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The theory of control analyzes the proprieties of commanded systems. Problems of optimal control
(OC) have been intensively investigated in the world literature for over forty years. During this
period, series of fundamental results have been obtained, among which should be noted the
maximum principle (Pontryagin et al., 1962) and dynamic programming (Bellman, 1963). For
many of the problems of the optimal control theory (OCT), adequate solutions are found (Bryson
and Yu-chi, 1969, Lee and Markus, 1967, Gabasov and Kirillova, 1977, 1978, 1980). Results of the
theory were taken up in various fields of science, engineering, and economics. The present paper
aims at extending the constructive methods of Balashevich et al., (2000) that were developed for
the problems of optimal control with the bounded initial state is not fixed are considered.

1. Introduction

Problems of optimal control (OC) have been intensively investigated in the world literature
for over forty years. During this period, a series of fundamental results have been obtained,
whose majority is based on the maximum principle [1] and dynamic programming [2–
4]. Currently there exist two types of methods of resolution: direct methods and indirect
methods. The indirect methods are based on the maximum principle [1] and the methods of
the shooting [5]. The direct methods are based on the discretization of the initial problem, but
here we obtain an approximate solution.

The aim of this paper is to apply an adaptive method of linear programming [6–13] for
an optimal control problem with a free initial condition. Here we use a final procedure based
on a resolution of linear system with the Newton method to obtain a optimal solution. Here,
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we use a finite set of switching points of a control [11, 14–16]. We solve the same problem
in the article [17], we transform a problem initial to a problem of linear programming by
carrying changes of variables in three procedures: change of control, change of support, and
final procedure, in our paper, a solution of this problem, we discretize a problem initial to
find an optimal support by using change of control and change of support, and we present
the final procedure which uses this solution as an initial approximation for solving problem
in the class of piecewise continuous function.

We explain below that the realizations of the adaptive method [18] described in the
paper possess the following advantages.

(1) Size of the support (the main tool of the method), which mainly influences the
complexity of an iteration of the method, does not depend on all general constraints
but only on the quantity of endpoint constraints.

(2) In operations of described realizations, only parameters of the initial control
problem are used. This consideration decreases requirements to operative memory
and increases accuracy of calculations.

(3) Main operations are conducted with initial (primal) and adjoint systems without
auxiliary objects arising after reduction of the initial optimal control problem to the
equivalent LP problem.

(4) Because of storing a little volume of additional information and using parallel
calculations, the time for integration of primal and adjoint systems in the dual
part of an iteration decreases substantially. This precipitates the solution to the
open-loop optimization problem and also the formation of current supports and
realizations of optimal feedbacks when positional solutions are constructed.

(5) Effectiveness of methods is practically independent of a quantization period.

The paper has the following structure: in Section 2, the canonical optimal control problem is
formulated and the definition of support is introduced. Primal and dual ways of its dynamical
identification are given. In Section 3, optimality and suboptimality criterion are given. In
Section 4, optimality and ε-optimality criteria are exposed. In Section 5, numerical algorithm
for solving the problem is discussed. The iteration consists in three procedures: change of
control, change of a support, and at the end, final procedure. In Section 6, the results are
illustrated with a numerical example.

2. Statement of the Problem

On the time interval T = [0, t∗], we have the following linear problem of optimal control:

J(z, u(t)) = c′x(t∗) −→ max, (2.1)

ẋ = Ax + bu, x(0) = z ∈ X0 =
{
z ∈ �n, Gz = γ, d∗ ≤ z ≤ d∗}, (2.2)

Hx(t∗) = g, (2.3)

f∗ ≤ u(t) ≤ f∗, t ∈ T = [0, t∗]. (2.4)

Here x ∈ �n is a state of control system (2.2); u(·) = (u(t), t ∈ t), T = [0, t∗], is a piecewise
continuous function; A ∈ �n×n; b, c ∈ �n; g ∈ �m×n, rankH = m ≤ n; f∗, f∗ are scalars;
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d∗ = (d∗j , j ∈ J), d∗ = d∗(J) = (d∗
j , j ∈ J) are n-vectors; G ∈ �l×n, rankG = l ≤ n, γ ∈ �l,

I = {1, . . . , m}, J = {1, . . . , n}, L = {1, . . . , l} are sets of indices.
By using the Cauchy formula, we obtain the solution of system (2.2):

x(t) = F(t)

(

z +
∫ t

0
F−1(ϑ)bu(ϑ)dϑ

)

, t ∈ T, (2.5)

where F(t) = eAt, t ∈ T = [0, t∗], is the solution of the system:

Ḟ(t) = AF(t),

F(0) = In.
(2.6)

By using the formula (2.5) for t∗, problem (2.1)–(2.4) becomes the equivalent following
problem:

c̃′z +
∫ t∗

0
c(t)u(t)dt −→ max, (2.7)

D(I, J)z +
∫ t∗

0
ϕ(t)u(t)dt = g, (2.8)

G(L, J)z = γ, d∗ ≤ z ≤ d∗, (2.9)

f∗ ≤ u(t) ≤ f∗, t ∈ T, (2.10)

where c̃′ = c′F(t∗), c(t) = c′F(t∗)F−1(t)b, D(I, J) = HF(t∗), and ϕ(t) = HF(t∗)F−1(t)b.

3. Fundamental Definitions

Definition 3.1. A pair v = (z, u(·)) formed of an n-vector z and a piecewise continuous
function u(·) is called a generalized control.

Definition 3.2. A generalized control v = (z, u(·)) is said to be an admissible control if it
satisfies the constraints (2.2)–(2.4).

By using this notation, a functional becomes

J(z, u(t)) = J(v) = c′x(t∗) = c̃′z +
∫ t∗

0
c(t)u(t)dt. (3.1)

Definition 3.3. An admissible control v0 = (z0, u0(·)) is said to be an optimal open-loop control
if a control criterion reaches its maximal value

J
(
v0
)
= max

v
J(v). (3.2)
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Definition 3.4. For a given ε ≥ 0, a control vε = (zε, uε(·)) is said to be ε-optimal (approximate
solution) if

J
(
v0
)
− J(vε) ≤ ε. (3.3)

4. Support Control

In the interval T , let us choose subset Th = {0, h, . . . , t∗ − h} formed of an isolated moment,
where h = t∗/N,N is an integer. A function u(t), t ∈ T , is called a discrete control if

u(t) = u(τ), t ∈ [τ, τ + h), τ ∈ Th. (4.1)

By using this discretization, problem (2.7)–(2.10) becomes

c̃′z +
∑

t∈Th
q(t) u(t) −→ max, (4.2)

D(I, J)z +
∑

t∈Th
d(t)u(t) = g, (4.3)

G(L, J)z = γ, d∗ ≤ z ≤ d∗, (4.4)

f∗ ≤ u(t) ≤ f∗, t ∈ T. (4.5)

d(t) are defined by the following expression:

d(t) =
∫ t+h

t

ϕ(ϑ)dϑ =
∫ t+h

t

ψ ′(ϑ)b(ϑ)dϑ, (4.6)

and q(t) equal

q(t) =
∫ t+h

t

c(ϑ)dϑ =
∫ t+h

t

�(ϑ)dϑ, t ∈ Th. (4.7)

Here ψc(t), t ∈ T , are a solution to the dual equation

ψ̇ = −A′ψ, (4.8)

with the initial condition

ψ
(
t0
)
= c, (4.9)

and �(t), t ∈ T , is anm × nmatrix function solution of the following equation:

�̇ = −�A, (4.10)
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with the initial condition

�
(
t0
)
= H. (4.11)

First we solve problem (4.2)–(4.5); we construct the support: choose an arbitrary
subset TB ⊂ Th of k ≤ m elements and an arbitrary subset JB ⊂ J of m + l − k elements.
Form the matrix

PB =

⎛

⎜
⎜
⎝

D(I, JB) d(t), t ∈ TB

G(L, JB) 0

⎞

⎟
⎟
⎠. (4.12)

A set SB = {TB, JB} is said to be a support of problem (2.1)–(2.4) if detPB /= 0.
A pair {v, SB} of an admissible control v = (z, u(·)) and a support SB is said to be a

support control. A support control {v, SB} is said to be not degenerate if d∗j < zj < d∗
j , j ∈ JB,

f∗ < u(t) < f∗, t ∈ TB.
Let us consider another admissible control v = (z, u(·)) = v + Δv, where z = z + Δz,

u(t) = u(t) + Δu(t), t ∈ T , and let us calculate the increment of the cost functional:

ΔJ(v) = J(v) − J(v) = c̃′Δz +
∑

t∈Th
q(t)Δu(t). (4.13)

As v is admissible, then we have

D(I, J)Δz +
∑

t∈Th
d(t)Δu(t) = 0,

G(L, J)Δz = 0,

(4.14)

and consequently the increment of the functional is equal to

ΔJ(v) =

(

c̃′ − ν′
(
D(I, J)

G(L, J)

))

Δz +
∑

t∈Th

(
q(t) − ν′d(t))Δu(t), (4.15)

where ν = ( νuνz ) ∈ Rm+l, νu ∈ Rm, νz ∈ Rl, is a function of the Lagrange multipliers called
potentials, calculated as a solution to the equation ν′ = q′BQ, where Q = P−1

B , qB = (c̃j , j ∈
JB, q(t), t ∈ TB). Introduce an n-vector of estimates Δ′ = ν′

(
D(I,J)
G(L,J)

)
− c̃′, and a function of

cocontrol Δ(·) = (Δ(t) = ν′ud(t) − q(t), t ∈ Th).
By using this vector, the cost of functional increment takes the form

ΔJ(v) = Δ′Δz −
∑

t∈Th
Δ(t)Δu(t). (4.16)

A support control {v, SB} is dually not degenerate if Δ(t)/= 0, t ∈ TH , Δj /= 0, j ∈ JH , where
TH = Th/TB, JH = J/JB.
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5. Calculation of the Value of Suboptimality

The new control v(t) is admissible if it satisfies the constraints:

d∗ − z ≤ Δz ≤ d∗ − z; f∗ − u(t) ≤ Δu(t) ≤ f∗ − u(t), t ∈ T. (5.1)

The maximum of functional (4.16) under constraints (5.1) is reached for

Δzj = d∗j − zj , if Δj > 0,

Δzj = d∗
j − zj , if Δj < 0,

d∗j − zj ≤ Δzj ≤ d∗
j − zj , if Δj = 0, j ∈ J

Δu(t) = f∗ − u(t), if Δ(t) > 0,

Δu(t) = f∗ − u(t), if Δ(t) < 0,

f∗ ≤ Δu(t) ≤ f∗, if Δ(t) = 0, t ∈ T,

(5.2)

and is equal to

β = β(v, SB) =
∑

j∈J+H
Δj

(
zj − d∗j

)
+
∑

j∈J−H
Δj

(
zj − d∗

j

)

+
∫

t∈T+
Δ(t)

(
u(t) − f∗

)
+
∫

t∈T−
Δ(t)

(
u(t) − f∗),

(5.3)

where

T+ = {t ∈ TH, Δ(t) > 0}, T− = {t ∈ TH, Δ(t) < 0},

J+H =
{
j ∈ JH, Δj > 0

}
, J−H =

{
j ∈ JH, Δj < 0

}
.

(5.4)

The number β(v, SB) is called a value of suboptimality of the support control {v, SB}. From
this, J(v) − J(v) ≤ β(v, SB). From this inequality, we deduce the following results.
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6. Optimality and ε-Optimality Criterion [8–10]

Theorem 6.1. The following relations:

u(t) = f∗, if Δ(t) > 0,

u(t) = f∗, if Δ(t) < 0,

f∗ ≤ u(t) ≤ f∗, if Δ(t) = 0, t ∈ T,

zj = d∗j , if Δj > 0,

zj = d∗
j , if Δj < 0,

d∗j ≤ zj ≤ d∗
j , if Δj = 0, j ∈ J,

(6.1)

are sufficient, and in the cases of nondegeneracy, they are necessary for the optimality of support control
{v, SB}.

Theorem 6.2. For any ε ≥ 0, the admissible control v is ε-optimal if and only if there exists a support
SB such that β(v, SB) ≤ ε.

7. Numerical Algorithm for Solving the Problem

Let it be said that ε > 0 is a given number. Suppose that criterion optimality and ε-optimality
do not satisfy an initial support control {v, SB}. From this we let it pass to iteration of the
algorithm: {v, SB} for the “new” {v, SB} so that β(v, SB) ≤ β(v, SB). The iteration consists in
three procedures:

(1) change of an admissible control v → v,

(2) change of support SB → SB,

(3) final procedure.

7.1. Change of Control

Consider an initial support control {v, SB}, and let v = (z, u) be a new admissible control
constructed by the formulas:

zj = zj + θ0lj , j ∈ J,

u(t) = u(t) + θ0l(t), t ∈ Th,
(7.1)

where l = (lj , j ∈ J, l(t), t ∈ Th) is an admissible direction of changing a control v; θ0 is the
maximum step along this direction.
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Construct the Admissible Direction

Let us introduce a pseudocontrol ṽ = (z̃, ũ(t), t ∈ T).
First, we compute the nonsupport values of a pseudo-control

z̃j =

⎧
⎪⎨

⎪⎩

dj∗, if Δj ≥ 0,

d∗
j , if Δj ≤ 0,

j ∈ JH ; ũ(t) =

⎧
⎨

⎩

f∗, if Δ(t) ≤ 0,

f∗, if Δ(t) ≥ 0,
t ∈ TH. (7.2)

Secondly, support values of a pseudocontrol {z̃j , j ∈ JB; ũ(t), t ∈ TB} are computed
from the equations:

∑

j∈JB
D
(
I, j
)
z̃j +

∑

t∈TB
d(t)ũ(t) = g −

∑

j∈JH
D
(
I, j
)
z̃j +

∑

t∈TH
d(t)ũ(t),

∑

j∈JB
G
(
L, j
)
z̃j = γ −

∑

j∈JH
G
(
L, j
)
z̃j .

(7.3)

By a pseudocontrol we compute the admissible direction

l : lj = z̃j − zj , j ∈ J ; l(t) = ũ(t) − u(t), t ∈ Th. (7.4)

Construct the Maximal Step

Since v is to be admissible, then we have

d∗ ≤ z ≤ d∗; f∗ ≤ u(t) ≤ f∗, t ∈ Th, (7.5)

that is,

d∗ ≤ zj + θ0lj ≤ d∗, j ∈ J ;

f∗ ≤ u(t) + θ0l(t) ≤ f∗, t ∈ Th.
(7.6)

Then, the maximal step θ0 is chosen as θ0 = min{1; θ(t0); θj0}. Here θj0 = min θj :

θj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d∗
j − zj
lj

, if lj > 0,

d∗j − zj
lj

, if lj < 0,

+∞, if lj = 0,

j ∈ JB. (7.7)
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θ(t0) = mint∈TBθ(t):

θ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f∗ − u(t)
l(t)

, if l(t) > 0,

f∗ − u(t)
l(t)

, if l(t) < 0,

+∞, if l(t) = 0,

t ∈ TB. (7.8)

Let us calculate the value of suboptimality of the new support control {v, SB}, with v
computed according to (7.1): β(v, SB) = (1 − θ0)β(v, SB).

Consequently

if θ0 = 1, then v is an optimal control;

if β(v, SB) ≤ ε, then v is an ε-optimal control;

if β(v, SB) > ε, then we perform a change of support.

7.2. Change of Support

The change of support SB → SB will be to satisfy β(v, SB) < β(v, SB).
Here, we have θ0 = min(θ(t0), t0 ∈ TB; θj0 , j0 ∈ JB).
We will distinguish between two cases which can occur after the first procedure:

(a) θ0 = θj0 , j0 ∈ JB.
(b) θ0 = θ(t0), t0 ∈ TB.

Each case is investigated separately.
This change is based on variation of potentials, estimates, and cocontrol:

ν′ = ν + Δν; Δj = Δj + σ0δj , j ∈ J ; Δ(t) = Δ(t) + σ0δ(t), t ∈ Th, (7.9)

where (δj , j ∈ J, δ(t), t ∈ Th) is an admissible direction of change (Δ,Δ(·)), σ0 a maximal
step along this direction, and Δv increment of potential.

Construct an Admissible Direction (δj, j ∈ J, δ(t), t ∈ Th)
First, Construct the support values δB = (δj , j ∈ JB, δ(t), t ∈ TB) of admissible direction for
each case.

Case a (θ0 = θj0). Let us put

δ(t) = 0, if t ∈ TB,

δj = 0, if j /= j0, j ∈ JB,

δj0 = 1, if zj0 = d∗j0,

δj0 = −1, if zj0 = d
∗
j0
.

(7.10)
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Case b (θ0 = θ(t0)). Let us put

δj = 0, if j ∈ JB,

δ(t) = 0, if t ∈ TB
t0
,

δ(t0) = 1, if u(t0) = f∗,

δ(t0) = −1, if u(t0) = f∗.

(7.11)

By using the values δB, we compute the variation Δν =
(

Δνu
Δνz

)
of potentials as Δν′ = δ′BQ.

Finally, we get the variation of nonsupport components of the estimates and the
cocontrol:

(
δj , j ∈ JH

)
= Δν′

(
D
(
I, j
)

G
(
L, j
)

)

,

(δ(t), t ∈ TH) = Δv′
u (d(t), t ∈ TH).

(7.12)

Construct a Maximal Step σ0

A maximal step is equal to σ0 = min(σ0
j , σ

0
t ), where

σ0
j = σj1 = minσj , j ∈ JH ; σ0

t = σ(t1) = minσ(t), t ∈ TH, (7.13)

where

σj =

⎧
⎪⎨

⎪⎩

−Δj

δj
if Δjδj < 0,

+∞ if Δjδj ≥ 0,
j ∈ JH,

σ(t) =

⎧
⎪⎨

⎪⎩

−Δ(t)
δ(t)

if Δ(t)δ(t) < 0,

+∞ if Δ(t)δ(t) ≥ 0,
t ∈ TH.

(7.14)

Construct a New Support

For constructing a new support, we consider the following cases.
(1) θ0 = θ(t0), σ0 = σ(t1).

A new support SB = {TB, JB}, where

TB =
TB

{t0} ∪ {t1} , JB = JB. (7.15)
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(2) θ0 = θ(t0), σ0 = σj1 .
A new support SB = {TB, JB}, where

TB =
TB
{t0} , JB = JB ∪ {j1

}
. (7.16)

(3) θ0 = θj0 , σ
0 = σj1 .

A new support SB = {TB, JB}, where

TB = TB, JB =
JB{

j0
} ∪ {j1

} . (7.17)

(4) θ0 = θj0 , σ
0 = σ(t1).

A new support SB = {TB, JB}, where

TB = TB ∪ {t1}, JB =
JB{
j0
} . (7.18)

A value of suboptimality for support control β(v, SB) is equal to

β
(
v, SB

)
=
(
1 − θ0

)
β(v, SB) − ασ0, (7.19)

where

α =

⎧
⎨

⎩

∣∣z̃j0 − zj0
∣∣, if θ0 = θj0 ,

|ũ(t0) − u(t0)|, if θ0 = θ(t0).
(7.20)

(1) If β(v, SB) = 0, then the control v is optimal for problem (2.1)–(2.4).

(2) If β(v, SB) < ε, then the control v is ε-optimal for problem (2.1)–(2.4).

(3) If β(v, SB) > ε, then we pass to a new iteration with the support control {v, SB} or
to the final procedure.

7.3. Final Procedure

By using a support SB, we construct a quasicontrol v̂ = (ẑ, û(t), t ∈ T):

ẑj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dj∗, if Δj > 0,

d∗
j , if Δj < 0,

∈
[
dj∗, d∗

j

]
, if Δj = 0,

j ∈ JH ; û(t) =

⎧
⎨

⎩

f∗, if Δ(t) < 0,

f∗, if Δ(t) > 0,
t ∈ TH. (7.21)
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If

D(I, J)ẑ +
∫ t∗

0
ϕ(t)û(t)dt = g, G(L, J)ẑ = γ, (7.22)

then v̂ is optimal control, and if

D(I, J)ẑ +
∫ t∗

0
ϕ(t)û(t)dt /= g, G(L, J)ẑ /= γ, (7.23)

then denote T0 = {ti, i = 1, s}, s = |TB|.
Here, ti, i = 1, s are zeroes of the optimal cocontrol Δ(t) = 0, t ∈ T ; t0 = 0, ts+1 = t∗.

Suppose that

Δ̇(ti)/= 0, i = 1, s. (7.24)

From system (7.23), we deduce and construct the following function:

f(Θ)=

⎛

⎜⎜
⎝
D(I, JB)z(JB)+D(I, JH)z(JH)+

s∑

i=0

(
f∗ + f∗

2
− f∗ − f∗

2
sign Δ̇(ti)

)∫ ti+1

ti

ϕ(t) dt − g

G(L, JB)z(JB) +G(L, JH)z(JH) − γ

⎞

⎟⎟
⎠,

(7.25)

where

zj =
d∗
j + dj∗
2

−
d∗
j − dj∗
2

signΔj , j ∈ JH,

Θ =
(
ti, i = 1, s; zj , j ∈ JB

)
.

(7.26)

The final procedure is to find the solution

Θ0 =
(
t0i , i = 1, s; z0j , j ∈ JB

)
(7.27)

of the system ofm + l-nonlinear equations

f(Θ) = 0. (7.28)

We solve this system by the Newton method using an initial approximation:

Θ(0) =
(
ti, i = 1, s; zj , j ∈ JB

)
. (7.29)
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The (k + 1)th approximation Θ(k+1), in step k + 1 ≥ 1, is equal to

Θ(k+1) = Θ(k) + ΔΘ(k), ΔΘ(k) = −∂f
−1(Θ(k))

∂Θ(k)
· f
(
Θ(k)
)
, (7.30)

where

∂f
(
Θ(k))

∂Θ(k)
=

⎛

⎜
⎜
⎝

D(I, JB)
(
f∗ − f∗) sign Δ̇

(
t
(k)
i

)
ϕ
(
t
(k)
i

)
, i = 1, s

G(L, JB) 0

⎞

⎟
⎟
⎠. (7.31)

As detPB /= 0, we can easily show that

det
∂f
(
Θ(0))

∂Θ(0) /= 0. (7.32)

For all instants ti ∈ TB, there exists a small μ > 0 that all t̃i ∈ [ti − μ, ti + μ], i = 1, s, the
matrices (ϕ(t̃i), i = 1, s) are not degenerate, and the matrix ∂f(Θ(k))/∂Θ(k) is not degenerate.
If elements t(k)i , i = 1, s, k = 1, 2, . . ., do not leave the μ-vicinity of ti, i = 1, s, vector Θ(k∗) is
taken as a solution of (7.28) provided that

∥∥∥f
(
Θ(k∗)

)∥∥∥ ≤ η, (7.33)

for a given η > 0. So we put θ0 = θ(k
∗). The suboptimal control for problem (2.1)–(2.4) is

computed as

z0j =

⎧
⎪⎨

⎪⎩

z0j , j ∈ JB,

ẑj , j ∈ JH ;

u0(t) =
f∗ + f∗

2
− f∗ − f∗

2
sign Δ̇

(
t0i

)
, t ∈

[
t0i , t

0
i+1

[
, i = 1, s.

(7.34)

If the Newton method does not converge, we decrease parameter h > 0 and perform the
iterative process again.
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8. Example

We illustrate the results obtained in this paper using the following example:

∫25

0
u(t)dt −→ min, ẋ1 = x3, ẋ2 = x4,

ẋ3 = −x1 + x2 + u, ẋ4 = 0.1x1 − 1.01x2,

x1(25) = x2(25) = x3(25) = x4(25) = 0,

0 ≤ u(t) ≤ 1, t ∈ [0, 25].

(8.1)

Let the matrices and arrays be as follows:

H =

⎛

⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟⎟⎟⎟⎟
⎠
, g =

⎛

⎜⎜⎜⎜⎜
⎝

0

0

0

0

⎞

⎟⎟⎟⎟⎟
⎠
, G =

⎛

⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟⎟⎟⎟⎟
⎠
,

γ =

⎛

⎜⎜⎜⎜⎜
⎝

0.1

0.25

2

1

⎞

⎟⎟⎟⎟⎟
⎠
, d∗ =

⎛

⎜⎜⎜⎜⎜
⎝

0

0

0

0

⎞

⎟⎟⎟⎟⎟
⎠
, d∗ =

⎛

⎜⎜⎜⎜⎜
⎝

2

2

2

2

⎞

⎟⎟⎟⎟⎟
⎠
.

(8.2)

Let us consider the initial condition as

x1(0) = 0.1, x2(0) = 0.25, x3(0) = 2, x4(0) = 1. (8.3)

Problem (8.1) is reduced to a canonical form (2.1)–(2.4) by introducing the new
variable ẋ5 = u, x5(0) = 0. Then, the control criterion takes the form −x5(t∗) → max. In
the class of discrete controls with quantization period h = 25/1000 = 0.025, problem (8.1) is
equivalent to LP problem of dimension 4 × 1000.

To construct the optimal open-loop control of problem (8.1).
As an initial support, a set TB = {5, 10, 15, 20} was selected. This support corresponds

to the set nonsupport zeroes of the cocontrol Tn0 = {3.725, 9.725, 15.3, 21.3}. The problem was
solved in 18 iterations; that is, to construct the optimal open-loop control, a support 4 × 4-
matrix was changed 18 times. The optimal value of the control criterion was found to be
equal 6.602499 and the time is very quickly 2.30.

Movements of the cocontrol Δ(t) in the course of iterations are pictured in Figure 1.
The given data illustrate the effectiveness of the method used. In our opinion, the time

it takes today to construct optimal open-loop controls is not of significant importance. It is
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Table 1

h Number of iterations Value of the control criterion Time
0.25 11 6.6243433 2.27

0.025 18 6.602499 2.19

0.0025 26 6.602054 2.30

0.001 32 6.602050 2.69

only important that the method is able to construct a reliable solution in a reasonable time.
Let us give some calculations.

At first, a characteristic of the methods for comparison is chosen. A comparison
of the number of iterations in various methods is not always reasonable as iterations of
various methods often differ a great deal from one another. It is more naturel to define the
effectiveness of method [19] by using the number on integration of a primal or an adjoint
system with insignificant volume or required operative memory. In this connection, as a unit
of the complexity the time of integration of a primal or an adjoint system on the whole control
interval T is taken. If a method admits to make operation in parallel, then the complexity is
defined by the time needed for a set of microprocessors to solve the problem.

The proposed characteristic is not absolute (exact) as it does not take into account to
evaluate methods at “first approximation.” Table 1 contains some information on the solution
to problem (8.1) for other quantization periods.

Of course, one can solve problem (8.1) by LP methods, transforming the problem
(4.2)–(4.5). In doing so, one integration of the system is sufficient to form the matrix of the
LP problem. However, such “static” approach is concerned with a large volume of required
operative memory, and it is fundamentally different from the traditional “dynamical”
approaches based on dynamical models (2.1)–(2.4). Then, problem (2.1)–(2.4)was solved.
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In Figure 2, The realization u∗(τ), τ ∈ Th, is given. In Figure 3, projections of transients
of system (8.1) closed by optimal open-loop on planes x1x3 are presented. In Figure 4,
projections of transients of system (8.1) closed by optimal open-loop on planes x2x4 are
presented.

The optimal initial state is

x1(0) = 0.1009729, x2(0) = 0.2502507, x3(0) = 0.9933905, x4(0) = 1.0010008.
(8.4)
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9. Conclusion

An optimal control problem with free initial condition has been considered.
The model problem becomes a problem, where we search the best of initial condition

and a control which permits to bring the system of initial condition x0 ∈ X0 towards the final
state which verifies the constraintHx(t∗) = g.

To conclude, it appears that the study and applications of adaptive methods have at
least important advantage. Control law computations can be executed very quickly in real
time, in particular, by using parallel computers.
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