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Based on the notion of generalized exponential dichotomy, this paper considers the topological
decoupling problem between two kinds of nonlinear differential equations. The topological
equivalent function is given.

1. Introduction and Motivation

Well-known Hartman’s linearization theorem for differential equations states that a 1:1
cor-respondence exists between solutions of a linear autonomous system ẋ = Ax and
those of the perturbed system ẋ = Ax + f(x), as long as f fulfills some goodness
conditions, like smallness, continuity, or being Hartman [1]. Based on the exponential
dichotomy, Palmer [2] extended this result to the nonautonomous system. Some other
improvements of Palmer’s linearization theorem are reported in the literature. For examples,
one can refer to Shi [3], Jiang [4], and Reinfelds [5, 6]. Recently, Xia et al. [7] generalized
Palmer’s linearization theorem to the dynamic systems on time scales. Consider the linear
system

ẋ = A(t)x, (1.1)

where x ∈ R
n and A(t) is a n × n matrix function.
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Definition 1.1. System (1.1) is said to possess an exponential dichotomy [8] if there exists a
projection P and constants K > 0, α > 0 such that

∥
∥
∥U(t)PU−1(s)

∥
∥
∥ ≤ Ke−α(t−s), for s ≤ t, s, t ∈ R,

∥
∥
∥U(t)[I − P]U−1(s)

∥
∥
∥ ≤ Keα(t−s), for t ≤ s, s, t ∈ R

(1.2)

hold, where U(t) is a fundamental matrix of linear system ẋ = A(t)x.

However, Lin [9] argued that the notion of exponential dichotomy considerably
restricts the dynamics. It is thus important to look for more general types of hyperbolic
behavior. Lin [9] proposed the notion of generalized exponential dichotomy which is more
general than the classical notion of exponential dichotomy.

Definition 1.2. System (1.1) is said to have a generalized exponential dichotomy if there exists
a projection P and K ≥ 0 such that

∣
∣
∣U(t)PU−1(s)

∣
∣
∣ ≤ K exp

(

−
∫ t

s

α(τ)dτ

)

, (t ≥ s),

∣
∣
∣U(t)(I − P)U−1(s)

∣
∣
∣ ≤ K exp

(∫ t

s

α(τ)dτ

)

, (t ≤ s),

(1.3)

where α(t) is a continuous function with α(t) ≥ 0, satisfying limt→+∞
∫ t

0 α(ξ)dξ =
+∞, limt→−∞

∫0
t α(ξ)dξ = +∞.

Example 1.3. Consider the system

(

ẋ1

ẋ2

)

=

⎛

⎜
⎜
⎝

− 1
3
√

|t| + 1
0

0
1

3
√

|t| + 1

⎞

⎟
⎟
⎠

(

x1

x2

)

. (1.4)

Then, system (1.4) has a generalized exponential dichotomy, but the classical exponential
dichotomy cannot be satisfied.

For this reason, basing on generalized exponential dichotomy, we consider the
topological decoupling problem between two kinds of nonlinear differential equations. We
prove that there is a 1 : 1 correspondence existing between solutions of topological decoupling
systems, namely, ẋ(t) = A(t)x(t) + f(t, x) and ẋ(t) = A(t)x(t) + g(t, x).
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2. Existence of Equivalent Function

Consider the following two nonlinear nonautonomous systems:

ẋ = A(t)x + f(t, x), (2.1)

ẋ = A(t)x + g(t, x), (2.2)

where x ∈ R
n, A(t), B(t) are n × n matrices.

Definition 2.1. Suppose that there exists a function H : R × R
n → R

n such that

(i) for each fixed t,H(t, ·) is a homeomorphism of R
n into R

n;

(ii) H(t, x) → ∞ as |x| → ∞, uniformly with respect to t;

(iii) assume that G(t, ·) = H−1(t, ·) has property (ii) too;

(iv) if x(t) is a solution of system (2.1), then H(t, x(t)) is a solution of system (2.2).

If such amapH exists, then (2.1) is topologically conjugated to (2.2).H is called an equivalent
function.

Theorem 2.2. Suppose that ẋ = A(t)x has a generalized exponential dichotomy. If f(t, x), g(t, x)
fulfill

∣
∣f(t, x)

∣
∣ ≤ F(t),

∣
∣f(t, x1) − f(t, x2)

∣
∣ ≤ r(t)|x1 − x2|,

∣
∣g(t, x)

∣
∣ ≤ G(t),

∣
∣g(t, x1) − g(t, x2)

∣
∣ ≤ r(t)|x1 − x2|,

N(t, F, G) ≤ B,

N(t, r) ≤ L < 1,

(2.3)

where

N(t, F, G) =
∫ t

−∞
K exp

(

−
∫ t

s

α
(

ϕ
)

dϕ

)

(F(s) +G(s))ds,

+
∫+∞

t

K exp

(∫ t

s

α
(

ϕ
)

dϕ

)

(F(s) +G(s))ds,

N(t, r) =
∫ t

−∞
K exp

(

−
∫ t

s

α
(

ϕ
)

dϕ

)

r(s)ds +
∫+∞

t

K exp

(∫ t

s

α
(

ϕ
)

dϕ

)

r(s)ds,

(2.4)

where F(t), G(t), r(t) ≥ 0 are integrable functions and B, L are positive constants, then the nonlinear
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nonautonomous system (2.1) is topologically equivalent to the nonlinear nonautonomous system
(2.2). Moreover, the equivalent functions H(t, x), G(t, y) fulfill

|H(t, x) − x| ≤ B,
∣
∣G
(

t, y
) − y

∣
∣ ≤ B. (2.5)

In what follows, we always suppose that the conditions of Theorem 2.2 are satisfied.
Denote that X(t, t0, x0) is a solution of (2.2) satisfying the initial condition X(t0) = x0 and that
Y (t, t0, y0) is a solution of (2.1) satisfying the initial condition Y (t0) = y0. To prove the main
results, we first prove some lemmas.

Lemma 2.3. For each (τ, ξ), system

z′ = A(t)z − f(t, X(t, τ, ξ)) + g(t, X(t, τ, ξ) + z) (2.6)

has a unique bounded solution h(t, (τ, ξ)) with |h(t, (τ, ξ))| ≤ B.

Proof. Let B be the set of all the continuous bounded functions x(t) with |x(t)| ≤ B. For each
(τ, ξ) and any z(t) ∈ B, define the mapping T as follows:

Tz(t) =
∫ t

−∞
U(t)PU−1(s)

[

g(s,X(s, τ, ξ) + z) − f(s,X(s, τ, ξ))
]

ds

−
∫+∞

t

U(t)(I − P)U−1(s)
[

g(s,X(s, τ, ξ) + z) − f(s,X(s, τ, ξ))
]

ds.

(2.7)

Simple computation leads to

|Tz(t)| ≤
∫ t

−∞

∣
∣
∣U(t)PU−1(s)

∣
∣
∣(F(s) +G(s))ds

+
∫+∞

t

∣
∣
∣U(t)(I − P)U−1(s)

∣
∣
∣(F(s) +G(s))ds

≤
∫ t

−∞
K exp

(

−
∫ t

s

α
(

ϕ
)

dϕ

)

(F(s) +G(s))ds

+
∫+∞

t

K exp

(∫ t

s

α
(

ϕ
)

dϕ

)

(F(s) +G(s))ds

≤ B,

(2.8)
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which implies that T is a self-map of a sphere with radius B. For any z1(t), z2(t) ∈ B,

|Tz1(t) − Tz2(t)| ≤
∫ t

−∞

∣
∣
∣U(t)PU−1(s)

∣
∣
∣r(s)(z1(s) − z2(s))ds

+
∫+∞

t

∣
∣
∣U(t)(I − P)U−1(s)

∣
∣
∣r(s)(z1(s) − z2(s))ds

≤ ‖z1 − z2‖
[∫ t

−∞
K exp

(

−
∫ t

s

α
(

ϕ
)

dϕ

)

r(s)ds

+
∫+∞

t

K exp

(∫ t

s

α
(

ϕ
)

dϕ

)

r(s)ds

]

≤ L‖z1 − z2‖.

(2.9)

Due to the fact that L < 1, T has a unique fixed point, namely, z0(t), and

z0(t) =
∫ t

−∞
U(t)PU−1(s)

[

g(s,X(s, τ, ξ) + z0(s)) − f(s,X(s, τ, ξ))
]

ds

−
∫+∞

t

U(t)(I − P)U−1(s)
[

g(s,X(s, τ, ξ) + z0(s)) − f(s,X(s, τ, ξ))
]

ds,

(2.10)

it is easy to show that z0(t) is a bounded solution of (2.6). Now, we are going to show that
the bounded solution is unique. For this purpose, we assume that there is another bounded
solution z1(t) of (2.6). Thus, z1(t) can be written as follows:

z1(t) = U(t)U−1(0)x0

+
∫ t

0
U(t)U−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

= U(t)U−1(0)x0

+
∫ t

0
U(t)[P + (I − P)]U−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

= U(t)U−1(0)x0

+
∫ t

−∞
U(t)PU−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

−
∫0

−∞
U(t)PU−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

+
∫+∞

0
U(t)(I − P)U−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

−
∫+∞

t

U(t)(I − P)U−1(s)
[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds.

(2.11)



6 International Journal of Differential Equations

Note that

∫0

−∞
U(t)PU−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

= U(t)U−1(0)
∫0

−∞
U(0)PU−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

≤ U(t)U−1(0)

∣
∣
∣
∣
∣

∫0

−∞
U(0)PU−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

∣
∣
∣
∣
∣

≤ U(t)U−1(0)
∫0

−∞
K exp

(

−
∫0

s

α
(

ϕ
)

dϕ

)

(F(s) +G(s))ds,

(2.12)

which implies that
∫0
−∞ U(0)PU−1(s)[g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))]ds is convergent;

denote it by x1. That is,

∫0

−∞
U(t)PU−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds = U(t)U−1(0)x1. (2.13)

Similarly,

∫+∞

0
U(t)(I − P)U−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds = U(t)U−1(0)x2. (2.14)

Therefore, it follows from the expression of z1(t) that

z1(t) = U(t)U−1(0)(x0 − x1 + x2)

+
∫ t

−∞
U(t)PU(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

−
∫+∞

t

U(t)(I − P)U−1(s)
[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds.

(2.15)

Noticing that z1(t) is bounded,
∫ t

−∞ U(t)PU(s)[g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s,
τ, ξ))]ds − ∫+∞t U(t)(I − P)U−1(s)[g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))]ds is also bounded.
So,U(t)U−1(0)(x0 −x1 +x2) is bounded. But we see that z′ = A(t)z does not have a nontrivial
bounded solution. Thus, U(t)U−1(0)(x0 − x1 + x2) = 0; it follows that

z1(t) =
∫ t

−∞
U(t)PU−1(s)

[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

−
∫+∞

t

U(t)(I − P)U−1(s)
[

g(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds.

(2.16)
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Simple calculating shows

|z1(t) − z0(t)| ≤
∫ t

−∞

∣
∣
∣U(t)PU−1(s)

∣
∣
∣r(s)|z1(s) − z0(s)|ds

+
∫+∞

t

∣
∣
∣U(t)(I − P)U−1(s)

∣
∣
∣r(s)|z1(s) − z0(s)|ds

≤ ‖z1 − z0‖
[∫ t

−∞
K exp

(

−
∫ t

s

α
(

ϕ
)

dϕ

)

r(s)

+
∫+∞

t

K exp

(∫ t

s

α
(

ϕ
)

dϕ

)

r(s)

]

≤ L‖z1 − z0‖.

(2.17)

Therefore, ‖z1 − z0‖ ≤ L‖z1 − z0‖, consequently z1(t) ≡ z0(t). This implies that the
bounded solution of (2.6) is unique. We may call it h(t(τ, ξ)). From the above proof, it is easy
to see that |h(t, (τ, ξ))| ≤ B.

Lemma 2.4. For each (τ, ξ), the system

z′ = A(t)z + f(t, X(t, τ, ξ) + z) − g(t, X(t, τ, ξ)) (2.18)

has a unique bounded solution g̃(t, (τ, ξ)) and |g̃(t, (τ, ξ))| ≤ B.

Proof. The proof is similar to that of Lemma 2.3.

Lemma 2.5. Let x(t) be any solution of the system (2.1), then z(t) = 0 is the unique bounded solution
of system

z′ = A(t)z + f(t, x(t) + z) − f(t, x(t)). (2.19)

Proof. Obviously, z ≡ 0 is a bounded solution of system (2.19). We show that the bounded
solution is unique. If not, then there is another bounded solution z1(t), which can be written
as follows:

z1(t) = U(t)U−1(0)z1(0) +
∫ t

0
U(t)U−1(s)

[

f(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds. (2.20)
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By Lemma 2.3, we can get

z1(t) =
∫ t

−∞
U(t)PU−1(s)

[

f(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds

−
∫+∞

t

U(t)(I − P)U−1(s)
[

f(s,X(s, τ, ξ) + z1(s)) − f(s,X(s, τ, ξ))
]

ds.

(2.21)

It follows that

|z1(t)| ≤
∫ t

−∞

∣
∣
∣U(t)PU−1(s)

∣
∣
∣r(s)|z1(s)|ds

+
∫+∞

t

∣
∣
∣U(t)(I − P)U−1(s)

∣
∣
∣r(s)|z1(s)|ds

≤
∫ t

−∞
K exp

(

−
∫ t

s

α
(

ϕ
)

dϕ

)

r(s)|z1(s)|ds

+
∫+∞

t

K exp

(∫ t

s

α
(

ϕ
)

dϕ

)

r(s)|z1(s)|ds

≤ L|z1(t)|.

(2.22)

That is, ‖z1‖ ≤ L|z1|. Consequently, z1(t) ≡ 0. This completes the proof of Lemma 2.5.

Lemma 2.6. Let y(t) be any solution of the system (2.2), then z(t) = 0 is the unique bounded solution
of system

z′ = A(t)z + g
(

t, y(t) + z
) − g

(

t, y(t)
)

. (2.23)

Proof. Obviously, z ≡ 0 is a bounded solution of system (2.23). Wewill show that the bounded
solution is unique. If not, then there is another bounded solution z1(t). Then, z1(t) can be
written as follows:

z1(t) = U(t)U−1(0)z1(0) +
∫ t

0
U(t)U−1(s)

[

g(s, Y (s, τ, ξ) + z1(s)) − g(s, Y (s, τ, ξ))
]

ds. (2.24)

By Lemma 2.3, we can get

z1(t) =
∫ t

−∞
U(t)PU−1(s)

[

g(s, Y (s, τ, ξ) + z1(s)) − g(s, Y (s, τ, ξ))
]

ds

−
∫+∞

t

U(t)(I − P)U−1(s)
[

g(s, Y (s, τ, ξ) + z1(s)) − g(s, Y (s, τ, ξ))
]

ds.

(2.25)
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Then, it follows that

|z1(t)| ≤
∫ t

−∞

∣
∣
∣U(t)PU−1(s)

∣
∣
∣r(s)|z1(s)|ds

+
∫+∞

t

∣
∣
∣U(t)(I − P)U−1(s)

∣
∣
∣r(s)|z1(s)|ds

≤
∫ t

−∞
K exp

(

−
∫ t

s

α
(

ϕ
)

dϕ

)

r(s)|z1(s)|ds

+
∫+∞

t

K exp

(∫ t

s

α
(

ϕ
)

dϕ

)

r(s)|z1(s)|ds

≤ L|z1(t)|.

(2.26)

That is, ‖z1‖ ≤ L‖z1‖. Consequently, z1(t) ≡ 0. This completes the proof of Lemma 2.6.

Now, we define two functions as follows:

H(t, x) = x + h(t, (t, x)), (2.27)

G(t, x) = y + g̃
(

t,
(

t, y
))

. (2.28)

Lemma 2.7. For any fixed (t0, x0),H(t, X(t, t0, x0)) is a solution of the system (2.2).

Proof. Replace (τ, ξ) by (t, X(t, τ, ξ)) in (2.6); system (2.6) is not changed. Due to the
uniqueness of the bounded solution of (2.6), we can get that h(t, (t, X(t, t0, x0))) = h(t, (t0, x0)).
Thus,

H(t, X(t, t0, x0)) = X(t, t0, x0) + h(t, (t0, x0)). (2.29)

Differentiating it, noticing thatX(t, t0, x0), h(t, (t0, x0)) are the solutions of the (2.1), and (2.6),
respectively; therefore, we can obtain

[H(t, X(t, t0, x0))]′ = A(t)X(t, t0, x0) + f(t, X(t, t0, x0)) +A(t)h(t, (t0, x0))

− f(t, X(t, t0, x0)) + g(t, X(t, t0, x0) + h(t, (t0, x0)))

= A(t)H(t, X(t, t0, x0)) + g(t,H(t, t0, x0)).

(2.30)

It indicates that H(t, X(t, t0, x0)) is the solution of the system (2.2).

Lemma 2.8. For any fixed (t0, y0), G(t, Y (t, t0, y0)) is a solution of the system (2.1).

Proof. The proof is similar to Lemma 2.7.

Lemma 2.9. For any t ∈ R, y ∈ R
n,H(t, G(t, y)) ≡ y.
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Proof. Let y(t) be any solution of the system (2.2). From Lemma 2.8, G(t, y(t)) is a solution of
system (2.1). Then, by Lemma 2.7, we see thatH(t, G(t, y(t))) is a solution of (2.2), written as
y1(t). Denote J(t) = y1(t) − y(t). Differentiating, we have

J ′(t) = y′
1(t) − y′(t)

= A(t)y1(t) + g
(

t, y1(t)
) −A(t)y(t) − g

(

t, y(t)
)

= A(t)J(t) + g
(

t, y(t) + J(t)
) − g

(

t, y(t)
)

,

(2.31)

which implies that J(t) is a solution of system (2.23). On the other hand, following the
definition of H and G and Lemmas 2.3 and 2.4, we can obtain

|J(t)| = ∣∣H(t, G(t, y(t))) − y(t)
∣
∣

≤ ∣∣H(t, G(t, y(t))) −G
(

t, y(t)
)∣
∣ +
∣
∣G
(

t, y(t)
) − y(t)

∣
∣

=
∣
∣h
(

t,
(

t, G
(

t, y(t)
)))∣
∣ +
∣
∣g̃
(

t,
(

t, y
))∣
∣

≤ 2B.

(2.32)

This implies that J(t) is a bounded solution of system (2.23). However, by Lemma 2.6,
system (2.23) has only one zero solution. Hence, J(t) ≡ 0, consequently y1(t) ≡ y(t), that is,
H(t, G(t, y)) = y(t). Since y(t) is any solution of the system (2.2), Lemma 2.9 follows.

Lemma 2.10. For any t ∈ R, x ∈ R
n, G(t,H(t, x)) ≡ x.

Proof. The proof is similar to Lemma 2.10.

Now, we are in a position to prove the main results.

Proof of Theorem 2.2. We are going to show that H(t, ·) satisfies the four conditions of
Definition 2.1.

Proof of Condition (i)

For any fixed t, it follows from Lemmas 2.9 and 2.10 that H(t, ·) is homeomorphism and
G(t, ·) = H−1(t, ·).

Proof of Condition (ii)

From (2.27) and Lemma 2.3, we derive |H(t, x) − x| = |h(t, (t, x))| ≤ B. So, |H(t, x)| → ∞ as
|x| → ∞, uniformly with respect to t.

Proof of Condition (iii)

From (2.23) and Lemma 2.4, we derive |G(t, y) − y| = |g̃(t, (t, y))| ≤ B. So, |G(t, y)| → ∞ as
|x| → ∞, uniformly with respect to t.
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Proof of Condition (iv)

Using Lemmas 2.7 and 2.8, we easily prove that Condition (iv) is true.

Hence, systems (2.1) and (2.2) are topologically conjugated. This completes the proof
of Theorem 2.2.
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