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1. Introduction

The simplest model of predator-prey interactions was developed independently by Lotka [1]
and Volterra [2]. The classical two-dimensional Lotka-Volterra equation is given by

dy1

dt
= ay1 − by1y2,

dy2

dt
= −cy2 + by1y2.

(1.1)

System (1.1) has been one of the most studied models for a two-dimensional dynamical system.
The generalized n-dimensional Lotka-Volterra equations are given by (cf. [3, 4])

dyi(t)
dt

= yi(t)

(
bi +

n∑
j=1

aijyj(t)

)
, i = 1, 2, . . . , n, (1.2)
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subject to the initial conditions

yi(0) = ci, i = 1, 2, . . . , n, (1.3)

where the a’s, b’s, and c’s are constants. System (1.2)-(1.3) has a wide applicability to a variety
of different physical [5], chemical [6], and biological problems [7].

In the study of nonlinear systems of differential equations such as the Lotka-Volterra
equation, analytical solutions are usually unknown. In this case, in order to analyze the
behavior of the system, one usually resorts to numerical integration techniques, such as the
Runge-Kutta method [8], or perturbation techniques [9]. The problem with purely numerical
technique like the Runge-Kutta method is that it does not give a functional form of the solution
to the problem at hand, which is often useful if we need to scrutinize the solution in detail.
Perturbation techniques depend on the existence of small or large parameters in the nonlinear
problems.

The homotopy analysis method (HAM), initially proposed by Liao in his Ph.D. thesis
[10], is a powerful analytic method for nonlinear problems. A systematic and clear exposition
on HAM is given in [11]. In recent years, this method has been successfully employed to
solve many types of nonlinear problems in science and engineering [12–29]. More recently,
Bataineh et al. [30–33] employed the standard HAM to solve some problems in engineering
sciences. HAM yields rapidly convergent series solutions in most cases, usually only a few
iterations leading to very accurate solutions. Very recently, Bataineh et al. [34, 35] presented
two modifications of HAM (MHAM) to solve systems of second-order BVPs and homogeneous
or nonhomogeneous differential equations with constant or variable coefficients. HAM and its
modifications contain a certain auxiliary parameter �, which provides us with a simple way
to adjust and control the convergence region and rate of convergence of the series solution.
Moreover, by means of the so-called �-curve, it is easy to find the valid regions of � to gain
a convergent series solution. Thus, through HAM, explicit analytic solutions of nonlinear
problems are possible. Apart from providing us with a functional form of the solution to
the nonlinear problem, another advantage of HAM is that the method is valid for equations
without small or large parameters like the Lotka-Volterra equation.

In this paper, we will employ HAM to obtain series solutions to the multispecies Lotka-
Volterra competition models which are governed by a system of nonlinear ordinary differential
equations. The HAM gives continuous solution which is of comparable accuracy to purely
numerical method like the classical fourth-order Runge-Kutta method (RK4). The convergence
theorem for the three-dimensional case is also given.

2. HAM for system of ODEs

We consider the following system of differential equations:

Ni

[
yi(t)

]
= gi(t), i = 1, 2, . . . , n, (2.1)

where Ni are nonlinear operators, t denotes the independent variable, yi(t) are unknown
functions, and gi(t) are known analytic functions representing the nonhomogeneous terms. If
gi(t) = 0, (2.1) reduces to the homogeneous equation. By means of generalizing the traditional
homotopy method [11], we construct the so-called zeroth-order deformation equation:

(1 − q)L
[
φi(t; q) − yi,0(t)

]
= q�

{
Ni

[
φi(t; q)

]
− gi(t)

}
, (2.2)
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where q ∈ [0, 1] is an embedding parameter, � is a nonzero auxiliary function, L is an auxiliary
linear operator, yi,0(t) are the initial guesses of yi(t), and φi(t; q) are unknown functions. It is
important to note that one has great freedom to choose the auxiliary objects such as � and L in
HAM. Obviously, when q = 0 and q = 1, both

φi(t; 0) = yi,0(t), φi(t; 1) = yi(t) (2.3)

hold. Thus, as q increases from 0 to 1, the solutions φi(t; q) vary from the initial guesses yi,0(t)
to the solutions yi(t). Expanding φi(t; q) in Taylor series with respect to q, one has

φi(t; q) = yi,0(t) +
+∞∑
m=1

yi,m(t)qm, (2.4)

where

yi,m =
1
m!

∂mφi(t; q)
∂qm

∣∣∣∣
q=0
. (2.5)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters �, and the auxiliary
functions are so properly chosen, then the series (2.4) converges at q = 1 and

φi(t; 1) = yi(t) = yi,0(t) +
+∞∑
m=1

yi,m(t), (2.6)

which must be one of the solutions of the original nonlinear equation, as proved by [11]. As
� = −1, (2.2) becomes

(1 − q)L
[
φi(t; q) − yi,0(t)

]
+ q
{
Ni

[
φi(t; q)

]
− gi(t)

}
= 0, (2.7)

which is used mostly in the HPM [36].
According to (2.5), the governing equations can be deduced from the zeroth-order

deformation equations (2.2). Define the vectors

�yi,n =
{
yi,0(t), yi,1(t), . . . , yi,n(t)

}
. (2.8)

Differentiating (2.2) m times with respect to the embedding parameter q, then setting q = 0,
and finally dividing them by m!, we have the so-called mth-order deformation equation

L
[
yi,m(t) − χmyi,m−1(t)

]
= �Ri,m

(
�yi,m−1

)
, (2.9)

where

Ri,m

(
�yi,m−1

)
=

1
(m − 1)!

∂m−1{Ni

[
φi(t; q)

]
− gi(t)

}
∂qm−1

∣∣∣∣
q=0
, (2.10)

χm =

⎧⎨
⎩

0, m ≤ 1,

1, m > 1.
(2.11)

It should be emphasized that yi,m(t) (m ≥ 1) is governed by the linear equation (2.9) with the
linear initial/boundary conditions that come from the original problem, which can be easily
solved by symbolic computation softwares such as Maple and Mathematica.
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3. Applications of HAM

We will next obtain series solutions to the one-, two-, and three-dimensional cases of (1.2)-(1.3)
by HAM separately. We assume, in this paper, that the solution to (1.2)-(1.3) can be expressed
by the set of polynomial base functions:

{
tm | m = 1, 2, 3, . . .

}
, (3.1)

from which we have

y(t) =
∞∑
m=0

Amt
m, (3.2)

where Am are coefficients to be determined. This provides us with the so-called rule of solution
expression; that is, the solution of (1.2) must be expressed in the same form as (3.2).

3.1. One-dimensional case

Consider the 1D case of (1.2), known as the Verhulst equation,

dy
dt

= by − ay2, (3.3)

where a and b are positive constants. The exact solution of (3.3) can be found by direct
integration and is given by

y(t) =
bebt(

b + ay(t)
)
/y(0) − aebt

for b /= 0. (3.4)

For definiteness, we will assume the following initial condition:

y(0) = 0.1. (3.5)

To solve (3.3) by HAM with the initial condition (3.5) and with b = 1 and a = 3, we first choose
the initial approximation

y0(t) = 0.1 (3.6)

and the linear operator

L
[
φ(t; q)

]
=
∂φ(t; q)
∂t

, (3.7)

with the property

L[c] = 0, (3.8)
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where c is an integral constant. Furthermore, (3.3) suggests that we define the nonlinear
operator as

N
[
φ(t; q)

]
=
∂φ(t; q)
∂t

− bφ(t; q) + aφ2(t; q). (3.9)

Using the above definition, we construct the zeroth-order deformation equation as in (2.2), and the
mth-order deformation equation for m ≥ 1 is as in (2.9), subject to the initial condition

ym(0) = 0, (3.10)

where

Rm

[
�ym−1

]
= y′m−1(t) − bym−1(t) + a

m−1∑
i=0

yi(t)ym−1−i(t). (3.11)

Now, the solution of the mth-order deformation equation (2.9) becomes

ym(t) = χmym−1(t) + �

∫ t
0
Rm

(
�ym−1

)
dτ + c, (3.12)

where the integration of constant c is determined by the initial condition (3.10). We now
successively obtain

y1(t) = −
7

100
�t,

y2(t) = −
7

100
�t − 7

100
�

2t +
14

1000
�

2t2

...

(3.13)

In general, the analytic solution of (1.2) via the polynomial base functions is given by

y(t) =
+∞∑
m=1

dm(�)tm. (3.14)

3.2. Two-dimensional case

Now we apply HAM to solve the 2D version of (1.2):

dy1(t)
dt

= y1(t)
[
b1 + a11y1(t) + a12y2(t)

]
,

dy2(t)
dt

= y2(t)
[
b2 + a21y1(t) + a22y2(t)

]
,

(3.15)

where a’s and b’s are constants and subject to the initial conditions

y1(0) = 4, y2(0) = 10. (3.16)
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According to HAM, the initial approximations of system (3.15)-(3.16) are

y1,0(t) = 4, y2,0(0) = 10, (3.17)

and the auxiliary linear operators for i = 1, 2 are

L
[
φi(t; q)

]
=
∂φi(t; q)

∂t
, i = 1, 2, (3.18)

with the property

L
[
ci
]
= 0 (3.19)

and the nonlinear operators

N1
[
φi(t; q)

]
=
∂φ1(t; q)

∂t
− φ1(t; q)

(
b1 + a11φ1(t; q) + a12φ2(t; q)

)
,

N2
[
φi(t; q)

]
=
∂φ2(t; q)

∂t
− φ2(t, q)

(
b2 + a21φ1(t; q) + a22φ2(t; q)

)
.

(3.20)

Again, using the above definition, we construct the zeroth-order deformation equation as in (2.2),
and the mth-order deformation equation for m ≥ 1 is as in (2.9), subject to the initial condition

yi,m(0) = 0, (3.21)

where

R1,m
[
�yi,m−1(t)

]
= y′1,m−1(t) − b1y1,m−1(t) − a11

m−1∑
i=0

y1,i(t)y1,m−1−i(t) − a12

m−1∑
i=0

y1,i(t)y2,m−1−i(t),

R2,m
[
�yi,m−1(t)

]
= y′2,m−1(t) − b2y2,m−1(t) − a21

m−1∑
i=0

y2,i(t)y1,m−1−i(t) − a22

m−1∑
i=0

y2,i(t)y2,m−1−i(t),

(3.22)

where the prime denotes differentiation with respect to the similarity variable t. Now, the
solution of the mth-order deformation equation (2.9) for m ≥ 1 and i = 1, 2 is given by

yi,m(t) = χmyi,m−1(t) + �

∫ t
0
R1,m

(
�yi,m−1

)
dτ + ci, (3.23)

where the integration constants ci (i = 1, 2) are determined by the initial condition (3.21).
Thereafter, we successively obtain

y1,1(t) = −0.3296�t, y1,2(t) = −0.3296�t − 0.3296�
2t + 0.011063�

2t2,

y2,1(t) = −0.664�t, y2,2(t) = −0.664�t − 0.664�
2t + 0.0172416�

2t2
(3.24)

and so forth. Thus, the analytic solution of (3.15)-(3.16) has the general form

yi(t) =
+∞∑
m=1

ai,m(�)tm. (3.25)
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3.3. Three-dimensional case

Finally, we apply HAM to solve the 3D version of (1.2):

dy1(t)
dt

= y1(t)
(
b1 + a11y1(t) + a12y2(t) + a13y3(t)

)
,

dy2(t)
dt

= y2(t)
(
b2 + a21y1(t) + a22y2(t) + a23y3(t)

)
,

dy3(t)
dt

= y3(t)
(
b3 + a31y1(t) + a32y2(t) + a33y3(t)

)
,

(3.26)

with the initial conditions

y1,0(0) = 0.2, y2,0(0) = 0.3, y3,0(0) = 0.5, (3.27)

where the a’s and b’s are constants.
According to HAM, the initial approximations of (3.26) are

y1,0(t) = 0.2, y2,0(t) = 0.3, y3,0(t) = 0.5, (3.28)

and the auxiliary linear operators are as in (3.18) with the property (3.19), where ci (i = 1, 2, 3)
are constants of integrations. In a similar way as in the previous systems, we obtain the mth-
order deformation equation (2.9), where

R1,m
[
�yi,m−1(t)

]
= y′1,m−1(t) − b1y1,m−1(t) − a11

m−1∑
i=0

y1,i(t)y1,m−1−i(t)

− a12

m−1∑
i=0

y1,i(t)y2,m−1−i(t) − a13

m−1∑
i=0

y1,i(t)y3,m−1−i(t),

R2,m
[
�yi,m−1(t)

]
= y′2,m−1(t) − b2y2,m−1(t) − a21

m−1∑
i=0

y2,i(t)y1,m−1−i(t)

− a22

m−1∑
i=0

y2,i(t)y2,m−1−i(t) − a23

m−1∑
i=0

y2,i(t)y3,m−1−i(t),

R3,m
[−→yi,m−1(t)

]
= y′3,m−1(t) − b3y3,m−1(t) − a31

m−1∑
i=0

y3,i(t)y1,m−1−i(t)

− a32

m−1∑
i=0

y3,i(t)y2,m−1−i(t) − a33

m−1∑
i=0

y3,i(t)y3,m−1−i(t),

(3.29)

subject to the initial condition

yi,m(0) = 0. (3.30)
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Following similar procedure as in the previous section, we find the first two terms of the series
solution:

y1,1(t) = −0.144�t, y1,2(t) = −0.144�t − 0.144�
2t + 0.0333�

2t2,

y2,1(t) = −0.189�t, y2,2(t) = −0.189�t − 0.189�
2t + 0.02565�

2t2,

y3,1(t) = −0.225�t, y3,2(t) = −0.225�t − 0.225�
2t − 0.01395�

2t2.

(3.31)

Then, the solution expression via the polynomial base functions can be written as in (3.25).
We will next give a convergence theorem for the HAM series solution of the 3D version

of (1.2).

3.3.1. Convergence theorem

As long as the series yi(t) = yi,0(t) +
∑+∞

m=1yi,m(t) converges, where yi,m(t) is governed by (2.9)
under the definitions (3.29), (3.30), and (2.11), it must be the solution of (3.26).

Proof. If the series is convergent, we can write for i = 1, 2, 3 that

Si =
+∞∑
m=0

yi,m(t), (3.32)

and there hold

lim
n→+∞

y1,n(t) = 0, lim
n→+∞

y2,n = 0, lim
n→+∞

y3,n = 0. (3.33)

From (2.9) and by using the definitions (2.11) and (3.18), we then have

�

+∞∑
m=1

Ri,m

(
�yi,m−1

)
=

+∞∑
m=1

L
[
yi,m(t) − χmyi,m−1(t)

]

= lim
n→+∞

n∑
m=1

L
[
yi,m(t) − χmyi,m−1(t)

]

= L

[
lim
n→+∞

n∑
m=1

yi,m(t) − χmyi,m−1(t)

]

= L
[

lim
n→+∞

yi,n(t)
]

= 0,

(3.34)

which gives, since �/= 0,

+∞∑
n=1

Ri,n

(−→yi,n−1

)
= 0. (3.35)
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On the other hand, substituting (3.29), respectively, into the above expressions and simplifying
them, we obtain

+∞∑
m=1

R1,m
(
�yi,m−1

)
=

+∞∑
m=1

[
y′1,m−1(t) − b1y1,m−1(t) − a11

m−1∑
i=0

y1,i(t)y2,m−1−i(t)

− a12

m−1∑
i=0

y1,i(t)y2,m−1−i(t) − a13

m−1∑
i=0

y1,i(t)y3,m−1−i(t)

]

=
+∞∑
m=1

y′1,m−1(t) − b1y1,m−1(t) − a11

+∞∑
m=1

m−1∑
i=0

y1,i(t)y1,m−1−i(t)

− a12

+∞∑
m=1

m−1∑
i=0

y1,i(t)y2,m−1−i(t) − a13

+∞∑
m=1

m−1∑
i=0

y1,i(t)y3,m−1−i(t)

=
+∞∑
m=1

y′1,m−1(t) − b1y1,m−1(t) − a11

+∞∑
i=0

+∞∑
m=i+1

y1,i(t)y1,m−1−i(t)

− a12

+∞∑
i=0

+∞∑
m=i+1

y1,i(t)y2,m−1−i(t) − a13

+∞∑
i=0

+∞∑
m=i+1

y1,i(t)y3,m−1−i(t)

=
+∞∑
m=0

y′1,m(t) − b1y1,m(t) − a11

+∞∑
i=0

y1,i(t)
+∞∑
j=0

y1,j(t)

− a12

+∞∑
i=0

y1,i(t)
+∞∑
j=0

y2,j(t) − a13

+∞∑
i=0

y1,i(t)
+∞∑
j=0

y3,j(t)

= S′1(t) − S1(t)
[
b1 + a11S1(t) + a12S2(t) + a13S3(t)

]
= 0,

+∞∑
m=1

R2,m
(
�yi,m−1

)
=

+∞∑
m=1

[
y′2,m−1(t) − b2y2,m−1(t) − a21

m−1∑
i=0

y2,i(t)y1,m−1−i(t)

− a22

m−1∑
i=0

y2,i(t)y2,m−1−i(t) − a23

m−1∑
i=0

y2,i(t)y3,m−1−i(t)

]

=
+∞∑
m=1

y′2,m−1(t) − b2y2,m−1(t) − a21

+∞∑
m=1

m−1∑
i=0

y2,i(t)y1,m−1−i(t)

− a22

+∞∑
m=1

m−1∑
i=0

y2,i(t)y2,m−1−i(t) − a23

+∞∑
m=1

m−1∑
i=0

y2,i(t)y3,m−1−i(t)

=
+∞∑
m=1

y′2,m−1(t) − b2y2,m−1(t) − a21

+∞∑
i=0

+∞∑
m=i+1

y2,i(t)y1,m−1−i(t)

− a22

+∞∑
i=0

+∞∑
m=i+1

y2,i(t)y2,m−1−i(t) − a23

+∞∑
i=0

+∞∑
m=i+1

y2,i(t)y3,m−1−i(t)
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=
+∞∑
m=0

y′2,m(t) − b2y2,m(t) − a21

+∞∑
i=0

y2,i(t)
+∞∑
j=0

y1,j(t)

− a22

+∞∑
i=0

y2,i(t)
+∞∑
j=0

y2,j(t) − a23

+∞∑
i=0

y2,i(t)
+∞∑
j=0

y3,j(t)

= S′2(t) − S2(t)
[
b2 + a21S1(t) + a12S2(t) + a13S3(t)

]
= 0,

+∞∑
m=1

R3,m
(
�yi,m−1

)
=

+∞∑
m=1

[
y′3,m−1(t) − b3y3,m−1(t) − a31

m−1∑
i=0

y3,i(t)y1,m−1−i(t)

− a32

m−1∑
i=0

y3,i(t)y2,m−1−i(t) − a33

m−1∑
i=0

y3,i(t)y3,m−1−i(t)

]

=
+∞∑
m=1

y′3,m−1(t) − b3y3,m−1(t) − a31

+∞∑
m=1

m−1∑
i=0

y3,i(t)y1,m−1−i(t)

− a32

+∞∑
m=1

m−1∑
i=0

y3,i(t)y2,m−1−i(t) − a33

+∞∑
m=1

m−1∑
i=0

y3,i(t)y3,m−1−i(t)

=
+∞∑
m=1

y′3,m−1(t) − b3y3,m−1(t) − a31

+∞∑
i=0

+∞∑
m=i+1

y3,i(t)y1,m−1−i(t)

− a32

+∞∑
i=0

+∞∑
m=i+1

y3,i(t)y2,m−1−i(t) − a33

+∞∑
i=0

+∞∑
m=i+1

y3,i(t)y3,m−1−i(t)

=
+∞∑
m=0

y′3,m(t) − b3y3,m(t) − a31

+∞∑
i=0

y3,i(t)
+∞∑
j=0

y1,j(t)

− a32

+∞∑
i=0

y3,i(t)
+∞∑
j=0

y2,j(t) − a33

+∞∑
i=0

y3,i(t)
+∞∑
j=0

y3,j(t)

= S′3(t) − S3(t)
[
b3 + a31S1(t) + a32S2(t) + a33S3(t)

]
= 0.

(3.36)

From the initial conditions (3.28) and (3.30), there hold

S1(0) = y1,0(0) +
+∞∑
m=1

y1,m(0) = 0.2,

S2(0) = y2,0(0) +
+∞∑
m=1

y2,m(0) = 0.3,

S3(0) = y3,0(0) +
+∞∑
m=1

y3,m(0) = 0.5.

(3.37)

So, Si(t) satisfy (3.26), and are therefore solutions of the 3D version of (1.2) with the initial
condition (3.30). This ends the proof.
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Figure 1: The �-curves obtained from the 20th-order HAM approximation solutions of (a) (3.3); (b) (3.15);
(c) (3.26).
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Figure 2: The 61th-order HAM solution of (3.3) with � = −0.25 versus RK4 (Δt = 0.001) solution for the 1D
case.

4. Results and discussions

The series solutions of (1.2) given by HAM contain the auxiliary parameter �. The validity of
the method is based on such an assumption that the series (2.4) converges at q = 1. It is the
auxiliary parameter � which ensures that this assumption can be satisfied. In general, by means
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Figure 3: The 31th-order HAM solution of (3.15) with � = −0.8 versus RK4 (Δt = 0.001) solution for the 2D
case.
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Figure 4: The 41th-order HAM solution of (3.26) with � = −0.6 versus RK4 (Δt = 0.001) solution for the 3D
case.

of the so-called �-curve, it is straightforward to choose a proper value of � which ensures that
the solution series is convergent. Figure 1 shows the �-curves of 1D, 2D, and 3D obtained from
the 20th-order HAM approximation solutions of (1.2). From these figures, the valid regions of
� correspond to the line segments nearly parallel to the horizontal axis. In Figures 2, 3, and 4,
it is demonstrated that the HAM solutions, taking � = −0.25, � = −0.8, and � = −0.6, agree very
well with the solutions obtained by the classical fourth-order Runge-Kutta method at the step
size Δt = 0.001.

5. Conclusions

In this paper, the homotopy analysis method (HAM) was applied to solve the Lotka-Volterra
equations. Polynomial base functions were found to give very good accuracy of HAM solutions
for the Lotka-Volterra equations. The HAM gives continuous solution which is of comparable
accuracy to purely numerical method like the classical fourth-order Runge-Kutta method
(RK4). This is convenient for practical applications with minimum requirements on calculation
and computation. The convergence theorem for the three-dimensional case is also given. We
remark that the validity of the HAM series solutions can be enhanced by finding more terms
and/or using the Padé technique. The functional form of the solution would be useful in the
study of the stability of the system.
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