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Due to the well-known Srivastava-Attiya operator, we investigate here some results relating the p-
valent of the operator with differential subordination and subordination. Further, we obtain some
interesting results on sandwich-type theorem for the same.

1. Introduction and Motivation

Let H(U) be the class of analytic functions in the open unit disc U and let H[a, n] be the
subclass of H(U) consisting functions of the form f(z) = a + anz

n + an+1z
n+1 + · · · , with

H0 = H[0, 1] and H = H[1, 1]. For two functions f1 and f2 analytic in U, the function f1 is
subordinate to f2, or f2 superordinate to f1, written as f1 ≺ f2 if there exists a function w(z),
analytic in U with w(0) = 0 and |w(z)| < 1 such that f1(z) = f2(w(z)). In particular, if the
function f2 is univalent inU, then f1 ≺ f2 is equivalent to f1(0) = f2(0) and f1(U) ⊂ f2(U).

Let f, h ∈ H(U) and ψ : C
3 ×U → C. If f and ψ(f(z), zf ′(z), z2f ′′(z); z) are univalent

and f satisfies the second-order differential subordination

ψ
(
f(z), zf ′(z), z2f ′′(z); z

)
≺ h(z), (1.1)

then f is called a solution of the differential subordination. The univalent function F is called
a dominant if f ≺ F for all f satisfying (1.1). Miller and Mocanu discussed many interesting
results containing the above mentioned subordination and also many applications of the
field of differential subordination in [1]. In that direction, many differential subordination
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and differential superordination problems for analytic functions defined by means of linear
operators were investigated. See [2–11] for related results.

Let Ap denote the class of functions of the form

f(z) = zp +
∞∑
n=1

an+pz
n+p (

z ∈ U, p ∈ N = 1, 2, 3, . . .
)
, (1.2)

which are analytic and p-valent in U. For f satisfying (1.2), let the generalized Srivastava-
Attiya operator [12] be denoted by

Js,bf(z) = Gs,b ∗ f(z)
(
b ∈ C \ Z0 = 0,−1,−2, . . .

)
, (1.3)

where

Gs,b = (1 + b)s
[
ϕ(z, s, b) − b−s], (1.4)

with

ϕ(z, s, b) =
1
bs

+
zp

(1 + b)s
+

z1+p

(2 + b)s
+ · · · , (1.5)

and the symbol (∗) denotes the usual Hadamard product (or convolution). From the
equations, we can see that

Js,bf(z) = zp +
∞∑
n=1

(
1 + b

n + 1 + b

)s

an+pz
n+p. (1.6)

Note that for p = 1 in (1.6), Js,bf(z) coincides with the Srivastava-Attiya operator [13].
Further, observe that for proper choices of s and b, the operator Js,bf(z) coincides with the
following:

(i) J0,bf(z) = f(z),

(ii) J1,0f(z) = A(f)(z) [14],

(iii) J1,γ f(z) = Iγ(f)(z), (γ > −1) [15, 16],
(iv) Jσ,1f(z) = Iσ(f)(z), (σ > 0) [17],

(v) Jα,βf(z) = Pαβ (f)(z), (α ≥ 1, β > 1) [18].

Since the above mentioned operator, the generalized Srivastava-Attiya operator,
Js,bf(z) reduces to the well-known operators introduced and studied in the literature by
suitably specializing the values of s and b and also in view of the several interesting properties
and characteristics of well-known differential subordination results, we aim to associate these
two motivating findings and obtain certain other related results. Further, we consider the
differential superordination problems associated with the same operator. In addition, we also
obtain interesting sandwich-type theorems.
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The following definitions and theorems were discussed and will be needed to prove
our results.

Definition 1.1 (see [1], Definition 2.2b, page 21). Denote byQ the set of all functions q that are
analytic and injective onU \ E(q)where

E
(
q
)
=
{
ζ ∈ ∂U : lim

z→ ζ
= ∞

}
(1.7)

and are such that q′(ζ)/= 0 for ζ ∈ ∂U \ E(q). Further let the subclass of Q for which q(0) = a
be denoted by Q(a), Q(0) ≡ Q0, and Q(1) ≡ Q1.

Definition 1.2 (see [1], Definition 2.3a, page 27). Let Ω be a set in C, q ∈ Q, and let n be a
positive integer. The class of admissible functions Ψn[Ω, q] consists of those functions ψ :
C

3 ×U → C that satisfy the admissibility condition ψ(c, d, e; z) /∈ Ω whenever c = q(ζ), d =
kζq′(ζ), and

Re
{ e
d
+ 1

}
≥ kRe

{
ζq′′(ζ)
q′(ζ)

+ 1
}
, (1.8)

z ∈ U, ζ ∈ ∂U \ E(q), and k ≥ n. Let Ψ1[Ω, q] = Ψ[Ω, q].

Definition 1.3 (see [19], Definition 3, page 817). Let Ω be a set in C, q ∈ H[a, n]with q′(z)/= 0.
The class of admissible functions Ψ′

n[Ω, q] consists of those functions ψ : C
3 × U → C that

satisfy the admissibility condition ψ(c, d, e; ζ) /∈ Ω whenever c = q(z), d = zq′(z)/m, and

Re
{ e
d
+ 1

}
≥ 1
m

Re
{
ζq′′(ζ)
q′(ζ)

+ 1
}
, (1.9)

z ∈ U, ζ ∈ ∂U, andm ≥ n ≥ 1. Let Ψ′
1[Ω, q] = Ψ′[Ω, q].

Theorem 1.4 (see [1], Theorem 2.3b, page 28). Let ψ ∈ Ψn[Ω, q] with q(0) = a. If the analytic
function j(z) ∈ H[a, n] satisfies

ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
∈ Ω, (1.10)

then j(z) ≺ q(z).

Theorem 1.5 (see [19], Theorem 1, page 818). Let ψ ∈ Ψ′
n[Ω, q] with q(0) = a. If j ∈ Q(a) and

ψ(j(z), zj ′(z), z2j ′′(z); z) is univalent inU, then

Ω ⊂
{
ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
: z ∈ U

}
(1.11)

implies q(z) ≺ j(z).
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2. Subordination Results Associated with
Generalized Srivastava-Attiya Operator

Definition 2.1. Let Ω be a set in C and q ∈ Q0 ∩ H[0, p]. The class of admissible functions
ΦJ[Ω, q] consists of those functions φ : C

3 ×U → C that satisfy the admissibility condition:

φ(u, v,w; z) /∈ Ω (2.1)

whenever

u = q(ζ), v =
kζq′(ζ) − [

p − (1 + b)
]
q(ζ)

1 + b

(
b ∈ C \ Z0 = 0,−1,−2, . . . , p ∈ N

)
,

Re

{
(1 + b)2w − [

p − (1 + b)
]2
u

(1 + b)v +
[
p − (1 + b)

]
u

+ 2
[
p − (1 + b)

]} ≥ kRe
{
ζq′′(ζ)
q′(ζ)

+ 1
}
,

(2.2)

z ∈ U, ζ ∈ ∂U \ E(q), and k ≥ p.

Theorem 2.2. Let φ ∈ ΦJ[Ω, q]. If f ∈ Ap satisfies

{
φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

)
: z ∈ U} ⊂ Ω, (2.3)

then

Js+2,bf(z) ≺ q(z) (z ∈ U). (2.4)

Proof. The following relation obtained in [13]

zJ ′s+1,bf(z) =
[
p − (1 + b)

]
Js+1,bf(z) + (1 + b)Js,bf(z) (2.5)

is equivalent to

Js,bf(z) =
zJ ′

s+1,bf(z) −
[
p − (1 + b)

]
Js+1,bf(z)

1 + b
, (2.6)

and hence

Js+1,bf(z) =
zJ ′

s+2,bf(z) −
[
p − (1 + b)

]
Js+2,bf(z)

1 + b
. (2.7)

Define the analytic function j inU by

j(z) = Js+2,bf(z), (2.8)
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and then we get

Js+1,bf(z) =
zj ′(z) − [

p − (1 + b)
]
j(z)

1 + b
,

Js,bf(z) =
z2j ′′(z) +

(
1 − 2

[
p − (1 + b)

])
zj ′(z) +

[
p − (1 + b)

]2
j(z)

(1 + b)2
.

(2.9)

Further, let us define the transformations from C
3 to C by

u = c, v =
d − [

p − (1 + b)
]
c

1 + b
,

w =
e +

(
1 − 2

[
p − (1 + b)

])
d +

[
p − (1 + b)

]2
c

(1 + b)2
.

(2.10)

Let

ψ(c, d, e; z) = φ(u, v,w; z), (2.11)

φ(u, v,w; z) = φ

(
c,
d − [

p − (1 + b)
]
c

1 + b
,
e +

(
1 − 2

[
p − (1 + b)

])
d +

[
p − (1 + b)

]2
c

(1 + b)2
; z

)
.

(2.12)

The proof will make use of Theorem 1.4. Using (2.8) and (2.9), from (2.12) we obtain

ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
= φ

(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

)
. (2.13)

Hence (2.3) becomes

ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
∈ Ω. (2.14)

Note that

e

d
+ 1 =

(1 + b)2w − [
p − (1 + b)

]2
u

(1 + b)v +
[
p − (1 + b)

]
u

+ 2
[
p − (1 + b)

]
, (2.15)

and since the admissibility condition for φ ∈ ΦJ[Ω, q] is equivalent to the admissibility
condition for ψ as given in Definition 1.2, hence ψ ∈ Ψp[Ω, q], and by Theorem 1.4,

j(z) ≺ q(z), (2.16)
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or

Js+2,bf(z) ≺ q(z).
(2.17)

In the case φ(u, v,w; z) = v, we have the following example.

Example 2.3. Let the class of admissible functions ΦJv[Ω, q] consist of those functions φ :
C

3 ×U → C that satisfy the admissibility condition:

v =
kζq′(ζ) − [

p − (1 + b)
]
q(ζ)

1 + b
/∈ Ω, (2.18)

z ∈ U, ζ ∈ ∂U \ E(q), and k ≥ p and φ ∈ ΦJv[Ω, q]. If f ∈ Ap satisfies

Js+1,bf(z) ⊂ Ω, (2.19)

then

Js+2,bf(z) ≺ q(z) (z ∈ U). (2.20)

If Ω/=C is a simply connected domain, then Ω ∈ h(U) for some conformal mapping
h(z) ofU ontoΩ and the class is written asΦJ[h, q]. The following result follows immediately
from Theorem 2.2.

Theorem 2.4. Let φ ∈ ΦJ[Ω, q]. If f ∈ Ap satisfies

φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

) ≺ h(z), (2.21)

then

Js+2,bf(z) ≺ q(z). (2.22)

The next result occurs when the behavior of q on ∂U is not known.

Corollary 2.5. Let Ω ⊂ C, q be univalent in Uand q(0) = 0. Let φ ∈ ΦJ[Ω, qρ] for some ρ ∈ (0, 1)
where qρ(z) = q(ρz). If f ∈ Ap and

φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

) ∈ Ω, (2.23)

then

Js+2,bf(z) ≺ q(z). (2.24)
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Proof. From Theorem 2.2, we see that Js+2,bf(z) ≺ qρ(z) and the proof is complete.

Theorem 2.6. Let h and q be univalent in U, with q(0) = 0 and set qρ(z) = q(ρz) and hρ(z) =
h(ρz). Let φ : C

3 ×U → C satisfy one of the following conditions:

(1) φ ∈ ΦJ[h, qρ], for some ρ ∈ (0, 1), or

(2) there exists ρ0 ∈ (0, 1) such that φ ∈ ΦJ[hρ, qρ], for all ρ0 ∈ (0, 1).

If f ∈ Ap satisfies (2.21), then

Js+2,bf(z) ≺ q(z). (2.25)

Proof. The proof is similar to the one in [1] and therefore is omitted.

The next results give the best dominant of the differential subordination (2.21).

Theorem 2.7. Let h be univalent inU. Let φ : C
3 ×U → C. Suppose that the differential equation

φ
(
q(z), zq′(z), z2q′′(z); z

)
= h(z) (2.26)

has a solution q with q(0) = 0 and satisfy one of the following conditions:

(1) q ∈ Q0 and φ ∈ ΦJ[h, q],

(2) q is univalent inU and φ ∈ ΦJ[h, qρ], for some ρ ∈ (0, 1), or

(3) q is univalent inU and there exists ρ0 ∈ (0, 1) such that φ ∈ ΦJ[hρ, qρ], for all ρ0 ∈ (0, 1).

If f ∈ Ap satisfies (2.21), then

Js+2,bf(z) ≺ q(z), (2.27)

and q is the best dominant.

Proof. Following the same arguments in [1], we deduce that q is a dominant from
Theorem 2.4 and Theorem 2.6. Since q satisfies (2.26), it is also a solution of (2.21) and
therefore q will be dominated by all dominants. Hence q is the best dominant.

Definition 2.8. LetΩ be a set in C and q ∈ Q0∩H0. The class of admissible functionsΦJ,1[Ω, q]
consists of those functions φ : C

3 ×U → C that satisfy the admissibility condition:

φ(u, v,w; z) /∈ Ω (2.28)

whenever

u = q(ζ), v =
kζq′(ζ) − bq(ζ)

1 + b

(
b ∈ C \ Z0 = 0,−1,−2, . . . , p ∈ N

)
,

Re

{
(1 + b)2w − b2u
(1 + b)v + bu

− 2b

}
≥ kRe

{
ζq′′(ζ)
q′(ζ)

+ 1
}
,

(2.29)

z ∈ U, ζ ∈ ∂U \ E(q), and k ≥ 1.



8 International Journal of Differential Equations

Theorem 2.9. Let φ ∈ ΦJ,1[Ω, q]. If f ∈ Ap satisfies

{
φ

(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

: z ∈ U
}

⊂ Ω, (2.30)

then

Js+2,bf(z)
zp−1

≺ q(z) (z ∈ U). (2.31)

Proof. Define the analytic function j inU by

j(z) =
Js+2,bf(z)
zp−1

. (2.32)

Using the relations (2.5) and (2.32), we get

Js+1,bf(z)
zp−1

=
zj ′(z) − bj(z)

1 + b
,

Js,bf(z)
zp−1

=
z2j ′′(z) + (2b + 1)zj ′(z) + b2j(z)

(1 + b)2
.

(2.33)

Further, let us define the transformations from C
3 to C by

u = c, v =
d + bc
1 + b

,

w =
e + (2b + 1)d + b2c

(1 + b)2
.

(2.34)

Let

ψ(c, d, e; z) = φ(u, v,w; z) = φ

(
c,
d + bc
1 + b

,
e + (2b + 1)d + b2c

(1 + b)2
; z

)
. (2.35)

The proof will make use of Theorem 1.4. Using (2.32) and (2.33), from (2.35) we obtain

ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
= φ

(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)
. (2.36)

Hence (2.30) becomes

ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
∈ Ω. (2.37)
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Note that

e

d
+ 1 =

(1 + b)2w − b2u
(1 + b)v + bu

− 2b, (2.38)

and since the admissibility condition for φ ∈ ΦJ,1[Ω, q] is equivalent to the admissibility
condition for ψ as given in Definition 1.2, hence ψ ∈ Ψ[Ω, q], and by Theorem 1.4,

j(z) ≺ q(z), (2.39)

or

Js+2,bf(z)
zp−1

≺ q(z). (2.40)

In the case φ(u, v,w; z) = v − u, we have the following example.

Example 2.10. Let the class of admissible functions ΦJv,1[Ω, q] consist of those functions φ :
C

3 ×U → C that satisfy the admissibility condition:

v − u =
kζq′(ζ) − pq(ζ)

1 + b
/∈ Ω, (2.41)

z ∈ U, ζ ∈ ∂U \ E(q), and k ≥ p and φ ∈ ΦJv,1[Ω, q]. If f ∈ Ap satisfies

Js+1,bf(z)
zp−1

− Js,bf(z)
zp−1

⊂ Ω (z ∈ U), (2.42)

then

Js+2,bf(z)
zp−1

≺ q(z) (z ∈ U). (2.43)

If Ω/=C is a simply connected domain, then Ω ∈ h(U) for some conformal mapping
h(z) of U onto Ω and the class is written as ΦJ,1[h, q]. The following result follows
immediately from Theorem 2.9.

Theorem 2.11. Let φ ∈ ΦJ,1[Ω, q]. If f ∈ Ap satisfies

φ

(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

≺ h(z), (2.44)

then

Js+2,bf(z)
zp−1

≺ q(z). (2.45)
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Definition 2.12. LetΩ be a set in C and q ∈ Q1∩H. The class of admissible functionsΦJ,2[Ω, q]
consists of those functions φ : C

3 ×U → C that satisfy the admissibility condition:

φ(u, v,w; z) /∈ Ω (2.46)

whenever

u = q(ζ), v = q(ζ) +
kζq′(ζ)

(1 + b)q(ζ)

(
b ∈ C \ Z0 = 0,−1,−2, . . . , p ∈ N

)
,

Re
{
(w − u)(1 + b)u

v − u + (1 + b)(w − 3u)
}

≥ kRe
{
ζq′′(ζ)
q′(ζ)

+ 1
}
,

(2.47)

z ∈ U, ζ ∈ ∂U \ E(q), and k ≥ 1.

Theorem 2.13. Let φ ∈ ΦJ,2[Ω, q]. If f ∈ Ap satisfies

{
φ

(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

: z ∈ U
}

⊂ Ω, (2.48)

then

Js+2,bf(z)
Js+3,bf(z)

≺ q(z) (z ∈ U). (2.49)

Proof. Define the analytic function j inU by

j(z) =
Js+2,bf(z)
Js+3,bf(z)

. (2.50)

Differentiating (2.50) yields

zj ′(z)
j(z)

=
zJ ′s+2,bf(z)

Js+2,bf(z)
−
J ′s+3,bf(z)

Js+3,bf(z)
. (2.51)

From the relation (2.5) we get

zJ ′s+2,bf(z)

Js+2,bf(z)
=
[
p − (1 + b)

]
+ (1 + b)j +

zj ′(z)
j(z)

, (2.52)

and hence

Js+1,bf(z)
Js+2,bf(z)

= j(z) +
zj ′(z)

(1 + b)j(z)
. (2.53)
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Further computations show that

Js,bf(z)
Js+1,bf(z)

= j(z) +

[
2(1 + b)j(z) + 1

]
zj ′(z) + z2j ′′(z)

(1 + b)2j(z)2 + (1 + b)zj ′(z)
. (2.54)

Let us define the transformations from C
3 to C by

u = c, v = c +
d

(1 + b)c
,

w = c +
[2(b + 1)c + 1]d + e

(1 + b)2c2 + (1 + b)d
.

(2.55)

Let

ψ(c, d, e; z) = φ(u, v,w; z) = φ

(
c, c +

d

(1 + b)c
, c +

[2(b + 1)c + 1]d + e

(1 + b)2c2 + (1 + b)d
; z

)
. (2.56)

The proof will make use of Theorem 1.4. Using (2.50), (2.53) and (2.54), from (2.56)we obtain

ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
= φ

(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)
. (2.57)

Hence (2.48) becomes

ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
∈ Ω. (2.58)

Note that

e

d
+ 1 =

(w − u)(1 + b)u
v − u + (1 + b)(w − 3u), (2.59)

and since the admissibility condition for φ ∈ ΦJ,2[Ω, q] is equivalent to the admissibility
condition for ψ as given in Definition 1.2, hence ψ ∈ Ψ[Ω, q] and by Theorem 1.4,

j(z) ≺ q(z), (2.60)

or

Js+2,bf(z)
Js+3,bf(z)

≺ q(z). (2.61)

If Ω/=C is a simply connected domain, then Ω ∈ h(U) for some conformal mapping
h(z) of U onto Ω and the class is written as ΦJ,2[h, q]. The following result follows
immediately from Theorem 2.13.
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Theorem 2.14. Let φ ∈ ΦJ,2[Ω, q]. If f ∈ Ap satisfies

φ

(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

≺ h(z), (2.62)

then

Js+2,bf(z)
Js+3,bf(z)

≺ q(z). (2.63)

3. Superordination Results Associated with
Generalized Srivastava-Attiya Operator

Definition 3.1. Let Ω be a set in C and q ∈ H[0, p] with zq′(z)/= 0. The class of admissible
functions Φ′

J[Ω, q] consists of those functions φ : C
3 × U → C that satisfy the admissibility

condition:

φ(u, v,w; ζ) /∈ Ω (3.1)

whenever

u = q(z), v =
zq′(z) −m[

p − (1 + b)
]
q(z)

m(1 + b)

(
b ∈ C \ Z0 = 0,−1,−2, . . . , p ∈ N

)
,

Re

{
(1 + b)2w − [

p − (1 + b)
]2
u

(1 + b)v +
[
p − (1 + b)

]
u

+ 2
[
p − (1 + b)

]} ≥ 1
m

Re
{
zq′′(z)
q′(z)

+ 1
}
,

(3.2)

z ∈ U, ζ ∈ ∂U, andm ≥ p.

Theorem 3.2. Let φ ∈ Φ′
J[Ω, q]. If f ∈ Ap, Js+2,bf ∈ Q0 and

φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

)
(3.3)

is univalent inU, then

Ω ⊂ {
φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

)
: z ∈ U}

(3.4)

implies that

q(z) ≺ Js+2,bf(z). (3.5)

Proof. From (2.13) and (3.4), we have

Ω ⊂
{
ψ
(
j(z), zj ′(z), z2j ′′(z); z

)
: z ∈ U

}
. (3.6)
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From (2.10), we see that the admissibility condition for φ ∈ Φ′
J[Ω, q] is equivalent to

the admissibility condition for ψ as given in Definition 1.3. Hence ψ ∈ Ψ′
p[Ω, q], and by

Theorem 1.5, q(z) ≺ j(z) or

q(z) ≺ Js+2,bf(z). (3.7)

If Ω/=C is a simply connected domain, then Ω ∈ h(U) for some conformal mapping
h(z) of U onto Ω and the class is written as Φ′

J[h, q]. The next result follows immediately
from Theorem 3.2.

Theorem 3.3. Let h be analytic inU and φ ∈ Φ′
J[Ω, q]. If f ∈ Ap, Js+2,bf(z) ∈ Q0 and

φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

)
(3.8)

is univalent inU, then

h(z) ≺ φ(Js+2,bf(z), Js+1,bf(z), Js,bf(z); z
)
, (3.9)

and then

q(z) ≺ Js+2,bf(z). (3.10)

Theorems 3.2 and 3.3 can only be used to obtain subordinants for differential
superordination of the form (3.4) and (3.9). The following theorems prove the existence of
the best subordinant of (3.9) for certain φ.

Theorem 3.4. Let h be analytic inU and φ : C
3 ×U → C. Suppose that the differential equation

φ
(
q(z), zq′(z), z2q′′(z); z

)
= h(z) (3.11)

has a solution q ∈ Q0. If φ ∈ Φ′
J[Ω, q], f ∈ Ap, Js+2,bf(z) ∈ Q0, and

φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

)
(3.12)

is univalent inU, then

h(z) ≺ φ(Js+2,bf(z), Js+1,bf(z), Js,bf(z); z
)

(3.13)

implies that

q(z) ≺ Js+2,bf(z), (3.14)

and q(z) is the best subordinant.
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Proof. The result can be obtained by similar proof of Theorem 2.7.

The next result, the sandwich-type theorem follows from Theorems 2.4 and 3.3.

Corollary 3.5. Let h1 and q1 be analytic in U, and let h2 be univalent function in U, q2 ∈ Q0 with
q1(0) = q2(0) = 0 and φ ∈ ΦJ[h2, q2] ∩Φ′

J[h1, q1]. If f ∈ Ap, Js+2,bf(z) ∈ H[0, p] ∩Q0, and

φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

)
(3.15)

is univalent inU, then

h1(z) ≺ φ
(
Js+2,bf(z), Js+1,bf(z), Js,bf(z); z

) ≺ h2(z) (3.16)

implies that

q1(z) ≺ Js+2,bf(z) ≺ q2(z). (3.17)

Definition 3.6. LetΩ be a set in C and q ∈ H0 with zq′(z)/= 0. The class of admissible functions
Φ′
J,1[Ω, q] consists of those functions φ : C

3 ×U → C that satisfy the admissibility condition:

φ(u, v,w; ζ) ∈ Ω (3.18)

whenever

u = q(z), v =
zq′(z) −mbq(z)

m(1 + b)

(
b ∈ C \ Z0 = 0,−1,−2, . . . , p ∈ N

)
,

Re

{
(1 + b)2w − b2u
(1 + b)v + bu

− 2b

}
≥ 1
m

Re
{
zq′′(z)
q′(z)

+ 1
}
,

(3.19)

z ∈ U, ζ ∈ ∂U, andm ≥ 1.

The following result is associated with Theorem 2.9.

Theorem 3.7. Let φ ∈ Φ′
H,1[Ω, q]. If f ∈ Ap, Js+2,bf(z)/zp−1 ∈ Q0, and

φ

(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

(3.20)

is univalent inU, then

Ω ⊂
{
φ

(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

: z ∈ U
}

(3.21)
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implies that

q(z) ≺ Js+2,bf(z)
zp−1

. (3.22)

Proof. From (2.36) and (3.21), we have

Ω ⊂
{
φ
(
j(z), zj ′(z), z2j ′′(z); z

)
: z ∈ U

}
. (3.23)

From (2.34), we see that the admissibility condition for φ ∈ Φ′
J,1[Ω, q] is equivalent to the

admissibility condition for ψ as in Definition 1.3. Hence ψ ∈ Ψ′[Ω, q], and by Theorem 1.5,
q(z) ≺ j(z) or

q(z) ≺ Js+2,bf(z)
zp−1

. (3.24)

If Ω/=C is a simply connected domain, then Ω ∈ h(U) for some conformal mapping
h(z) of U onto Ω and the class is written as Φ′

J,1[h, q]. The next result follows immediately
from Theorem 3.7.

Theorem 3.8. Let q ∈ H0, and let h be analytic on U, and let φ ∈ Φ′
J,1[Ω, q]. If f ∈ Ap,

Js+2,bf(z)/zp−1 ∈ Q0, and

φ

(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

(3.25)

is univalent inU, then

h(z) ≺ φ
(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

(3.26)

implies that

q(z) ≺ Js+2,bf(z)
zp−1

. (3.27)

Combining Theorems 2.11 and 3.8, we obtain the following sandwich-type theorem.

Corollary 3.9. Let h1 and q1 be analytic in U, let h2 be univalent function in U, q2 ∈ Q0 with
q1(0) = q2(0) = 0, and φ ∈ ΦJ,1[h2, q2] ∩Φ′

J,1[h1, q1]. If f ∈ Ap, Js+2,bf(z)/zp−1 ∈ H0 ∩Q0, and

φ

(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

(3.28)



16 International Journal of Differential Equations

is univalent inU, then

h1(z) ≺ φ
(
Js+2,bf(z)
zp−1

,
Js+1,bf(z)
zp−1

,
Js,bf(z)
zp−1

; z
)

≺ h2(z) (3.29)

implies that

q1(z) ≺
Js+2,bf(z)
zp−1

≺ q2(z). (3.30)

Definition 3.10. Let Ω be a set in C and q(z)/= 0, zq′(z)/= 0, and q ∈ H. The class of admissible
functions Φ′

J,2[Ω, q] consists of those functions φ : C
3 ×U → C that satisfy the admissibility

condition:

φ(u, v,w; ζ) /∈ Ω (3.31)

whenever

u = q(z), v = q(z) +
zq′(z)

m(1 + b)q(z)

(
b ∈ C \ Z0 = 0,−1,−2, . . . , p ∈ N

)
,

Re
{
(w − u)(1 + b)u

v − u + (1 + b)(w − 3u)
}

≥ 1
m

Re
{
zq′′(z)
q′(z)

+ 1
}
,

(3.32)

z ∈ U, ζ ∈ ∂U, andm ≥ 1.

The following result is associated with Theorem 2.13.

Theorem 3.11. Let φ ∈ Φ′
J,2[Ω, q]. If f ∈ Ap, Js+2,bf(z)/Js+3,bf(z) ∈ Q1, and

φ

(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

(3.33)

is univalent inU, then

Ω ⊂
{
φ

(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

: z ∈ U
}

(3.34)

implies that

q(z) ≺ Js+2,bf(z)
Js+3,bf(z)

. (3.35)

Proof. From (2.57) and (3.34), we have

Ω ⊂
{
φ
(
j(z), zj ′(z), z2j ′′(z); z

)
: z ∈ U

}
. (3.36)
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From (2.55), we see that the admissibility condition for φ ∈ Φ′
J,2[Ω, q] is equivalent to the

admissibility condition for ψ as in Definition 1.3. Hence ψ ∈ Ψ′[Ω, q], and by Theorem 1.5,
q(z) ≺ j(z) or

q(z) ≺ Js+2,bf(z)
Js+3,bf(z)

. (3.37)

If Ω/=C is a simply connected domain, then Ω ∈ h(U) for some conformal mapping
h(z) of U onto Ω and the class is written as Φ′

J,2[h, q]. The next result follows immediately
from Theorem 3.11 as in the previous section.

Theorem 3.12. Let q ∈ H, let h be analytic in U, and let φ ∈ Φ′
J,2[Ω, q]. If f ∈ Ap, Js+2,bf(z)/

Js+3,bf(z) ∈ Q1 and

φ

(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

(3.38)

is univalent inU, then

h(z) ≺ φ
(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

(3.39)

implies that

q(z) ≺ Js+2,bf(z)
Js+3,bf(z)

. (3.40)

Combining Theorems 2.14 and 3.12, we obtain the following sandwich-type theorem.

Corollary 3.13. Let h1 and q1 be analytic in U, let h2 be univalent function in U, q2 ∈ Q0 with
q1(0) = q2(0) = 0, and φ ∈ ΦJ,2[h2, q2] ∩Φ′

J,2[h1, q1]. If f ∈ Ap, Js+2,bf(z)/Js+3,bf(z) ∈ H ∩Q1,
and

φ

(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

(3.41)

is univalent inU, then

h1(z) ≺ φ
(
Js+2,bf(z)
Js+3,bf(z)

,
Js+1,bf(z)
Js+2,bf(z)

,
Js,bf(z)
Js+1,bf(z)

; z
)

≺ h2(z) (3.42)

implies that

q1(z) ≺
Js+2,bf(z)
Js+3,bf(z)

≺ q(z). (3.43)
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Other work related to certain operators concerning the subordination and superordi-
nation can be found in [20–25].
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