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The steady flow of an incompressible electrically conducting fluid over a semi-infinite
moving vertical cylinder in the presence of a uniform transverse magnetic field is ana-
lyzed. The partial differential equations governing the flow are reduced to an ordinary
differential equation, using the self-similarity transformation. The analysis deals with the
existence of an exact solution to the boundary value problem by a shooting method.
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1. Introduction

The study of laminar flow over a continuously moving surface in a viscous incompress-
ible fluid is of considerable interest in many industrial applications and a large number
of papers investigating different aspects of this problem have been published. Bound-
ary layer flow behavior on a cylinder moving in a Newtonian fluid was initially studied by
Sakiadis [19], and obtained a numerical solution using a similarity transformation. Later,
this problem has received the attention of certain researchers (see [9, 14, 18]).

More recently the problem of MHD flow over infinite surfaces has become more im-
portant due to the possibility of applications in areas like nuclear fusion, chemical en-
gineering, medicine, and high-speed, noiseless printing. Problem of MHD flow in the
vicinity of infinite plate has been studied intensively by a number of investigators (see,
e.g., [12, 16, 17, 20–23] and the references therein). But only very few authors studied
the flow past semi-infinite vertical cylinder (see, e.g., [1, 2, 5, 10, 13] and the references
therein). It may be remarked that most exact solutions in fluid mechanics and MHD are
similarity solutions in the sense that the number of independent variable is reduced by
one or more.

Most of previous investigations were concerned with numerical studies and there are
only few papers in the literature that deal with a theoretical analysis of problem of MHD
flow along a vertical cylinder, however, an important number of theoretical investigations
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are concerned with flow past vertical and flat plates without magnetic field (see, e.g.,
[3, 4, 7, 8, 11, 15] and the references therein). The subject of the present note is to give
an analytic investigation to the problem of boundary layer in a laminar flow of a vis-
cous incompressible and electrically conducting fluid past a permeable moving vertical
semi-infinite cylinder under the action of a uniform magnetic field in the case of a linear
external velocity. The governing boundary layer equations with initial and boundary con-
ditions are reduced to an ordinary differential equation which is solved using a shooting
method, and favorable conditions for the existence of solutions are established.

2. Mathematical formulation

We consider a steady laminar and incompressible viscous MHD flow past a moving per-
meable semi-infinite vertical cylinder of radius R. The applied transverse magnetic field
B0 is assumed to be uniform. All fluid properties are assumed to be constant and the mag-
netic Reynolds number is assumed to be small so that the magnetic field can be neglected.
No electric field is assumed to exist. Axial coordinate x is measured along the axis of the
cylinder. The radial coordinate r is measured normal to the axis of cylinder. We denote
by ue(x)= u∞x the external velocity with u∞ > 0. Under these assumptions and with the
boundary layer approximation, the governing equations describing the problem are
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∂x

+
∂(rv)
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with initial and boundary conditions

u(R,x)= uwx, v(R,x)=−vw, u(∞,x)= ue(x), (2.2)

we denote by u and v the velocity components in the x and r directions, respectively.
ν is the kinematic viscosity, ρ is the fluid density, and σ is the electric conductivity of
the fluid. vω is the suction/injection parameter, with vω > 0 corresponding to the wall
suction, vω < 0 corresponding to the wall blowing, and the case vω = 0 characterizing the
impermeable wall. In our following analysis we assume that vω > 0 and uω > 0.

The stream function ψ is defined by ru= ∂ψ/∂r and rv =−∂ψ/∂x, substituting these
expressions in (2.1)-(2.2), the continuity equation is automatically satisfied and we obtain
the boundary value problem
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We look for self-similar solutions under the form

ψ(r,x)=
√

νu∞R
2

x f (t), (2.4)

where f is the dimensionless stream function and t = √u∞R/2ν((r2−R2)/R) is the simi-
larity variable.

In terms of this variable, the governing equation and boundary conditions (2.3) are
transformed into

(Kt+ 2R) f ′′′(t) +K f ′′(t) + f (t) f ′′(t)− f ′2(t)−M( f ′(t)− 1
)

+ 1= 0, (2.5)

f (0)= a, f ′(0)= b, f ′(∞)= 1, (2.6)

with

K = 2

√
2ν

u∞R
, a= vωR√

νu∞R
, b = uω

2u∞
, M = σB2

0

ρu∞
. (2.7)

Note that M > 0 is the magnetic parameter and a > 0 plays the role of suction parameter.

3. Main result

The objective in this section is to establish a sufficient condition for the existence of exact
solutions of the problem (2.5)-(2.6) with respect to the three parameters a, b, and M. For
this we will study the related initial value problem

(Kt+ 2R) f ′′′(t) +K f ′′(t) + f (t) f ′′(t)− f ′2(t)−M( f ′(t)− 1
)

+ 1= 0,

f (0)= a, f ′(0)= b, f ′′(0)= c, (3.1)

where the real c is the shooting parameter. Problem (3.1) has a unique local solution fc
defined on its maximal interval of existence [0,Tc), Tc ≤∞. This solution is of class C∞

on [0,Tc). Let us note that if Tc <∞, then

lim
t→Tc

∣∣ fc(t)∣∣+
∣∣ f ′c (t)

∣∣+
∣∣ f ′′c (t)

∣∣= +∞. (3.2)

Theorem 3.1. For a > 0 and b > (3/2)(
√
M2/4 + (4/3)(M + 1)−M/2), if

−
√

1
R

(
b3

3
+
M

2
b2− (M + 1)b

)
< c < 0, (3.3)

the problem (2.5)-(2.6) has at most one solution.

To prove this theorem, we use the following lemmas.

Lemma 3.2. If a solution fc of problem (3.1) is defined on [0,Tc) with Tc <∞, then fc, f ′c ,
and f ′′c are unbounded for t→ Tc.
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Proof. We use the same idea in [6] for the Falkner-skan equation. If f ′′c were bounded for
t→ Tc then f ′c and fc would also be bounded. But we have

lim
t→Tc

∣∣ fc(t)∣∣+
∣∣ f ′c (t)

∣∣+
∣∣ f ′′c (t)

∣∣= +∞; (3.4)

a contradiction. If f ′c were bounded for t→ Tc, fc would also be bounded, on the other
hand integrating (3.1)1 between the limits 0 and t we get

Kt f ′′c (t) + 2R
(
f ′′c (t)− c)=− fc(t) f ′c (t) + ab+ 2

∫ t
0
f ′2c (s)ds+M

(
fc(t)− a

)− (M + 1)t,

(3.5)

this implies that f ′′c is bounded and we have seen that this is impossible.
Now suppose fc were bounded for t→ Tc, by integration of (3.5) between 0 and t we

obtain

(Kt+ 2R) f ′c (t) +
1
2
f 2
c (t)−K fc(t)− (2cR+ ab−Ma)t+ (M + 1)

t2

2
−M

∫ t
0
fc(s)ds

= 2
∫ t

0

∫ η
0
f ′2c (η)dηdt,

(3.6)

since f ′c is unbounded for t → Tc, then
∫ t

0

∫ η
0 f ′2c (η)dηdt is also unbounded. Whereas∫ t

0

∫ η
0 f ′2c (η)dηdt is a monotonic function of t, therefore it tends to infinity and also does

f ′c (t).
If we put ω= ∫ t0

∫ η
0 f ′2c (η)dηdt, then

ω′′ = f ′2c ∼

4(
KTc + 2R

)2ω
2 for t −→ Tc. (3.7)

Multiplying by ω′, integrating and using the fact that ω tends to infinity for t→ Tc, we
obtain

1
2
ω′2 ∼

4

3
(
KTc + 2R

)2ω
3,

ω′ ∼

√
8√

3
(
KTc + 2R

)ω3/2.

(3.8)

By the theory of indeterminate forms it follows that

ω−1/2
∼ c1

(
Tc− t

)
for t −→ Tc, (3.9)

where c1 is a positive constant. Hence

f ′c ∼

2
KTc + 2R

ω∼ c2
(
Tc− t

)−2
, (3.10)
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where c2 �= 0. Integrating, we get

fc ∼ c2
(
Tc− t

)−1
, (3.11)

this contradicts the fact that fc is bounded for t→ Tc. �

Lemma 3.3. Let a > 0, b > (3/2)(
√
M2/4 + (4/3)(M + 1)−M/2), and

−
√(

1
R

)(
b3

3
+
(
M

2

)
b2− (M + 1)b

)
< c < 0, (3.12)

then f ′c > 1 and fc > 0 on [0,Tc).

Proof. Since f ′c (0)= b > 1, then f ′c > 1 on some [0, t0), 0 < t0 < Tc. Since fc(0)= a > 0, we
obtain that fc > 0 on [0, t0). Suppose that there exists t0 ≤ t1 < Tc such that f ′c (t1)= 1 and
f ′c > 1 on [0, t1). We introduce the function E defined by

E(t)=
(
Kt

2
+R
)
f ′′2c (t)− f ′3c (t)

3
− M

2
f ′2c (t) + (M + 1) f ′c (t)

+
K

2

∫ t
0
f ′′2c (s)ds ∀t ∈ [0,Tc

)
,

(3.13)

then by (3.1)1 we get

E′(t)=− fc(t) f ′′2c (t)≤ 0 on
[
0, t1

)
. (3.14)

In addition we have E(0)= Rc2− b3/3− (M/2)b2 + (M + 1)b≤ 0, it follows that E(t1) =
E(0)= 0. Thus E(t)= E′(t)= 0 for all t ∈ [0, t1). Consequently f ′′c (t)= 0 for all t ∈ [0, t1),
which implies c = 0; a contradiction. Hence f ′c > 1 and so fc > 0. �

Lemma 3.4. Let−√(1/R)(b3/3 + (M/2)b2− (M + 1)b) < c < 0 such that f ′c is bounded, then
f ′′c < 0 on [0,Tc).

Proof. Since f ′′c (0) < 0 then f ′′c is negative on a neighborhood of 0. Suppose that there
exists a number t0 > 0 such that f ′′c (t0)= 0 and f ′′c < 0 on (0, t0). We will show that f ′′′c >
0 for t ≥ t0. In fact, because f ′′c < 0 on (0, t0) we have f ′′′c (t0)≥ 0. Suppose that f ′′′c (t0)=
0, then it follows from (2.5) that

(
1− f ′c

(
t0
))(

1 + f ′c
(
t0
)

+M
)= 0, (3.15)

which implies that f ′c (t0) = 1 or f ′c (t0) = −(1 +M), this contradicts the fact that f ′c >
1 and then f ′′′c (t0) > 0. Now we suppose that there exists a number t1 > t0 such that

f ′′′(t1)= 0, let us observe that f (4)
c (t1)≤ 0 and f ′′c (t1)≥ 0. Differentiation of (2.5) yields

(Kt+ 2R) f (4)
c (t) + 2K f ′′′c (t) + fc(t) f ′′′c (t)− f ′c (t) f ′′c (t)−M f ′′c (t)= 0, (3.16)
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and hence at t = t1, we obtain

(
Kt1 + 2R

)
f (4)
c

(
t1
)−M f ′′c

(
t1
)= f ′c

(
t1
)
f ′′c
(
t1
)
, (3.17)

thus we deduce that f ′c (t1) ≤ 0; a contradiction. Consequently f ′′′c > 0 and then f ′′c > 0
on (t0,∞), we get that f ′c is increasing and becomes unbounded as t tends to infinity, this
contradicts the fact that f ′c is bounded and then f ′′c < 0 on [0,Tc). �

Proof of Theorem 3.1. First let us distinguish two cases.
(1) For any −√(1/R)(b3/3 + (M/2)b2− (M + 1)b) < c < 0, f ′c is unbounded.
(2) There exists a real c1 satisfying−√(1/R)(b3/3 + (M/2)b2− (M + 1)b) < c1 < 0 such

that f ′c1
is bounded.

In the case (1) it is clear that f ′c is not a solution of (2.5)-(2.6) since the boundary condi-
tion at infinity could not be satisfied. Then to investigate solutions of problem (2.5)-(2.6),
it remains to consider the case (2). Since f ′c1

is bounded, then from function E we have
f ′′c1

is also bounded on [0,Tc1 ). Assume that Tc1 is finite, since f ′c1
is bounded, then fc1

is also bounded. But this contradicts Lemma 3.2, consequently Tc1 = +∞. Hence from
Lemma 3.3, there exists L ∈ (0,+∞] such that limt→+∞ fc1 (t) = L, assume that L < +∞,
this implies in particular the existence of a sequence (tn) tending to +∞ with n such
that limn→+∞ f ′c1

(tn)= 0, by using the function E, we get 0≤ E(+∞)≤ E(0)≤ 0 and then
E(t) = E′(t) = 0 for all t ∈ [0,+∞). Hence f ′′c1

(t) = 0 for all t ∈ [0,+∞), which implies
c = 0, this is impossible. We use again the function E to find the limit of f ′′c1

, since
E(t)≤ E(0) we have

(
Kt

2
+R
)
f ′′2c1

+
K

2

∫ t
0
f ′′2c1

(s)ds≤ B, (3.18)

where B is a constant. There exists t2 ∈ (0, t) such that

R f ′′2c1
(t) +

Kt

2
f ′′2c1

(t) +
K

2
f ′′2c1

(
t2
)
t ≤ B, (3.19)

then

f ′′2c1
(t)≤ 1

t

(
2B
K

)
, (3.20)

thus we get limt→+∞ f ′′c1
(t) = 0. Finally we prove that f ′c1

tends to 1 as t approaches in-
finity, for this suppose that f ′c1

is oscillating indefinitely, this implies the existence of two
sequences:

(
tn
)
n the sequence of points where the local maximums of f ′c1

are reached,(
τn
)
n the sequence of points where the local minimums of f ′c1

are reached,
(3.21)

then (tn)n and (τn)n are tending to +∞ with n, and satisfying

f ′′c1

(
tn
)= f ′′c1

(
τn
)= 0, f ′′′c1

(
tn
)
< 0, f ′′′c1

(
τn
)
> 0 ∀n∈N. (3.22)
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By using the polynomial p(x)= x2 +Mx− (M + 1), x ∈R+, and (3.1)1 we get

(
Ktn + 2R

)
f ′′′c1

(
tn
)= f ′2c1

(
tn
)

+M f ′c1

(
tn
)− (M + 1)= p

(
f ′c1

(
tn
))
< 0,(

Kτn + 2R
)
f ′′′c1

(
τn
)= f ′2c1

(
τn
)

+M f ′c1

(
τn
)− (M + 1)= p

(
f ′c1

(
τn
))
> 0,

(3.23)

and we deduce that 0 < f ′c1
(tn) < 1 and f ′c1

(τn) > 1∀n∈N; a contradiction.
Then it follows that f ′c1

is monotone on (t1,+∞), where t1 is large enough. Since f ′c1
is

bounded, hence there exists l ∈R+ such that

lim
t→+∞ f

′
c1

(t)= l, (3.24)

then

fc1 ∼ lt for t −→ +∞, (3.25)

and from identity (3.5) we have

(Kt+ 2R) f ′′c1
∼ l2t+Mlt− (M + 1)t for t −→ +∞. (3.26)

We deduce that for t→ +∞

f ′′c1
∼

1
Kt

[
l2t+Mlt− (M + 1)t

]

∼

1
K
p(l).

(3.27)

Thus, since limt→+∞ f ′′c1
(t) = 0, we get p(l) = 0 and then l = 1. Thus fc1 is a solution of

(2.5)-(2.6).
Suppose that there exists another real c2 satisfying−√(1/R)(b3/3+ (M/2)b2−(M+ 1)b)

< c2 < 0 such that f ′c2
is bounded, then fc2 is also a solution of (2.5)-(2.6).

Assume that c1 > c2 and consider the function g = fc1 − fc2 , we have g′(0)= g′(∞)= 0
and g′′(0) > 0, then g′ is a positive maximum at some point t0 > 0 such that g′ > 0 on
(0, t0], therefore we have

g
(
t0
)
> 0, g′

(
t0
)
> 0, g′′

(
t0
)= 0, g′′′

(
t0
)≤ 0. (3.28)

From (2.5) we obtain

(
Kt0 + 2R

)
f ′′′c1

(
t0
)

+K f ′′c1

(
t0
)

+ fc1

(
t0
)
f ′′c1

(
t0
)

+ 1− f ′c1

(
t0
)2

+M
(
1− f ′c1

(
t0
))= 0,

(
Kt0 + 2R

)
f ′′′c2

(
t0
)

+K f ′′c2

(
t0
)

+ fc2

(
t0
)
f ′′c2

(
t0
)

+ 1− f ′c2

(
t0
)2

+M
(
1− f ′c2

(
t0
))= 0.

(3.29)

Using (3.29) we obtain

(
Kt0 + 2R

)
g′′′
(
t0
)=− f ′′c2

(
t0
)
g
(
t0
)

+ g′
(
t0
)(
f ′c2

(
t0
)

+ f ′c1

(
t0
)

+M
)
. (3.30)
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From Lemma 3.4 we have f ′′c2
(t0) < 0 and then the right-hand side is positive but g′′′(t0)≤

0; a contradiction. Therefore c1 = c2 and we conclude that if there exists a real c in the
interval ]−√(1/R)(b3/3 + (M/2)b2− (M + 1)b),0[ such that fc is a solution of (2.5)-(2.6),
then c is unique. This ends the proof of Theorem 3.1. �

References

[1] E. M. Abo-Eldahab and A. M. Salem, MHD Flow and heat transfer of non-Newtonian power-
law fluid with diffusion and chemical reaction on a moving cylinder, Heat and Mass Transfer 41
(2005), no. 8, 703–708.

[2] K. L. Arora and P. R. Gupta, Magnetohydrodynamic flow between two rotating coaxial cylinders
under radial magnetic field, Physics of Fluids 15 (1972), no. 6, 1146–1148.

[3] W. H. H. Banks, Similarity solutions of the boundary-layer equations for a stretching wall, Journal
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