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A high-order iterative scheme is established in order to get a convergent sequence at a rate of
order N (N > 1) to a local unique weak solution of a nonlinear Kirchhoff wave equation in the

unit membrane. This extends a recent result in (EJDE, 2005, No. 138) where a recurrent sequence
converges at a rate of order 2.

1. Introduction

In this paper we consider the initial and boundary value problem

1
U —B<||ur||§> <urr + ;u,) =f(r,t,u), O0<r<1, 0<t<T,

lin(} Vg, (r,t)
r—0,

< % (1.1)
u,(1,t) + hu(1,t) =0,

u(r,0) = uy(r), u(r,0) = uy(r),

where B, f, iy, 111 are given functions satisfying conditions specified later, ||, ||3 = fol rluy(r,t) |2
dr,and h > 0 is a given constant.
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Equation (1.1); herein is the bidimensional nonlinear wave equation describing non-
linear vibrations of the unit membrane Q; = {(x,y) : x>+y* < 1}. In the vibration process, the
area of the unit membrane and the tension at various points change in time. The condition
on the boundary 0€2; describes elastic constraints, where the constant h; has a mechanical
signification. The boundary condition |lim, o, \/7u,(r, t)| < oo is satisfied automatically if u is
a classical solution of the problem (1.1), for example, with u € Cl([O, 1] x (0,T)) N C%((0,1) x
(0,T)). This condition is also used in connection with Sobolev spaces with weight r (see [1-
3D).

Equation (1.1); is related to the Kirchhoff equation

Eh (t
phuy = <P0 * 5L ’[0

presented by Kirchhoff in 1876 (see [4]). This equation is an extension of the classical
D’Alembert wave equation which considers the effects of the changes in the length of the
string during the vibrations. The parameters in (1.2) have the following meanings: u is the
lateral deflection, L is the length of the string, h is the area of the cross-section, E is the Young
modulus of the material, p is the mass density, and P is the initial tension.

The Kirchhoff wave equation of the form (1.1); received much attention. Many in-
teresting results about the existence, stability, regularity in time variable, asymptotic behavior,
and asymptotic expansion of solutions can be found, for example, in [2, 3, 5-14] and ref-
erences therein.

In [2], in a special case, sufficient conditions were established for a quadratic con-
vergence to the solution of (1.1) with f(r,t,u) = f(r,u) and B(|lu|I5) = bo+||u, |3, bo > 0. Based
on the ideas about recurrence relations for a third-order method for solving the nonlinear
operator equation F(u) = 0 in [15], we extend the above result by the construction of a high-
order iterative scheme for (1.1);, where f and B are more generalized.

In this paper, we associate with (1.1); a recurrent sequence {u,,} defined by

ou
3y (v.1)

2
dy) Uxx (1.2)

ot? or2 r or il Oul

%1y, 0’1y . 10uy, 10 i
—B(numrné)( + ——> S ) - ), (13)

0<r<1, 0<t<T,with u, satisfying (1.1),.3. The first term 1y is chosen as uy = 0. If B €
C!(R,)and f € CN([0,1] x R, x R), we prove that the sequence {u,,} converges at a rate of
order N to a unique weak solution of the problem (1.1). This result is a relative generalization
of [2,3,8,9,14, 16].

2. Preliminary Results, Notations, Function Spaces

Put Q = (0, 1). We omit the definitions of the usual function spaces C"(Q),LP(Q), H™(Q), and
_ 1/2

WmP(Q). For any function v € C°(Q) we define ||v||, as |7, = (f; rv*(r)dr)

the space Vj as completion of the space C° (Q) with respect to the norm || - ||,. Similarly, for

and define

. — . 1/2 .
any function v € C'(Q) we define ||o|); as |||, = (||v||§ + ||v,||(2)) / and define the space V; as
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completion of the space C! (Q) with respect to the norm || - ||;. Note that the norms || - ||, and
|l - |l; can be defined, respectively, from the inner products

(u,v) = jl ru(r)o(r)dr, (u,v) + (ur, vy ). (2.1)
0

Identifying Vj with its dual V; we obtain the dense and continuous embedding Vi — V; =
V,; < V]. The inner product notation will be reutilized to denote the duality pairing between
Viand V].

We then have the following lemmas, the proofs of which can be found in [1].

Lemma 2.1. There exist two constants Ky > 0 and K, > 0 such that, for all v € C! (Q), we have

@) llor [l +2*(1) > [loll5,
(ii) [o(1)] < Killolly,
(i) v/r|o(r)| < Ka||olly, for all r € Q.

Lemma 2.2. The embedding Vi — V, is compact.

Remark 2.3. In Lemma 2.1, the two constants K; and K; can be given explicitly as K; =

V1++2 and K, = V1++/5. We also note that lim, o, +/7o(r) = 0 for all v € V; (see
[17, page 128/Lemma 5.40]). On the other hand, by H!(¢,1) — C°([¢,1]), 0 < € < 1 and
VE|D 1 < vl for all v € Vi, it follows that o) € C°([¢,1]). From both relations we

deduce that /rv € CO(Q) for all v € V;.
Now, let the bilinear form a(-, -) be defined by

a(u,v) = hu(l)ov(l) + Il ru,(r)o,(r)dr, u,v €V, (2.2)
0

where h is a positive constant. Then, there exists a unique bounded linear operator A : V; —
V] such that a(u, v) = (Au, v) for all u,v € Vi. We then have the following lemma.

Lemma 2.4. The symmetric bilinear form a(-,-) defined by (2.2) is continuous on Vi x Vi and coercive
on V4, that is,

(i) la(u, v)| < Cillullil[oll;,

(ii) a(v,v) > Collo]},
for all u,v € Vi, where Cy = (1/2) min{1,h} and C; =1+ (1 + v2)h.
The proof of Lemma 2.4 is straightforward and we omit it.

Lemma 2.5. There exists an orthonormal Hilbert basis {w;j} of the space Vi consisting of eigen-
functions w; corresponding to eigenvalues \; such that

(i)0<)LlS)LzS“-S)LI'T+OOlZSj—>OO,

(i) a(wj,v) = Aj{(wj,v) forallv eV, and j €N.
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Note that it follows from (ii) that {w;/+/A;} is automatically an orthonormal set in Vi with respect
to a(-,-) as inner product. The eigensolutions w; are indeed eigensolutions for the boundary value
problem

-1d dw]' .
Aw; = PP <r7> =\Nw;, inQ,

(2.3)

lim \/;7(7’) < +o0, 7(1) + hw,(l) =0.

r—04

The proof of Lemma 2.5 can be found in ([18, page 87, Theorem 7.7]) with V = V;, H =
Vo and a(, ) as defined by (2.2).
For any function v € C%(Q) we define ||v||, as

1/2
ol = (Iolls + llor I + 1 4017) (24)

and define the space V, as completion of C? (Q) with respect to the norm || - ||,. Note that V;
is also a Hilbert space with respect to the scalar product

(u,v) + (uy, v, ) + (Au, Av) (2.5)

and that V; can be defined also as V, = {v € V; : Av € V,}.
We then have the following two lemmas the proof of which can be found in [1].

Lemma 2.6. The embedding V, — V; is compact.

Lemma 2.7. For all v € V, we have

. 1
@) ||vr||L°°(Q) < —2||Av||0,

V2

. 3
i) llonlo < \[EHAUHO, 26)

1 >

2

iii 7o < ( 2|0 + —||AD |-
(i) (012 (n lo-+ 4l ) el

For a Banach space X, we denote by || - [|x its norm, by X' its dual space, and by
LP(0,T;X), 1 < p < oo the Banach space of all real measurable functions u : (0,T) — X
such that

T 1/p
lulltro,r.x) = <I ||u(t)||§dt> <o, forl<p<oo,
0 2.7)

1]l o= 0,7,x) = ess supllu(t)|lx for p = co.
0<t<T
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Let
u(t), w'(t)=wu(t) =u(t), u'(t)=uu(t)=it), u(t)=Vut), u() (2.8)
denote
0 o 0 o
urt), G nh, Spnh, Snh, SEnh, 29)
respectively.

With f € CK@Q x R, x R), f = f(r,t,u), we put Dy f = 8f/dr, Dof = f/dt, Dsf =
Of/0u,and DY f = D?DgzD’;’f, Y=0uLyr €Zlyl=r1+n+yp==k

3. The Hight Order Iterative Schemes
Fix T* > 0, we make the following assumptions:
(Hl) ﬁo €V, and ﬁl eV

(H,) B € C'(R,) and there exist constants b, >0, a > 1, dy,d; > 0 such that

(i) bs < B(n) < do(1+n*), forall >0,
(i) |B'(n)| < di(1 +n*1), for all 7 > 0;

(H;) feCN (Q x [0,T*] x R) and satisfies the following condition : for all M >0,
v 2
r ﬁ T, ,u)

(1) _ s _
K, (M, f)= sup <400, i=0,1,...,N -1,

(r,t,u)EZM
. 3.1)
=) i O'f .
K; (M, f)= sup [(Vr) —(r,t,u)| <+c0, i=1,...,N-1,
" — oroui~!
(rtu)eAm
where Ay = {(r,t,u) € [0,1] x [0, T*] xR : [u| < M\/2 +1/+/2}. We put
_ K (M, f), i=0,
K*i (M’f) = = (1) =(2) i (32)
max{K (M, f), R§ (M, f)}, i=1,...,N-1.



6 International Journal of Differential Equations

With B and f satisfying assumptions (H;) and (H3), respectively, for each M > 0
given, we introduce the following constants:

Km(B) = sup (B(n)+|B'(n)]),

0<n<M?
Ko(M, f) = (r,t,u)|,
0( f) (r,t,S:)lEZ,V,lf g (3‘3)
Kn(M,f) = D Ko(M,D'f).
[y|sN

Foreach T € (0,T*] and M > 0 we get

W(M,T) = {v € L*(0,T;V,) : v' € L*(0,T; V3), v" € L*(0,T; Vy),

. "
with ||v||L°°(0,T;V2)/ v,||L°°(0,T;V1)’ 4 ”LZ(O,T;VU) < M}/ (34)

Wi(M,T) = {ve W(M,T) : 0" € L*(0,T; Vy)}.
We will choose as first initial term u = 0, suppose that
Up-1 € Wi (M,T), (3.5)

and associate with the problem (1.1) the following variational problem.
Find u,, € W1(M,T)(m > 1) so that

(U, (1),0) + by (D) a(um(t),v) = (Fu(t),v), VYoeVi,

(3.6)
um(0) =, 1, (0) =1y,
where
N-1p _
bm(t) = B(llvum(t)”(z)>/ Fm(r/ t) = Z l_,Déf(r/ t, um—l)(um - um—l)l- (3~7)
i b

Then, we have the following theorem.

Theorem 3.1. Let assumptions (H1)—(Hs) hold. Then there exist a constant M > 0 depending on
T*, g, ti1, B, h and a constant T > 0 depending on T*, 1y, i1, B, h, f such that, for uy = 0, there exists
a recurrent sequence {uy,} C W1(M,T) defined by (3.6), (3.7).

Proof. The proof consists of several steps.
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Step 1. The Faedo-Galerkin approximation (introduced by Lions [19]). Consider as in
Lemma 2.5 the basis {w;} for V1 and put

k
up () = > en) (B, (3.8)
j=1

(k)

where the coefficients c,,; satisfy the system of the following nonlinear differential equations:

<u5,’:>(t),wj> + b,%)(t)a(ui,f)(t),w,-) - <F,5i‘> (t),wj>, 1<j<k,

u0) =ik, 1l (0) = ik,

(3.9)

where

k
tok = Za;k)wj — 1ig strongly in V3,
j=1
(3.10)

k
ik = Zﬁ](.k)wj — 11y strongly in V.
j=1

o o) = B([|[vus o).

N-1

1 PQ j
F () = X 2D f (bt (i) = tinr) = 2955t 0m0) (1)) (3.11)
i=0 °* j=0

N-1

Wi(r,t ) = D,

2. W(—l)i_jDéf(r,t,um_l)uill, 0<j<N-1
= j! !

Let us suppose that u,,-; satisfies (3.5). Then we have the following lemma.

Lemma 3.2. Let assumptions (Hq)—(H3) hold. For fixed M > 0 and T > 0, then, the system (3.8)—
(3.11) has a unique solution uﬁf)(t) on an interval [0, T,Sf)] c [0, T].

Proof of Lemma 3.2. The system of (3.8)—(3.11) is rewritten in the form

&M (1) = -1kl (e () + (P (8),w;), 1<j<k,
(3.12)
) =al, &) =B,

and it is equivalent to the system of integral equations

t T t T
Wty =al +pPE- ) fo dr fo by (s)ch (s)ds + J'O dr J'O <1—*,§f> (5), wj >ds, (3.13)
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for 1 < j < k. Omitting the index m, it is written as follows:

c=¥lc], (3.14)

where ¥[c] = (Filcl, ..., Fklc]), ¢ =(c1,...,cx),
t T
F,1c](8) = g;(t) - \; jo dr fo b(s)c;(s)ds

N-1 at T
£y f dTJ <qf,~(-, s, um_l)ui(s),wj>ds, 1<j<k,
i=1 70 0
L (3.15)
q](t) = a;k) + :B](k)t + ’[0 dr J;) <IP0('/ S, um_l),w]'>d5, 1 < ] < k/

- _ k
b(t) = blcl(®) = B(IVu®l), ut) = Xcj(trw;.

j=1

For every Tr(f ) e (0,T] and p > 0 that will be chosen later, we put X = C°([0, T,(f )] ;
RF), S = {c € Y : |lcllx < p}, where |[cllx = supywlc®)ly, lc(t)ly = Zile;(t)], for each
¢ = (c1,...,ck) € X.Clearly S is a closed nonempty subset in X, and we have the operator

¥ : X — X.In what follows, we will choose p > 0 and T,(f ) > 0 such that

(i) S is mapped into itself by ¥,

(ii) F : S — S is contractive.

Proof (i). First we note that, forall ¢ = (c1,...,¢cx) € S,

k
u(t) = Ycj(Hw,

j=1

k
lu(®)lly = 4| D5c7() < le(®)ly,
j=1

k k
IVu®ls < au®), u(t)) = Y cib)e;(halw,wy) = Y 1ici(t) < Allu®ls,
j=1

ij=1

(3.16)

l@®llo < le®ly <llelx <p,  IVu®llo < VAle®)l < Vakp,

1 1 1 1
Juatt) ]y < \/C:O a(u(t), u(t)) < \/C:O\/Enu(t)no < \/C:’(‘)|c<t>|1 < \/C:’;p,

b(t) = B(IVu() ) < do (1 + IVu() ) < do(1+4370>). (3.17)

SO
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On the other hand, by
[ttm-1| < 2+ L_ 0
m-1 \/Q — Y7
N-1q o .
[Wo(r, t, m-1) Zol—, —1)'DLf (r,t, tmor )1ty

(Mf)NZl1< 2+%>i:EN(Mf NZQ_|

we have

(0t ) 107)| < 100t ) ol y = ¥t )l < =R (M, ) Z -

By Lemma 2.1, (iii), and the assumption (H3), we deduce from (3.16) that

‘ <‘P,~(s, um_l)ui(s), w;j > |

N-1 1

N-1

) zz i —1)! (1) (DL f (1t a0 (), 205 )

N-1

<2

i=0

—Zm Ka(M, O K u)l (V) [y )

1

V2+1-i

=0

le(r t, Uy 1)u

ZMZWUW«WV%W@MOWTHIWU($W>

N- 1

N-1 1 1 g )Lk i .
Séi!(l—i)!m K.a(M, f)6"K; e ) 1<i<N-1.

It follows that

t T
|Filclt)| < |g;)| + Ado (1 + Ai"‘pz“> fo dr J‘o lcj(s)|ds

ST 1
ol e R TR Ty B

=i

K.a(M, £ K} <

_,,> |
0

(3.18)

(3.19)

(3.20)

(3.21)
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Thus

t T
IF IO < q(®)], + dddo (1+ 22p*) fo i fO SO

N-1N-1 1

1 Ak
+ skt* (M, £)-iK: (3.22)
2 534G 1'(1—1)' V2+1- Ka(M, f) < C0p>
(*)\?
D,(15)"

where ||q|; = Supogtsﬂq(t)ll and

I\)I'—‘

< lally +

Bp :Bp(f/P/krM/m/N)

N-1IN-1 1 1

i (323)
_ AN (
2a 2a I—i i k
= hido (142292 )p+ k3 > ST T K (M) 1<2< —C0p>.

i=1 I=i

HEIlCG, we obtain
”; [C]”X < ||5I||T 2Dp<1m > ’ ( . )

choosing p > ||qll; and T,(,,k) € (0,T], such that

1= 0\ 2 1~ 0\ 2
EDP<T,§)) <p-lall EDP<T,51)> <1, (3.25)
where
D, =D,(p,k, M, T,m,N, f)
= doic(1+ 427 ) + 2d1A2p* (1 + A5 p2)
. (3.26)
+kNZ_1i Mg | HNz_l ! ! ¢ (M, f)o-
21\ \e,™ )P 2=y oo WM
Then
2
11l < lally + 3D, (T) <p, Vees, (3.27)

which means that F maps S into itself. O
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Proof (ii). We now prove that, forall c,d € S, forall t € [0, T,Eqk)],

—_

IFle](t) - FLdl(D]; < 5DpPllc - dlly, VneN, (3.28)

N

where 15p is defined as (3.26).
Proof of (3.28) is as follows.
Forallj=1,2,...,k forallt € [0, T,(nk)], we have

t T
%110 -F 0] < | drfo |b[c1<s><c]-<s> - dj(s))|ds

+4

N- t T
Z f dTJ‘
i=1 ¥ 0 0

dT

blel(s) — bld](s) )d;(s) |ds (3.29)

<‘P (s, Um- 1)<u (s) —vi(s)>,w]->|ds,

where
blel() = B(IVu®IR),  bldl®) = B(IVo®IR),
k k (3.30)
u(t) = Dcj(hw;, o) = D.di(tyw;,
j=1 j=1
SO

t T
IFcl(®) = Flal(B)]; < fo dr fo blc](s)lc(s) - d(s)l,ds

t T
+)ka de
0 0

~bld](s)|Id(s) s

k N
Z dT ‘P(s U 1)( i(s) - U(s)> w,>|ds
j=1i
t
< Ak Od'rf c](s)le(s) —d(s)ly dT c](s) - b[d](s)|ds
k N-1 at ) )
+3 3 dr| | (i) ((5) ~ 2(9) ) w0, s = i+ T+ I,
j=1i=1

(3.31)
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in which
J1 =M j; ar JZ blc] (s)|c(s) —d(s)|;ds
< Aedo (1 + )Li”‘p2“> f ; dr fo lc(s) = d(s)l,ds
= fo dr fo lc(s) - d(s),ds.
In order to consider J», we also note that
blcl(s) - bld](s) = B@) (IVu)I§ - 10 (s)IF),

where

§=0|Vus)lg+ (1 -0)IVo(s)lly, 0<é<hp?, 0<6<1,

and B'(¢) satisfy the following inequality:
|B'(§)| <d (1 + é“‘1> <d (1 + Az—lpzfx—z).
It implies that

blel(s) - bld](s)| = |B' @) (IVu(s)I - 1o )11 |
<d (1 + AZ_lpZ“_2>2)Lkp|c(s) —d(s)|,

= 2y (1+ 157 p% 2 ) e(s) - d(s)],,

and then

t T
]2:-)LkPJ‘ de
0 0

t T
<202p%d, <1 + AZ_1p2“_2> JO dr fo lc(s) — d(s),ds

blc](s) - b[d](s) |ds

t T
={ fo dr fo lc(s) —d(s)|,ds.

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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It remains to estimate J3. By

. .-l . .
(Vru(s)) - (Vro(s))' = X (Vru(s)) (Vro(s)) 7 Vr(u(s) - o(s)), (338)
j=0

we obtain

|(Vru(s))' = (Vro(s))'| < K;Znu(s o)1 uts) - o(s)1l

< K;Znu(s o)1 uls) - o)l

j=0

i1
1
<K,
j=0

j ij-1
A A A
C_I;P> <\/C:];P> C_I;|C(5) —d(s), (3.39)

— ii_l ﬂ ii—l _

—sz_0<\/€0> p'le(s) - d(s)ly
A "

= i< C—kK2> P e(s) - d(s)l;.

On the other hand,

N-1

1 1
Wil bt = 3 gy DD Ok

N-1

Zlv(l i)!

N-1

s Zz'(l i)!

(\/;)_irqfi(rr £ um—l)l

- Z1'(l

(1) (V) DL () (V) T

(3.40)
(V)| Dt ) | (V) [

Ka(M, )0 (V)™

Hence, we deduce from (3.39), (3.40) that

N-1 st

Kk
Js=>,
j=li

=1 i=

dr

170

; (V) " Wils, 1) ((Vru(s) - (Vio(s))' ), w; )| ds

k N-1N-1 N e i L
SZ IZII(Z I(M fei C_OKZ P
j=1i=1 I=i
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[ i aons

S N§_1N_1 L _Ru(M, f)o-ii \/—)"‘ K | R
= . - * ’ 1
=1 =1 1= if(l-)! (M. f) Co p V2+1-1

t T
x f de lc(s) —d(s)|,ds
0 0

Y \/7 PN LR (v e -
= “z'(l = V2+l-i

t T
xf drf le(s) —d(s)|,ds
0 0

t T
=(3 fo dr fo lc(s) —d(s)l,ds.
(3.41)

We deduce that
t T 1~
|FLc](®) = Fld](B)|y < (61 + G2+ G3) jo dr fo lc(s) —d(s)|ds < ED,JZIIC —d||x- (3.42)

We note that
Cl+§2+§3=ﬁp(p/k/MrTrmrN/f)=ijp* (343)

It follows from (3.28) that

IF1e] - Fldlly < 55, (T ) e - dllx, Vedes. (3:44)

1
2

By (3.25), it follows that ¥ : S — S is contractive. We deduce that & has a unique fixed

point in S; that is, the system (3.8)—(3.11) has a unique solution u (t) on an interval [0 T,(f ) ].

The proof of Lemma 3.2 is complete. %

The following estimates allow one to take constant T =T for all m and k.

Step 2. A priori estimates. Put

t 2
s®w =x® @) + YO ) + J' ||u£,’:>(s) ”Ods, (3.45)
0
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where

X0 = [ @]+ b a0, 1),
X (3.46)
Y, (1) = a(igy 1), i) () + b (0| A’ )],

with A is defined by (2.2). Then it follows that

S® (t) = 55,’§>(0)+ft b,‘j:’(s)[ ( u® (s), u(k)(s)> HAu(k)(s)Hi] ds
+2f <F<k’(s) u(k)(s)>d5+2 f (F(k)(s) u(k)(s))ds
(3.47)
f <F<" (s), ik (s)> f k) (s)<Au$,’§’(s) u(k)(s)>d5
=5%(0) + 25:1]-.
j=1
We will now require the following lemma.
Lemma 3.3. We have
() 0<b, <bP) < d0<1 + ”Vu(k) t)||z”),
(ii) |b£r’l<)(t)' Zdl [S(k)(t) bl a(S(k)(t)) ]

o], S0 (V)
=0
w [l < S ().

(3.48)

~(0) ~(1) - _ _ : .
where a;’,a;’, j= 0,1,...,N —1are defined as follows:

N- 191

al) = KN(M f)§ K i=0
~(0) )
a.’ = ] N-1
K -
4 50 _ 2 6 Ru(M,f), 1<j<N-1,

/ _<\/1,T;0> IZ,;](I J)\/ZT
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(/1 — e .
(\—6+2M>KN(Mf ;0—! ji=0,
0 Ké N-1  gi-j [ .
" (v P2 Gy K KM )
+<—i—1j+ +2M> Kiis1 (M, f)] 1<jsN-1,
1
0=M1/2+ E
(3.49)
Proof of Lemma 3.3. Proof (i), (ii). Note that
S0 2 XD (1) 2 baa(u (0,1 1) 2 b.]| vl 1)
(3.50)
W) 2 Y () 2 a(ulh) (1), 1) 1)) 2 ||Vu o)
We deduce that
b0 (1) = <||Vu (t)” ><d0<1+ “Vu(k) )
6o =2 (|7t o )| | (7 0, vl )|
<2d1<1+nwm>(t) e 2>||v (k) (t)” ”Vu(k)(t)uo (3.51)
<2 (1ol (s80) ) s
_ 2dy [S(k)(t) + bl a(S(k)(t)) ]
O
Proof (iii). We have
|FS @) < 100wl 11 Wty ) () 0 (3.52)

By (3.18)3, we have

[®o(r,t, Um-1)ly < \_@KN(M f)Z =a. (3.53)
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On the other hand, it follows from (3.49) and u,,., € W1(M, T) that

()’

<NZlJ'(1 J)"

=]

Dl3f(r t, Uy 1)um 1( (k)>

0
N-1

= 2

=i

N-1
<zz;‘i'(l il v KM, 107K Do

N-1 1

= - )t v2+1

K*I-(M, f)ei-fK§||u§L‘) (t) ||]1

SIS () (Vi)

< <m> _]](1 j)! \/2+1

=" (\/sfj? (t))l.
It follows from (3.52)—(3.54) that
N-
o, < e (Vo)
=0

where ﬁ;o), 0 <j < N -1 are defined by (3.49);.
Proof (iv). We have

0 (k) = )
5 Fn (1) = —%(r,tum1>+]§1;ﬂr<r,tum1>( W) vl

N-1

+ ]Z< —¥i(r,t, um- 1))( (k)>j.

Hence

0 Lk 0 ©Y g, ()
|| <|awat i W ) ()

+Ij§1j
( ‘P(rtum1)>< oY

0

=L+ L+ Ls.
0

>

H(\[) ‘](\[)_ID f(r,t, U, 1)u (\/;)j<u1(j:)>j 0

17

(3.54)

(3.55)

(3.56)

(3.57)
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We shall estimate step by step the terms on the right-hand side of (3.57) as follows

(iv.1) Estimating Ly = ||(0/0r) ¥ (r,t, tty-1)||o- We have

N-1
1
;‘Po(r,t Up-1) = =

1 1'( 1) ‘D! Lf (ot U 1)zum 1 Vil
i=

Z

| —_

=

LM

'( 1) 'D, D! f(r t, U 1)um 1

2

| —_

(3.58)
+

,( 1)'DE f(r,t, upmn) U

=

i

Iy
(=)

vum—l
=a(l)+a2) +a(3).

We will estimate step by step the terms a(1), a(2), a(3) as follows
(iv.1.1) Estimating ||a(1)||,- We have

la(1)| = Z ( 1) 'D} f(T £, U 1)lum 1vum 1

. N-lq
<Kn(M, f) Z i—‘i9”1|Vum_1|
i b

N21

(3.59)
=Kn(M, f)Z .|Vum 1

N-1gi
Kn (M, f)Zf|Vum 1-

Hence

N-1 z N 19i
lo()lo <Kn (M) 3 O NV ally < MEN (M) 309 (3.60)

(iv.1.2) Estimating ||a(2)||,- It follows from

N191
|a(2|_Z (1)D1Df(rtum1)um1 (Mf)

(3.61)
that

N-1pi
la@lo < SRn(M) Y, (3:62)
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(iv.1.3) Estimating ||a(3)]|,. Similarly, with

Nll N11

la(3)| = Z (1) DI f (1t )ty Vi1 | < Kn (M, f)Z ‘IVum 1l (3.63)
we obtain
N-1 1 N- 191
la@)lly < Kn (M, f)Z—IIVum 1llo € MKn (M, f) (3.64)
L i=0

It follows from (3.58), (3.60), (3.62), (3.64) that

< lla(@llo +lla@)llo + la)llo

N i

< LEN (M,f)l\il.—i + ZMRN(M,f)N_le.—i (3.65)
V2 0 o 1

1 B N-1gi

< (72 +2M)KN(M,f) >

(iv.2) Estimating L, = Z ]||‘P (r,t, U, 1)(u(k)) Vum)llo By the assumption (H3),
we deduce that

N-1
LZ_Z] Wi(r,t, um- 1)( k)> Vugf)
j=1 0
N 1 N-1 4
i i-j (Y g, W
P ]; ]'(l ])" D3f(r/ t/ um—l)umll <um ) Vum .
SIS - i~ J i l (k) (k)

z 12}]'(1 Sl Pt (L () vy |

N-1 N-1 (3.66)
ST SR IV T

=1 i=j ]'(1 i)t

N-1 N-1 _

i 91— K. =1, (k) J

- 1‘:1] i=j f!(i—j)!K*l(M,f)K2 “um (t)”l

N-1 jK;l N-1  gi-j . = ;
CH (VG e (V).
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(iv.3) Estimating Lz = Z
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U1(@/0r) (1t 1)) ) || We have

L, N (2wt ) @]
=I: WA (it ) ) (/) ()
s]: WA (it )| KL ‘k)“)H 56
<N WA (Wit un)) ﬁK(m)
- Srmi S (Vo))

Now we need an estimation of the term i3 (m,j,t) = (ﬁ)fi((a/ar)‘Pj(r, t,um-1))|l,- We have

N-1 1

_]Zu (i -
N-1 1

+
Z]J i -
N-1

1
2

=b(1) +b(2) + b(3).

%‘Pj(r,t,um_l) (-1) _](1 J)D5f (1, t, e 1)um 1 'Yu,

)l

(- 1)1 1D, D! St g, 1)um 1

)l

(3.68)

( 1) _]DHlf(r/t Um— 1)” Vum—l

It follows from (3.68) that

To(m, ],t)_”(m ( O (1t 1)) 0 .
<o o] Jom b, e

(i0.3.1) Estimating ||(+/7) 'b(1)||,. We have

_ N1 o
| /A7), = || (v Ii_]Z+1j!(il—j)!(_l) i(i-

D5 f (1t 1)um 1 Vit

0

N-1

S T

i=j+1

=D ) Dif ) (V) T, 5V |

ji(i J)'
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N-1

1 . N i1
Si§1m<1_]>K*l<Mff)9 M
N-2 91’—]’ R N-1 91_
_ngmK*m(M/f) < 2}] TR MK.i1 (M, f).

(iv.3.2) Estimating ||(ﬁ)_jb(2)||0. We have

[wnee)], - <ﬁ>‘”§ 1
0 = - 7)

( 1)/ Dy D f (1, t, tm- 1)um 1

0
Rl —i-1 i—j+1 1
< DiD}f (rt ) (VP) a1 |
i=j ]
= - i—j+1
) i~j =
sl:]m 57 Keint (M, )0 |,
5 (M, )
= *i+1 7 .
- )i

(iv.3.3) Estimating ||(W)77-b(3)||0. We have

o), = |0 S 5

()T DE £ (r, ) Vit

])'

0
NZ ). ||<f YD £t ) (V) T VPV

N-1 61’-'

; ])| Kt (M, )07 M = MZ FTeE Ruin (M, f).

It follows from (3.69)—(3.72) that

Ls(m 1) = ||<w>"(§‘*'f<”'”m4>> |

N 1 91— N-1 91—]

*1+1(M f)+ Z

HM

21

(3.70)

(3.71)

(3.72)
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It follows from (3.67) — (3.73) that

< Zli3(m,]} t)i]< V quc)(t)y

= ()

(3.74)
N-IN-1 i

S (s e (V0.

m)

We deduce from (3.57), (3.65), (3.66), (3.74) that

| 0
0

Nle;

< (\i[ +2M>KN(M f)z

N-1 Ki N-1 gi-j
Z = (VB.Go) Iz]:] (i)

x [jK;I%*i(M,f) + <\/%7+3 +2M> K.iv1 (M, f)] (W)

o (V).
=1

)

(3.75)
where ﬁ;l), 0 <j < N -1 are defined by (3.49),.

Next, we will estimate step by step all integrals Il, g Is.

Integral I = [ 6% () [a(u® (5),ul ()) + A1 (s) lg]ds.
Now, using the inequalities (3.48) and

s7<1+sN, V¥s>0, Vg, 0<g<Ny=max{l+a, N}, (3.76)

we estimate without difficulty the following integrals in the right-hand side of (3.47) as
follows.

The integral I;:

I = ft b® (s) [a u®(s), ulk (s)> ||Aum (s)” ]ds

bS/ZH (s%(9)) + b= (s (5)" ]ds
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nE f [ S(k)(s) bi*“( s“ (s) )]ds
19631/2 (1+217) ﬂ

1+ (sf,’:)(s))N°] ds.

(3.77)
The integral I, = 2 [§ (F& (s), iy () ) ds:
b= (oo s <2 [0 0]
A [ (V) aee S [ () e

The integral I = 2 jo a(F® (s),u (s))ds:

=2 a(F ), ) s
<2 [[fa(F 0, P ) fa (38 00,8 ) s
2 [ [0 o 0 ) o

1+ (S(k)(s)> ]

N-1 " t

<2V Z ¥ ’[

j=0 0

The integral I = fo (FP(s), 10 (s))ds:

te= [ (R0, @)as < [0 o
<[ Il [l e
N 2
< ft <Nz_1a§.°) <\/5§,’,‘>(s)>]> ds + }Isf,’? (t)

0 j=0
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N1 . . 1
< N]ZZ(; Ia;0)|2 J‘O <5$)(5)>]ds . ngf)(t)

N-1 5 [t N, 1
~(0) (k) 0 (k)
<N Ia]. | JO [1+ (sm (s)) ds+ S ().

=0
(3.80)
The integral Is = — [ by (s)( Auly (s), ity (s) ) ds:
Is = - fo b (5) (Al (), %) () )ebs < jo b ()| Auld )| |5 s
< f; bl ()b ()| Ausy () ”zds + }J; " (s) “zds
< dy I; [1+0 (Sf,}f)(s)>a].9$)(s)ds + }Isi,’f) 0
(3.81)

t a+l
< dof [sf,’;) (s) + b;“(sﬁ,’?(s)) s + }LSE,’f)(t)
0

< dy f{ (1 + (sfj? (s))N"> + b;"‘(l + <s§j§>(s))N°) }ds + jzsgﬂ‘)(t)

0

t N
<dp(1+ b;“)f [1 + (sﬁ,’;’(s)) s + L5 p).
o 1

From the convergences in (3.10), we can deduce the existence of a constant M > 2 in-
dependent of k and m such that

MZ
s® ) < - (3.82)

Combining (3.47), (3.77)-(3.82), we then have

M? t N,
S’ (t) < =~ +TDo(M) + Do(M) f (sw(s)) "ds, (3.83)
0
where

Do(M) = 2d0(1+5:%) + b (14 p1) 443N (6 + VEED + IN[EO[). (3
0 - 0 * bE/Z * =0 j 1aj 5 llj . ( . E)]

OJ
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Then, we have the following Lemma.

Lemma 3.4. There exists a constant T > 0 independent of k and m such that
(k) 2
S’ (t) < M* Vte[0,T], Vk,m.

Proof of Lemma 3.4. Put
2

t
Y() = S5 + TDo(M) + DoM) [ (i0(s)) 'ds, o<t
0

Clearly

Y()>0, 0<SM@)y<y@), 0<t<T,

Y'(t) < Do(M)YNo(t), 0<t<T,

Y(0) = MTZ +TDo(M).

Put Z(t) = Y-No*1(#), after integrating of (3.87)

M2 —No+1
Z(t) 2 <T + TDO(M)> = (No = 1)Do(M)t

M2 —No+1
> <T + TDO(M)> = (No-1)TDo(M), Vte[0,T].
Then, by

T—0,

we can always choose the constant T € (0, T*] such that

M2 —N()+1
<T + TDO(M)> — (No - 1)TDo(M) > M~2No+2,

M2 ~No+1 M2 ~Np+1
lim (T + TDO(M)> ~ (Ng-1)TDy(M) | = <T> > M~2Not2.

25

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)
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Finally, it follows from (3.87), (3.88) and (3.90), that

1

0<SH M) <Y(t) = ——
0¥ = s

1 (3.91)

< <M?, Vte[0,T].
/(M2 72+ TDy (M) ™%~ (Ny - 1)TDy (M)
The proof of Lemma 3.4 is complete. O
. > 1-Np 1/(1-No)
Remark 3.5. The function Y (t) = [(M*=/2 + TDy(M)) — (No—1)Dy(M)t] ,0<t<

T, is the maximal solution of the following Volterra integral equation with non-decreasing
kernel [20].

M? t
Y(t) = =~ +TDo(M) + Do(M) f YNo(s)ds, 0<t<T. (3.92)
0

By Lemma 3.4, we can take constant T,(nk) =T for all k and m. Therefore, we have
u® e W (M,T) VYm, k. (3.93)

From (3.92), we can extract from {uﬁf ) } a subsequence {ui,’,(i) } such that

ugfi) — u, in L®(0,T;V;) weak™,
%) Ly in L®(0,T; Vi) weak®, (3.94)
%) " in L2(0,T; Vi) weak,
U, € W(M,T). (3.95)
We can easily check from (3.9), (3.10), (3.94) that u,, satisfies (3.6), (3.7) in L*(0,T),

weak. On the other hand, it follows from (3.6); and u,, € W(M,T) that ), = =b,,(t) Ay, +
F,, € L*(0,T; Vp), hence u,, € W1 (M, T) and the proof of Theorem 3.1 is complete. ]

The following result gives a convergence at a rate of order N of {u,,} to a weak solution
of (1.1).

First, we note that W1(T) = {v € L*(0,T; V1) : v' € L*(0,T; Vp)} is a Banach space
with respect to the norm (see [19]):

I2llw, ) = 12Nl o mvn) + 12l 0,700 - (3.96)

Then, we have the following theorem.
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Theorem 3.6. Let (Hy)—(H3) hold. Then, there exist constants M > 0 and T > 0 such that

(i) the problem (1.1) has a unique weak solution u € W1 (M, T);

(ii) the recurrent sequence {u,,} defined by (3.6), (3.7) converges at a rate of order N to the
solution u strongly in the space W1(T) in the sense

N
llttm = ullw, (ry < Cllttm— - u”Wl(T)/ (3.97)

forall m > 1, where C is suitable constant.

Furthermore, we have the estimation
[t = wllyy, 1y < CrBN", (3.98)

forall m > 1, where Cr and < 1 are positive constants depending only on T.
Proof. (a) Existence of the solution. First, we will prove that {u,,} is a Cauchy sequence in
Wi(T). Let v, = i1 — Uy Then v, satisfies the variational problem
(O (D), w) + b (D) a(wn(t), w) + (b (t) = b (1)) (At (t), w)
= (Fus1(t) — Fp(t), w), Yw eV, (3.99)

Um(o) = U;n(O) =

with
N 11 ) ) 1 N
f(rtuy) — (1t Upy1) = l—'Dgf(r,i.‘,um_l)vin_1 + N'D f(rt, )Lm)vm 17
i=1
N-17 N
Fm+1(t) m(t = l_'Déf(rr £, um—l)v N'D f(T,t )‘m)vm 17 (3100)

i=1

)Lm = Uy + lem_l, (0 < 91 < 1),

B (8) = bn(t) = B(IVitmer ()13) = B(I1Vum (1))
Taking w = v,, in (3.99) and integrating in t we get
onlt) = f b1 (5)a(0m(5), () ds

_2 JZ [B<||Vum+1(s)||3> - B<||Vum(s)||g>] (At (s), ), (5))ds
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N11

+ZZ

= Jitet

f Dgf(r,s,um 1)vm,’0m(s)>ds+ ]\1” f <DNf(r,s .)Lm)'Um 1,vm(s)>ds

(3.101)

where
Yr®) = [0 O + brer (Va@u (1), (1)) > [0} O[3 + bCollom B} = En(t).  (3.102)

We estimate without difficulty the following integrals i, ..., J4 in the right-hand side
of (3.101) as follows.

The integral J; = fé bl . (s)a(vm(s), vm(s))ds

t
Jo <21 (M2 + M) [ o (o)
0

(3.103)
1

t t
b.Co f En(s)ds=¢& J‘o E,.(s)ds.

<2Cd (M2 + Mza)
0

The integral ], = -2 fé[B(lqumH(s)H%) - B(||Vum(s)||g)](Aum(s),v;n(s))ds

t
bg4m(hﬁ+AFﬂJme@mAw;wmwﬁ
(3.104)

t t
< 4d, (M2 + M2”‘> Em(s)ds = ng En(s)ds.
0

2\/ b*CO 0

The integral J; = ZZ (1/1')_[0<D f(r,s,um-1)0%,, 0, (3))ds.

]3 - ZN 1 I (f) le(r,s,um 1)(\[)10 U;n(s)>ds

<2y 1K*1(M f)Kl

«fZNMKAMfﬂ@fWMﬂHWMQW% o
<szfm@wﬁnMﬂfwmeMMWS

<v2y 11K*1(M KM

1 ~ t
N Em(s)ds =¢3 4[0 E,.(s)ds.
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The integral J4 = (1/N!) fo DNf(r s, Ao v (s))ds

m-1/

L N
N f<(f) DY f(r,5,0m) (V) 0N, 01,(5) s
1 N
<N Ko (M, f)K) IIUm 1) (L, [2,(9)])ds
1 !
< Rn M N [ fous @Y 9l
1 . (3.106)
2 N N
< R (M) 252 [ o) s
< LRa(M KN |T [ el
<N ~N(M, f) Wi [ 1||W1(T) . 0y, (5) [[ods
t
- §4 I:T”Um 1”W (T) + f Em(s)dsjl‘
Combining (3.101), (3.103)—-(3.106), we then obtain
t
En(®) < Teilonalf + G +i2 b+ 0 | Eno)ds
(3.107)
= Thullon Yy + 2285 [ En(s)ds.
By using Gronwall’s lemma, we obtain from (3.107), that
1Omllw, 1y < Hrllom-1lliy, ). (3.108)
where pr is the constant given by
- O]
pr = < \/17*7)\/@ exp(T2yy )- (3.109)
Hence, we obtain from (3.108) that
et = tmeplyy, ry < = Kr) ™ (ur) ™ N7 ()N, (3.110)

for all m and p. We take T > 0 small enough, such that kr = (ur)"/ NV M < 1. It follows that
{u} is a Cauchy sequence in W1 (T). Then there exists u € Wi (T) such that u,, — u strongly
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in Wy (T). By the same argument used in the proof of Theorem 3.1, u € W;(M, T) is a unique
weak solution of the problem (1.1). Passing to the limit as p — +oo for m fixed, we obtain the
estimate (3.98) from (3.110) and Theorem 3.6 follows. O
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