‘111(2 ++z22-1), z>1.

Taking Eq. (15) into account with the maximum
diffusion flux effect on Eq. (8) solution at the initial
moment will transform into

1dK m\ 2
55(0)= (1 —X_d'<};) )KO
+ (1—3f( ———2K0)>xo

T Xo

- —%\/ 2KOX0. (16)

o

Consider the parameter (xo, Ky) plane division by
the following curves:

Li: Ko=[x/(1 — Y)]*xo is a straight line corre-
sponding to the threshold values of the activator
concentration;

Ly : xo = m/(d/0)(6/m(1 = x) — D)7, n=1
is a vertical line; at this values of x the sign of the first
term in the right-hand part of Eq. (16) changes when
Ko/xy is large;

Ly : xo = mn-+/d/(1 — x), n =1 is a vertical line
at which the sign changes in the right-hand part of Eq.
(16) when Ky/x is small; the estimation is obtained by
the function f(z) expansion in the vicinity of the line
of the threshold values of Ky/x into the Taylor series;

Ly : Ko = x0/2 is the non-linearity type change in
the second term of the right-hand part of Eq. (16) at
the expense of the function of (z).

\=J

The parameter plane division is shown qualitatively
in Fig. 7. The auto-waves and structures can occur
only in the dashed region. The line L, of non-linearity
type change can alter the integral build-up of the
activator qualitatively, and, as a consequence, the
process character. However, in our calculations (see
further) the initial disturbances except for a small
region are below this line (that is why it is not shown
in Fig. 7). It is evident that the theoretically predicted
curves qualitatively coincide with the boundaries of
regions of different pattern formation regimes
obtained as a result of numerical calculations (Fig.
3). This fact indicates that the disregard of the
activator influence on the choice of the system of the
pattern formation regime was justified.

A similar analysis was carried out for a one-
dimensional axially symmetrical case as well. The
division of the initial disturbance parameter plane by
similar curves different from the one-dimensional-
plane case only by details. The results of numerical
calculations also turned out to be in good agreement
with theoretical estimations.

For investigation the resonance phenomena ana-
lytically and determining conditions that should be

_—
\%
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1E-3-
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0
0.0 0.2 0.4 0.6 X0

FIGURE 7 Division of the (xo, K;) plane by theoretical curves in
one-dimensional-plane case. Theoretical lines are shown by the
following colors: L; is red, L, is blue, L; is light green. The model
parameters used in calculations are given in Table I.
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satisfied by the kinetic parameters of the reaction—
diffusion systems for similar effects to occur, we,
following Turing (1952), carried out a linear analysis
of the model (linear) two-component system. After
that we applied the approach obtained to the particular
system (1) and (2).

THE LINEAR ANALYSIS OF THE MODEL
SYSTEM

Consider a two-component model system of the
reaction—diffusion type equation. A linear approxi-
mation in the vicinity of the spatially homogeneous
stationary solution (equilibrium point) will look like
(in a dimensionless form):
2
E;—I: = ZX—L; + au + bv
, an

i = Da——v- + cu + dv.

ot ax?

Here u = u(t;x); v = v(t;x — xp), i.e. the distri-
bution of the second system variable can be
considered with some shift of x, regarding the
distribution of the first one. Coefficients a, b, ¢, d are
the components of the Jacobi’s matrix of the right-
hand (kinetic) parts of the system, calculated at the
moment of time 7, for a spatially homogeneous
solution (steady state). For the system (17) we
shall consider the Cauchy problem. Let us take the
Fourier transformation of the variable x in its integral
form. Denoting X(¢;k) = F [u(t; x)(¢, k), Y(¢; k) =
F [v(t; x — x0)](t, k) from Eq. (4) we shall obtain

dX 2 ixok
— = (a— kX + ey
i (a—k*) b-e ,

% = ce "X + (d — k°D)Y.

18)

Let us find the Jacobi’s matrix characteristic
numbers of the system (18) from Eq. (19)

A+ (A +DK>=(a+d)yr+ (a—k>

X(d—k*D)—bc=0 (19)

The characteristic (dispersion) correlation (19) is
known. It appears, for example, in Murry, (1977);
Koch and Meinhardt (1994); Haken (1978) when
investigating linear approximation to find inhomo-
geneous dissipation structures, when exploring the
loss of equilibrium of a spatially homogeneous
stationary solution. The case of various eigenvalues
A is studied in detail in Turing (1952).

It should be noted that the term “resonance” is used
in different works with varying meanings. In
particular, one of the meanings encountered in
literature is to meets some relationship of the Jacobi’s
matrix characteristic numbers of the non-linear
system ODE. In the simplest case of the two equations
system the resonance is correlated with the appear-
ance of the multiple characteristic root in it.

Since we are interested in the resonance phenom-
ena, consider the multiple root case, when A; = Ay =
A, then

A= %[(a +d)— (1 + D)k, (20)

and in this case the condition should be met in Eq.
(21) or after a number of transformations

[(A + D)k — (a+ dP
= 4(a — k*)(d — k*D) — 4bc, ¥3))

or after processing [(1 — D)-k? — (a — d)]* = —4bc.
The solution (18) is

X a+ Bt N
— et
Yy \y+é ' (22)
Substituting Eq. (22) into Eq. (18) and performing
the required transformations, we shall get

[¢]

(B + Aa + ABDEMN = (a — k*)(a + BreM
+ be™k(y + 8t)e,
(8 + Ay + Adt)eM = ce ™ok(a + Brye

+ (d — k*D)(y + 8t)e™.
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Coefficients «, B, 7, 6 should satisfy the equations
a[A = (a— k)] + B — ybe™* =0,

BIA — (a — k?)] — 8be™k =0,

— ace™ ™ + y[A — (d — k’D)] + 6 =0,

— Bee™™* + 8:[A — (d — k*D)] = 0.
According to Eq. (21) written in the form of
1
A= -—Z[kz-(D— —(a—ad)) —bc=0

when D > 1, d = a, bc = 0 there are wave-numbers
so that k% =[(d — a) = 24/—bc]/(D — 1) > 0 and
the system of equations for the coefficients «, B3, 7y, 6
has an unusual solution and at other k the solution is
zero. For the reverse Fourier transformation from the
system (18) solution to exist, it is necessary for X(¢, k)
and Y(¢,k) to be singular functionals (Vladimirov,
1988, Ch. II), concentrated on the straight line (¢, 15
and (¢, —k). This case corresponds to the Turing
instability (the loss of equilibrium of one or more
harmonics of the Fourier series). It is considered in
detail in Turing (1952).

Now let us take the case when D = 1. Then the
condition for an non-trivial solution (22) takes the
form

(a — d)* = —4bc. (23)

Let us note that it does not depend on the wave
number k, hence, in this case there are no
“outstanding” harmonics of the disturbance. From
Eq. (19) it follows that there is a condition for the
solution bc = 0, which coincides with the similar
condition in case of D > 1. The type of the
equilibrium point (a special point) of the spatially
uniform system in the vicinity of which there is such a
non-trivial solution follows immediately from Eq.
(23). It is either a degenerate or a dicretic node. We
shall omit the case of the dicretic node in further
consideration, because this spatial heterogeneity does
not occur in the system. Further we shall discuss only
the case of the degenerate node.

The condition (21) is the condition for the system
matrix in Eq. (17) to be equivalent to a certain Jordan
cell, i.e. there is an non-singular change of variables
so that the system (17) transforms into

p _3%p dq _ 3%q

=_—+dp+Pbyg, —=

- +d 24
ot ox? ar a2 190 Y

this being possible only due to the fact that the matrix
of the diffusion coefficients is identity one.

The corresponding Cauchy problem for Eq. (24)
can be solved either directly or by the reverse Fourier
transformation of Eq. (22) (Vladimirov, 1988, Chs. II,
III), and thus the coefficients become

0= Oa a = Cl’ Y= C2a B = bICZeiXOkv

C; and G, are arbitrary constants,

Cy

(1) = ox 4d't? — x?
PD = Jm S

C, 4d't? — (x — x0)?
+ v — 1 (25
27 ’e"P{ pr » (29

(1) = C, ox 4a’t2—(x—x0)2}
a5 =5 Tt P 4 '

When C; = C, = 1 the solution (25) substitutes for
the response-function in Eq. (24) where the right-hand
part is p(x, ) = 8(x)(t), q(x,t) = 8(x — x0)8(t). The
most attractive term there is the second term in Eq.
(25), which describes the “diffusion resonance”.

Actually, let us assume the system to have a steady
degenerate node: @ = —«k, and b’ > 0 at the same
time. Then an additional term can be written as
follows:

e = pre [ exp - & X0
Dy(x,t) = b'te (ZHeXP{ o })

The function in brackets is a fundamental solution
to the hear conductance operator. The first co-multiple
is the function of time—"resonance”. It is evident that
when b >0 there occurs an increase in the
concentration up to the time #r = —1/d' = 1/k.
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When d’ > 0 (an unsteady degenerate node) and
b' < 0, itis possible to destroy quickly the substance p
“in resonance”, or, in case of b’ > 0, an increase in the
concentration is faster than exponential. So the
characteristic speed of the disturbance spreading in
the system V = 2+/d coincides with the speed of the
Kolmogorov—Petrovsky—Piskunov wave spread
(Kolmogorov et al., 1937).

Now consider the case of the approximate equality
of the diffusion coefficients in brief.

D=1+2g=1.

The solution obtained above in case of D =1 can
be used as the term of 0 order while construction the
solution in the form of an asymptotic series of . If we
take & to be sufficiently small, it can be seen that at
initial disturbances of the type exp(—x2/x3), the
process will develop by analogy with the solution
(25).

Summing up what has been said above let us state
the basic result of the analysis carried out. In case of
the unequal diffusion coefficients and the Jacobi’s
matrix integral multiples corresponding to the
spatially uniform system, the Turing instability is
being observed. Their appearance is possible even at
equal diffusion coefficients if the matrix is equivalent
to the diagonal (identity) one. The fact of the pattern
formation under these conditions is proved in Turing
(1952).

If the Jacobi’s matrix of the kinetic part of the
system is equivalent to the Jordan cell and the
coefficients of diffusion are equal in case of great
region sizes (the Cauchy problem), the Turing pattern
formation is impossible, and the “diffusion
resonance” is being observed. At the same time
there are no outstanding harmonics in the system, all
the modes of the Fourier series play the same role. A
similar resonance is possible in case of the
approximate equality of diffusion coefficients.

At the first sight the case considered above is the
specific case rarely encountered in applications,
However, this consideration can be applied not only
in the vicinity of the equilibrium point but it is
possible to take into account a linear approximation of

the system in the vicinity of the spatially homo-
geneous non-stationary solution. Then instead of the
homogeneous system (17) one should consider the
corresponding inhomogeneous system. The solution
(25) of the homogeneous linear system can be used to
construct the solutions of the inhomogeneous system.
Under this consideration the resonance—the hetero-
geneity enhancement with a certain relationship of the
kinetic parameters when the diffusion coefficients are
equal up to some time—will be conserved.

Let us apply the considered model of the
heterogeneity enhancement to the given system of
equations describing blood coagulation. As the
spatially uniform system analysis shows, there is no
degenerate node among the equilibrium points with
the physiologically justified range of parameters.
Consider now the possibility of the heterogeneity
enhancement in the vicinity of the spatially inhomo-
geneous non-stationary solution.

In case of the systems (1) and (2) the Jacobi’s
matrix of its reactionary part looks like this:

J=

A=0-w-p —

bl — ev)(1 + v buv— e + 3v?) — k

The condition for the resonance (21) to occur
becomes of the form:

[1—X+K—w—bu(2v—s(l+3v2))

2
_ - _ 2
o 1)2} 4ybu(l — ev)(1 + v7), (26)
or

1
(u+ 1)y

(1= x+ k= ) — buQv — &1 + 3v%) —

= +2,/yb\/(1 — ev)(1 + v2)V/u.
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It is obvious that for such values u*, v* for the
condition (23) to be met, it is necessary to require that
v <1 /&

After substituting v = 0 into Eq. (26), it becomes
evident that when the values are close to the given in
Table I, the equation has no solution.

However, when v; = (1 — V1 — 3£2)/3¢ =~ /29,
in the term bu(2v — &(1 + 3v?)) changes its sign.
When v > o for any fixed Eq. (26) has two roots (see
Fig. 8) denoted correspondingly u,(v*) and u_(v*) (at
the crossing point with the positive or negative branch
of the parabola). It is apparent that u, (v) < u_(v) ata
fixed v, and with an increase in v the values of u, and
u_ are going down. The case of v = v; when there is
the only root does not differ from the case with two
roots in principle.

It should be noted that a non-trivial fact of the
second inhibitor threshold presence in the system
follows from a simple linear consideration. In
reducing the inhibitor concentration to the sub-
threshold values, not only the heterogeneity concen-
tration growth of the inhibitor but of the clotting

FIGURE 8 Properties of Eq. (26) at v = 1. The black lines are:
f=1-x+k—vy,f=1—-x+«k— yv—buQv— &1 + 3v?));
The blue curve is in accordance with the left-hand of Eq. (26), the
red curve corresponds to the right-hand of the same equation. Other
parameters are listed in Table L.

process activator as well becomes impossible in the
system. The threshold value of the inhibitor &/2 should
also be taken for the upper boundary of the
approximation (5) application to investigate the initial
stage of the pattern formation.

The processes in the system qualitatively occur in
this way. In the beginning the disturbance of the
activator u spreads out and grows auto-catalytically
according to the solution of the heat conductivity
equation with the source. This part of the process was
considered in the previous section. The inhibitor
growth rate takes place simultaneously with diffusion.
If the concentrations reach the values of v*, u (v*),
first activator growth heterogeneity occurs. The linear
approximation is not valid at this stage.

After the “blow-up” non-linear mechanisms of
inhibition switch on. Heterogeneity decreases. After a
while, on reaching the mean spatial values of the
inhibitor and the activator concentrations v;*, u,(v;*)
there is a blow-up again. It is interesting to note that in
the calculations one manages to observe “blow-ups”
in the vicinity of u_(v*) and the processes in the
system develop much faster.

One should notice some very important properties
of the system (1) and (2) due to which the existence of
resonance become possible. They consist in not only
the equality of the diffusion coefficients but in the
reactionary part properties. In the coagulation model
as is shown in Guria et al. (1998), two variable—both
the activator and the inhibitor—are auto-catalytic. It is
due to this property that the Jacobi’s matrix of the
spatially uniform system can become equivalent to the
Jordan cell.

As one can see from the previous consideration the
resonance is not connected with only one mode, i.e.
the system has no specific wave numbers k,,
corresponding to the characteristic numbers (eigen-
values) with the positive real part. Since under the
initial conditions various modes can be represented
differently, then the details of the processes initiated
by these starting data can differ. This means that the
pattern formation regimes depend on the initial
disturbance parameters. This effect was discovered in
the numerical experiments with the system (1) and (2)
and shown in Fig. 3. The fibrin pattern development
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was determined by the evolution of “streations”
already at the initial stage of their formation when the
clotting inhibitor concentration in the system is
negligible. Thus one can analyze the dependence of
the different solution types on the parameters of the
initial activator distribution.

NON-LINEAR ANALYSIS OF THE MODEL
SYSTEM

Let us estimate the contribution of non-linearity to the
pattern formation. For this reason consider a non-
linear system in the vicinity of the spatially
homogeneous stationary solution (of the degenerate
node). All the second order terms inclusively are
retained in it, and we shall consider the coefficients of
the second order terms to be small. The model non-
linear system becomes:

ou __ d%u

o = e + au + bv + (e u’ + ejpuv + e13v?),
x

v 9%v
— = D—2 + cu+dv+ g(e21u2 + expuv + 623‘1)2).
at 0x

Here ¢ is a small parameter. All the other
parameters are designed similarly in Eq. (17).
Carrying out the linear system transformation we
arrive at the following:

p_d%p P
3% ok +ap+bq+ e@p” + énpg
+ 2139),
dqg _9%q L 2
a2 +aq+ e@yp” + énpq
+ 22392). @27

The solution of the last one can be found as an
asymptotic set on &. The first terms of this set (0
degree on &) are obviously to coincide with Eq. (26).
We do not give the terms of the first order here
because of their bulky formulas. We only notice that
in describing the dual interactions of chemicals by the
expressions for p and g the terms of the following

form appear:
CiCy r /o 5)
e 4+ ==
n e . b'ey \/;' ﬁ

8a'1? — x} (x — (x0/2))*

X exp (_——87 ) exp(— =) /) ) dT).

It is obvious that owing to the chemicals interaction
in the system there can occur maximums of
concentration in the middle between the initial
activator and inhibitor maximums in case of the
unsteady degenerate node in the model system (27).
They play a substantial role with some delay as
compared to the linear terms. The value of this delay

can be estimated on the basis of the given above terms
as follows:

X0

224

It is apparent that to estimate the effects of the
following order a lower value of the auto-wave speed
is used—the Zel’dovich—Frank-Kamenetskii solution
(Zel’dovich and Frank-Kamenetskii, 1938). In case of
the steady degenerate node the effect of these terms is
negligible. The terms of greater degrees of & are also
of a resonance character, but their contribution is less
substantial.

BLOW-UP REGIMES WITH THE INHIBITOR
CONCENTRATION GROWTH

Let us continue considering the systems (1) and (2).
We have shown above that in the reaction—diffusion
system under some conditions it is possible to increase
heterogeneity at equal diffusion coefficients. If due to
the resonance effects of heterogeneity in the system
resulted in the fact that the inhibitor concentration
reached its second threshold value (¢ in dimension
value, 1—in dimensionless values), then there is a
possibility of the further concentration growth in the
blow-up regime.

In fact, when C > ¢ > ¢, the velocity of its
producing the points where the activator concen-
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tration exceeds the threshold value can be approxi-
mately estimated as

2
¢=p0" (3) :
(2]

where ¢* is the activator blow-up time. Consequently
the concentration of inhibitor increases as following:

1
[ %o (l—t/t*),

where t* ~ oo/ BG* is the of inhibitor blow-up time.
The diffusion processes can be disregarded, as the
processes, as they develop very quickly and the
diffusion coefficient is small. The estimation of the
inhibitor blow-up time brings us to the conclusion that
the possible maximum of its concentration equal to C
is reached most quickly at the points of the local
maximas of the activator concentration distribution.
Afterwards the process of the chemical spot division
starts. It has been qualitatively described above in
considering numerical results.

DISCUSSION

The carried out analysis of the two-component
reaction—diffusion system has shown that at unequal
diffusion coefficients and multiple eigenvalues of the
matrix of the kinetic equations, the Turing instability
take place, as in case of equal diffusion coefficients if
the Jacobi’s matrix is equivalent to the diagonal.

However, if the matrix is equivalent of the Jordan
cell in a big region of space, the Turing pattern
formation is possible and there is a “diffusion
resonance”. Thus the inhibitor presence is of key
importance in the activator structures formation. The
conclusion can be drawn that the inhibitor plays the
determining role in the instability. So, in Reynolds
et al. (1994) the conclusion is made that in the model
of flame spreading it is the fuel that plays the inhibitor
part, while the flame itself is the activator of the
burning process.

In numerical experiments with the blood coagu-
lation model the pattern formation regimes that can be

treated as the demonstration of the “diffusion
resonance” were observed. Besides the dependence
of the structure formation regimes on the parameters
of the initial system disturbance was discovered,
which can be attributed to the resonance phenomenon
as a collective effect (i.e. when a substantial part is
played by all the modes of Fourier series). For an
analytical investigation of this dependence an
approach based on the analysis of the integral norm
of solution has been worked out. The results obtained
with its help are in good agreement with the data form
numerical calculations.

One should note in brief, that the complex clotting
pattern formation is an experimental fact underlying
this work. That phenomenon can be accounted for
with the help of both considering two successive auto-
waves generated in the system and describing the
evolution of the localized (both in space and time)
non-stationary formations (streations). This duality,
on the one hand, explains the successful application of
models based on the differential equations, and, on the
other hand, permits to think of building discrete
models to describe the process of clotting.

Let us emphasize once more than the fibrin
structure—(a clot)—according to the idea of the
pattern is being formed as a trace of moving a non-
stationary formation able to divide. These effects are
more vividly demonstrated in multi-dimensional
cases. In this work we shall not stop at describing
the results of two-dimensional calculations. We shall
just mention that such results can be found in works
(Starozhilova et al., 1997; Lobanov and Starozhilova;
Lobanov et al., 1997).
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