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Awell-knownmathematical model of radially symmetric tumour growth is revisited in the present
work. Under this aim, a cancerous spherical mass lying in a finite concentric nutritive surrounding
is considered. The host spherical shell provides the tumor with vital nutrients, receives the debris
of the necrotic cancer cells, and also transmits to the tumour the pressure imposed on its exterior
boundary. We focus on studying the type of inhomogeneity that the nutrient supply and the
pressure field imposed on the host exterior boundary, can exhibit in order for the spherical
structure to be supported. It turns out that, if the imposed fields depart from being homogeneous,
only a special type of interrelated inhomogeneity between nutrient and pressure can secure the
spherical growth. Thework includes an analytic derivation of the related boundary value problems
based on physical conservation laws and their analytical treatment. Implementations in cases of
special physical interest are examined, and also existing homogeneous results from the literature
are fully recovered.

1. Introduction

Mathematical modelling of cancer tumour growth helps in understanding the mechanisms
underlying the phenomenon in many ways. The main idea is that modelling physical
hypotheses in mathematical terms, a biological phenomenon, such as tumour growth,
is approached by a mathematical problem. Analytic and numerical or hybrid methods,
applied to the problem studied, lead to conclusions on the solution of the problem. The
conclusions are interpreted in biological terms that are subject to evaluation with respect to
experimental evidence. Thus, mathematical modelling may potentially offer new perspective
in the research directions of biological procedures.
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As cancer research and the related technology improved, an increasing amount of
experimental data was produced, which made it hard to interpret. At the same time,
mathematical models begun to develop at the aid of understanding the crucial parameters
involved in tumour’s evolution [1, 2]. In the early years, mathematical models focused
mainly on the avascular phase of the tumour’s development. This phase corresponds to the
stages right after tumorigenesis and ends with a steady state, where the tumour’s volume
gain, due to the new cancerous cells birth, balance the volume loss from the cells’ death
and disintegration. In order for the tumour’s evolution to proceed, new phenomena, as
angiogenesis, have to take place and the vascular phase may begin. In this phase, the tumour
has developed a vascular net around it that provides the tumour cells with limitless nutrient
supply and also it permits metastasis. As the present work focuses on the avascular phase on
tumour evolution, we avoid presenting details on the proceeding phases, which can be found
in many references, see, for example, [1, 2]. Since these next phases include the phenomena,
appeared in the avascular phase and other more complicated ones, in depth studying of the
avascular phase is well justified.

Both deterministic, numerical and hybrid models have been developed towards the
avascular growth study [2]. In the present work, we study a deterministic mathematical
model that considers the tumour colony as a continuous medium, which evolves according to
mass conservation law, Fick’s diffusion law, and fluid mechanics principles [3]. Deterministic
models in tumour growth research have been studied since 1966 when Burton [4] modelled
the tumour’s evolution with a Gompertzian curve. Though, the basis for mathematical
modelling of avascular tumour growth has been established by the Greenspan works [5, 6] in
the 1970s. Greenspan formulated the main procedures of the phenomenon, following existing
experimental results, solving boundary value problems with reaction-diffusion partial
differential equations in spherical domains. The main parameters that he investigated were
the nutrient concentration in the tumour and its surrounding, as well as the concentration
of a growth inhibitor factor. In addition, he introduced the idea of a surface tension that
secures the solid structure of the tumour. Since then, his ideas were used widely and
produced sophisticatedmodels that investigate different aspects of avascular tumour growth.
Indicatively, we refer to Adam’s papers [7, 8], to the series of works by Byrne and Chaplain
[9–12], byWard and King [13, 14], as well as byMc Elwain and his collaborators [15, 16]. One
can have a clear view on relevant references and analytic presentation of each contribution in
the extensive reviews [1, 2, 11].

In most works, a spherical tumour structure has been used and different forms
of the physical parameters involved have been investigated. Heterogeneity with respect
to different cell types has been taken into account [11], and the effect of inhomogeneity
of the consumption rates and proliferation rates within the tumour colony has been
investigated [15]. However, most works consider homogeneous nutrient supply from an
infinite environment whereas this assumption ignores the realistic fact that tumours grow
in finite organs with nonhomogeneous oxygen or glucose concentrations in the tumour’s
microenvironment. Moreover, there is experimental evidence [17] that a geometrical
confinement has significant impact on tumour growth, and to our knowledge there are only
few models that take this fact into account and stress out the importance of the tumour-
host boundary interactions and the environmental heterogeneity [18, 19]. In the present
work, we investigate the way that some key growth parameters interact, so as to permit a
spherically symmetric tumour growth. The parameters that we consider are the finite growth
environment, the nonhomogeneous pressure that it might induce, and the nonhomogeneous
nutrient supply. Although a work on a spherical model is quite trivial after so much previous
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work on that geometric configuration, the point of view in our paper is to have a close look
upon the detailed conditions that allow for such a configuration to occur and so to get the
perspective of the conditions that might allow for other, less symmetric, geometries to appear,
like the ellipsoidal one. Therefore, the present work should be viewed as a theoretical analysis
of the basic mathematical model that provides proof that under the common assumptions
the symmetric growth is inevitable and that radial growth is also possible under certain
diversions from such assumptions. Moreover, concerning the cells’ motility that results to
the tumour’s spatial expansion, we assume the rather logical approach that, additionally
to the nutrient gradient and to the pressure gradient [6, 19], we further attribute the cells’
movement to the inhibitor gradient, a parameter that shows up to have a qualitative impact
to the final results.

In particular, in this work, we consider a spherical fully developed avascular tumour,
meaning that it consists of a necrotic core, a quiescent layer, and a proliferating layer, which
are under dynamical growth until the whole structure reaches a steady state. Then, the
tumourmay stay in a dormant state or it may further develop only by entering in the vascular
phase, a case that is not examined in the present study. We further assume that the tumour
grows in a finite concentric spherical host environment, modelling the healthy part of the
organ in the interior of which the tumour develops. Both tissues, cancerous and healthy, are
assumed to be incompressible fluids of different phase. Here, we need to clarify that the
tumour’s avascular phase ends at a maximum tumour size, which is significantly smaller
than a typical human host organ. Nevertheless, our study aims to reveal rather qualitative
aspects than quantitative effects of the tumour growth. One such aspect is concerned with the
confinement effects imposed by the growth environment. The effect of the stress, imposed by
the surrounding, has been subject of investigation in several works [1, 8, 17, 18]. For example,
the effects of a spatially restricted growth have been studied experimentally in [17], where a
cancer cell culture was grown inside a very thin cylindrical tube. It turned out that the tube
altered the shape and growth dynamics of the cell colony. Similar result was the outcome
of the computational work [19]. Therefore, an analytical study that further investigates such
dynamic growth inside a finite host environment is justified.

We assume that the tumour receives the nutrient (in general oxygen or glycose)
from the surrounding spherical layer with inhomogeneous concentration and also it is
affected by a tissue oriented nonhomogeneous pressure field. The proof that either no kind
of inhomogeneity or a special kind of inhomogeneity that relates the externally supplied
nutrient field with the externally imposed pressure field can be supported by such model
in order for its concentric spherical structure to be secured is one of the outcomes of the
present work. In the first case, it turns out that a spherical tumour can be developed
only under homogeneous nutrient supply and homogeneous pressure field imposed, which
confirms all previous works in the field. Nevertheless, the model reveals another option that
allows nonhomogeneity in a concentric spherical growth, provided that a special relation
holds between the nutrient and the pressure fields, with respect to the cancer cells’ motility
parameters. In any case, the concentration profile of both the nutrient and the inhibitor turns
out to be strongly affected by the host tissue boundary. Similarly, the pressure distribution
throughout the cancer tissue and the host tissue is affected by the host tissue boundary, but
the evolution of the tumour boundary is independent of it.

Before we proceed, we present briefly the basic assumptions wemakewithin this work
following the framework of [5, 6, 9, 12].

We consider a spherical shell with radius re, occupied by incompressible noncancerous
tissue, which covers a growing spherical tumour colony. We assume that the tumour is
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avascular and fully developed, while it consists of three concentric spherical domains. The
exterior spherical shell Ωp is occupied by proliferating cells, the subsequent shell Ωq is
occupied by quiescent cells, and the interior necrotic sphere Ωn includes the dead cells and
debris. The crucial physical parameters that govern the tumour growth at every fixed point
r(t) are a nutritive substance supplied externally (usually considered as oxygen or glucose)
with concentration σ(r), a growth inhibitor factor with concentration β(r), which is produced
by the necrotic cell debris and the pressure field P(r) generated by the incompressible finite
environment and the growing mass in its interior. The nutrient is supplied into the host tissue
with constant concentration σ∞(re) and diffuses inwardly with diffusion constant kσ . Tumour
cells consume nutrient and proliferate, as long as the nutrient concentration is maintained
above the critical value σ∗

p, which is fulfilled in the exterior shell Ωp. In the inner shell Ωq,
where σ(r) lies in the interval 0 < σ∗

n < σ < σ∗
p, the tumour cells cannot proliferate and live

in a quiescent state. Finally, in Ωn, the concentration falls below σ∗
n and the tumour cells die

out of starvation. Moreover, Ωn also includes the dead cells due to apoptosis or programmed
cell death, which are forwarded there by pressure gradients. The disintegration of the dead
cells into simpler compounds produces a growth inhibitor substance in Ωn, which diffuses
outwardly with diffusion constant kβ. This inhibitor factor prohibits cell proliferation, unless
its concentration falls below a critical value β∗p, which is assumed to hold in Ωp. As both
the nutrient and the inhibitor diffuse inward to or outward from the tumour, respectively,
their distribution is described with parabolic partial differential equations, as we will show
in the sequel. Though, it is a common assumption [1, 3, 9] that the diffusion time scaling
is significantly shorter than the time scaling one is really interested in, which is the tumour
volume doubling time scale. Hence, as we demonstrate in Section 2.1.1, the elimination of
the time derivative is justified concerning the nutrient and the inhibitor concentration, which
are then considered to be in diffusive equilibrium state. The pressure field is generated from
the pressure P∞(re), which is imposed by the host boundary and affects the interior pressure
following the Young-Laplace law [5, 6] for two face incompressible fluids, together with the
pressure imposed by cell proliferation and loss of necrotic mass, due to disintegration. The
produced pressure differentials cause passive cell motion opposite to the direction of the
pressure gradient. Additionally to the widely used Darcy’s law, which connects the velocity
v(r) of the tumour cells at the exterior tumour surface with the pressure gradient [3, 19],
we moreover assume that exterior tumour cells actively move towards the nutrient gradient
[18, 20] and also we suggest that they move opposite to the growth inhibitor gradient. This
assumption leads to the evolution equation of the tumour’s exterior boundary, which is a
highly nonlinear ordinary differential equation and its solution is the goal of this work, the
exterior tumour boundary as a function of time. Finally, we assume that, as the tumour grows,
it maintains its concentric spherical structure, so all the interfaces of the model are time-
dependent functions, connected between each other and the whole model is formulated as a
free boundary problem.

In Section 2, we derive the corresponding partial differential equations that describe
the nutrient concentration and the inhibitor concentration field, and the pressure field in each
region, applying appropriate physical laws. Also, the corresponding boundary conditions are
derived in each interface. Finally, the corresponding boundary value problems are stated in
the spherical coordinate system. The solution of these boundary value problems is included
in Section 3, where the restrictions on the kind of the inhomogeneity that can be supported
with the spherical structure are derived. Also, the connection between the inner boundaries
and the evolution equation of the exterior tumour boundary is provided. In Section 4, we
demonstrate our results by presenting particular implementations regarding the exterior
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Figure 1: The spherical domains of the tumour growth model.

supply of the nutrient and the pressure imposed to the exterior boundary of the host
surrounding of the tumour. Also, reduction of the results obtained in the present work
to already existing corresponding expressions included in the original works [5, 6, 11] is
provided in Section 4. Finally, an outline of our work follows in Section 5.

2. Statement of the Problem

Let (r, θ, φ) be the spherical coordinates of the point r ∈ R
3. Then, each distinct region in the

tumour is defined as follows. The necrotic core is defined as

Ωn =
{(

r, θ, φ
) ∈ R

3 : 0 ≤ r < rn, 0 ≤ θ ≤ π , 0 ≤ φ < 2π
}
, (2.1)

while the quiescent layer, the proliferating layer, and the exterior layer occupied by the
noncancerous host tissue are defined as

Ωq =
{(

r, θ, φ
) ∈ R

3 : rn < r < rq, 0 ≤ θ ≤ π , 0 ≤ φ < 2π
}
,

Ωp =
{(

r, θ, φ
) ∈ R

3 : rq < r < rp, 0 ≤ θ ≤ π , 0 ≤ φ < 2π
}
,

Ωe =
{(

r, θ, φ
) ∈ R

3 : rp < r < re, 0 ≤ θ ≤ π , 0 ≤ φ < 2π
}
,

(2.2)

respectively. Each spherical region is bounded externally by the spherical surface Si : r = ri
with i = n, q, p, e.

Figure 1 shows indicatively, with no reference to their real relative size, the
aforementioned spherical regions under consideration along with their corresponding
boundaries. In reality, the necrotic core is the dominant region of the tumour, while the
exterior host layer is much larger than the included tumour regions.
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2.1. The Nutrient and the Inhibitor Concentration Problem

2.1.1. Derivation of the Partial Differential Equations

According to the mass conservation law in each of the regions Ωi, i = n, q, p, e, the rate of
change of the nutrient concentration in each region equals to the normal flow of nutrients
Fin(r) inwards toΩi, minus the flow outwards, Fout(r), and minus the amount of nutrient that
is consumed in the interior of Ωi, that is,∫

Ωi

∂σi(r)
∂t

dv =
∫
∂Ωi

(−n̂) · Fin(r)ds −
∫
∂Ωi

n̂ · Fout(r)ds −
∫
Ωi

Γidv, (2.3)

where ∂Ωi is the boundary of the region Ωi, n̂ is the outward unit normal vector to ∂Ωi, and
Γi is the nutrient consumption rate, considered to be constant in Ωi. Since the nutrient flow
is directed monotonically inwards in all spherical layers, the flow inwards takes place in the
exterior boundary surface, denoted by S+

i , and the flow outwards is realized from the inner
boundary S−

i . Considering also that for the spherical surface the normal direction is the radial
one, (2.3) becomes

∫
Ωi

∂σi(r)
∂t

dv =
∫
S+
i

(−r̂) · Fin(r)ds −
∫
S−
i

(−r̂) · Fout(r)ds −
∫
Ωi

Γidv with i = n, q, p, e. (2.4)

Assuming that the nutrient flow is only diffusive, it follows Fick’s law, which means that it is
directed to regions of lower nutrient concentration F(r) = −kσ∇σ(r). Then, relationship (2.4)
yields

∫
Ωi

∂σi(r)
∂t

dv =
∫
S+
i

r̂ · (kσ∇σi(r))ds −
∫
S−
i

r̂ · (kσ∇σi(r))ds −
∫
Ωi

Γidv. (2.5)

Applying the divergence theorem in Ωi in the right-hand side of (2.5), (2.5) becomes∫
Ωi
(((∂σi(r))/∂t) − kσΔσi(r) + Γi)dv = 0, which results in

∂σi(r)
∂t

− kσΔσi(r) + Γi = 0 for r ∈ Ωi with i = n, q, p, e. (2.6)

In particular, considering the physical assumptions made in the Introduction, the
consumption rate in each region is defined as Γe = Γn = 0, in Ωe and Ωn, respectively, where
no consumption of nutrients takes place. In Ωq and Ωp, the consumption rate is assumed
to depend on the vital state of the nutrients, which depends on the amount of the available
nutrient, while it is defined as Γq = Γ(σ∗

n/σ∞) and Γp = Γ(σ∗
p/σ∞), respectively, where Γ is a

proportional constant depending on the species of the host tissue cells, σ∗
n, σ

∗
p are the nutrient

critical values mentioned in the introduction, and σ∞ is a reference value corresponding to
the nutrient concentration in the vicinity of the tumour’s host organ.

We turn now to the inhibitor concentration. From the mathematical point of view, the
inhibitor concentration problem is very similar to the nutrient concentration problem. The
difference lies on the interpretation of the parameters and in their particular expressions.
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As mentioned in the introduction, the inhibitor is produced inside the necrotic core with
production rate Pn and is consumed in the quiescent and proliferating layer with consump-
tion rate Ci with i = q, p, respectively. Therefore, the inhibitor flow is directed outwards
and the corresponding partial differential equations read as follows

∂βn(r)
∂t

− kβΔβn(r) − Pn = 0 for r ∈ Ωn,

∂βi(r)
∂t

− kβΔβi(r) + Ci = 0 for r ∈ Ωi with i = q, p,

(2.7)

and considering that the inhibitor is neither consumed nor produced in the host tissue, we
obtain

∂βe(r)
∂t

− kβΔβe(r) = 0 for r ∈ R
3 − {Ωn ∪Ωq ∪Ωp

}
. (2.8)

Before we proceed, we will examine the significance of the terms with the time
derivatives in the partial differential (2.6)–(2.8). Assuming the reference variables tg , rg and
σ∞, we define the dimensionless variables t = (t/tg), r = (r/rg) and σi(r) = σi(r)/σ∞ for
i = n, q, p, e. Hence, (2.6) becomes

ε
∂σi(r)

∂t
−Δrσi(r) +

r2g

σ∞kσ
Γi = 0 with i = n, q, p, e, (2.9)

where Δr = r2gΔ, while the constant ε = r2g/(tgkσ) becomes much smaller than one, when
the scaling rg = 10−2 cm, tg = 1day = 86400 sec, and kσ = 10−6 cm2/sec is used, which are a
typical length scale, a typical time scale and a typical diffusion constant for the growth of an
avascular tumour [9]. Then, ε = r2g/(tgkσ) = (10−4/(86400 · 10−6)) = 1, 12 · 10−3, and the time
derivative terms can be neglected. Under the same scaling, (2.7)-(2.8) can also be considered
as elliptic partial differential equations. This means that when the problem is studied per day
and the length is measured in μm, the diffusion of substances inwards to and outwards from
the tumour is almost immediate and the tumour is always in a diffusive equilibrium state.

2.1.2. Derivation of the Boundary Conditions

Let us consider an elementary test cylinder lying symmetrically across the tumour interface
Si with i = n, q, p, e. Applying the mass conservation law in this cylinder, with elementary
volume Vi and bases S+

i , S
−
i , we follow similar arguments as in Section 2.1.1 to obtain

∫
S+
i

r̂ · ∇σ+
i (r)ds −

∫
S−
i

r̂ · ∇σ−
i (r)ds =

∫
Vi

Γi
kσ

dv, (2.10)

where σ+
i and σ−

i are the nutrient concentration at the exterior and the interior region to Si,
respectively. Taking the limit at which the test volume is eliminated, both its bases coincide
to the corresponding elementary section on Si and the volume integral of the right-hand side
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of (2.10) is eliminated, as Γi/kσ is a continuous and bounded function. Applying then the
integral mean value theorem, we obtain

r̂ · ∇σ+
i (r) − r̂ · ∇σ−

i (r) = 0 for r ∈ Si with i = n, q, p, e. (2.11)

Finally, we assume continuity conditions of the nutrient concentration on each interface and
an external nutrient supply traced on Se as

σ∞(re) = σ∞(re)g
(
θ, φ
)

for re ∈ Se. (2.12)

Similarly, we derive continuity boundary conditions for the inhibitor flow through the
tumour’s interfaces and we assume that the inhibitor concentration is also continuous there.
Finally, the asymptotic condition

lim
r→∞

βe(r) = 0 (2.13)

is supposed to hold uniformly over all directions.

2.2. The Pressure Field Problem

2.2.1. Derivation of the Partial Differential Equations

Combining previous assumptions [6, 19], which attribute the cells movement either to the
nutrient gradient or to the pressure gradient, as it is dictated by the Darcy law, we further
assume that cells move towards the direction of the nutrient gradient and opposite to the
direction of the pressure and inhibitor gradients. Denoting by vi(r) the velocity of the cell at
the point r of the region Ωi with i = n, q, p, e, we have

vi(r) = −μP∇Pi(r) + μσ∇σi(r) − μβ∇βi(r), (2.14)

where μP , μσ , and μβ are constants of proportionality characterizing the motility of the cell.
Applying the divergence operator on both sides of (2.14), we obtain

∇ · vi(r) = −μPΔPi(r) + μσΔσi(r) − μβΔβi(r). (2.15)

Here we recall that both the tumour tissue and the host tissue are assumed to
be incompressible fluids with constant density. The mass conservation law implies that
((∂ρt(r, t))/∂t) + ∇ · (ρt(r, t)vi(r, t)) = Mi(r, t), where ρt(r, t) is the density of the tumour and
Mi(r, t) is the mass per unit volume, per unit time that is produced or lost in the regionΩi for
i = n, q, p. Since the density is considered to be constant, we derive that

∇ · vi(r, t) = Mi(r, t)
ρt(r, t)

≡ Gi (2.16)
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in the tumour regions Ωi for i = n, q, p. We assume that Gi is not time dependent and it is
invariable in every point inside Ωi. With similar arguments, we conclude that ∇ · ve(r, t) = 0
in Ωe, where no cell mass is neither produced nor lost.

Substituting the partial differential (2.6) and (2.7)-(2.8) in (2.15) for each region, we
conclude to the following:

ΔPn(r) = −Gn

μP
+
μβ

μP

Pn

kβ
≡ Fn for r ∈ Ωn,

ΔPi(r) = −Gi

μP
+
μσ

μP

Γi
kσ

− μβ

μP

Ci

kβ
≡ Fi for r ∈ Ωi with i = q, p,

(2.17)

while

ΔPe(r) = 0 for r ∈ Ωe. (2.18)

2.2.2. Derivation of the Boundary Conditions

The tumour colony and its host surrounding are assumed to be incompressible fluids of
different phase. So the Young-Laplace equation is considered on their interface Sp, that is,

Pp(r) − Pe(r) =
ap

rp
for r ∈ Sp, (2.19)

where ap is a positive proportionality constant. Moreover, both the normal component and
the tangential component of the pressure gradient are considered to be continuous across
Sp in order to secure the tumour’s boundary compactness. Between the tumour’s inner
interfaces we consider continuity conditions for both the pressure field and its normal
derivatives, as the tumour’s distinct regions are considered to correspond to cells at different
stage of their biological cycle but not to different fluids, characterized by different physical
parameters. The tangential derivatives of the pressure field on the exterior surface Se are also
considered to be continuous, so that it maintains its compactness. Finally, at Se, the pressure
field’s trace is

P∞(re) = P∞(re)h
(
θ, φ
)

for re ∈ Se. (2.20)

2.3. The Evolution Equation and Relevant Topics

The aim of this work is to determine the evolution of the tumour’s exterior boundary Sp

under the assumption that this boundary evolves normally to itself. Considering that vi(rp) =
(drp)/dtwith i = n, q, p, e, then directly from (2.14), we easily get the following relationship:

r̂ · drp
dt

= −μP r̂ · ∇Pp

(
rp
)
+ μσ r̂ · ∇σp

(
rp
) − μβ r̂ · ∇βp

(
rp
) (2.21)
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or

drp

dt
=

∂

∂r

(−μPPp

(
rp
)
+ μσσp

(
rp
) − μββp

(
rp
))
. (2.22)

We note here that relationship (2.22) is an ordinary differential equation with respect to the
function rp(t). The uniqueness of its solution is secured by the initial condition rp(0) = Rp,
where Rp is the initial radius of the Sp boundary.

The right-hand side of (2.22) depends, as it will be shown in what follows, on the time-
dependent boundaries rn(t), rq(t), rp(t), and re(t). Hence, (2.22) is solvable under constraints,
which interrelate these boundaries and secure that (2.22) is dependent only on rp(t). These
constraints are provided by the critical values of the nutrient and inhibitor concentrations. In
particular, the critical nutrient value σ∗

n determines if a cell dies out of starvation or not, so
this value is met on the surface Sn, that is,

σq(rn) = σn(rn) = σ∗
n. (2.23)

Also, the nutrient value σ∗
p and the inhibitor value β∗p determine if a cell proliferates or not, so

these critical values are met on surface Sq, that is,

σq

(
rq
)
= σp

(
rq
)
= σ∗

p, (2.24)

βq
(
rq
)
= βp
(
rq
)
= β∗p. (2.25)

3. Model Analysis

In what follows the boundary value problems for the nutrient concentration field, for the
inhibitor concentration, and for the pressure field are solved, using standard spectral analysis
of the Laplace operator. The inhomogeneity imposed by the nutrient supply is reflected upon
the conditions (2.23) and (2.24), which are considered to hold either globally on the whole
surfaces Sn and Sq, respectively, or as an average. Both aspects lead to the same evolution
equation but allow different distribution of the nutrient supply and of the pressure on Se. The
latter approach is illustrated by an example in Section 4.1, where a special inhomogeneity of
the nutrient supply is assumed.

3.1. The Nutrient Concentration Problem

With respect to Section 2.1, the boundary value problem that determines the nutrient
concentration field assumes the form

Δσi(r) = 0 for r ∈ Ωi with i = n, e, (3.1)

while

Δσi(r) =
Γi
kσ

≡ γi for r ∈ Ωi with i = q, p, (3.2)
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where the boundary conditions to be satisfied are

σq(r) = σn(r) for r ∈ Sn,

∂

∂r
σq(r) − ∂

∂r
σn(r) = 0 for r ∈ Sn,

(3.3)

while

σp(r) = σq(r) for r ∈ Sq,

∂

∂r
σp(r) − ∂

∂r
σq(r) = 0 for r ∈ Sq,

σe(r) = σp(r) for r ∈ Sp,

∂

∂r
σe(r) − ∂

∂r
σp(r) = 0 for r ∈ Sp,

(3.4)

whilst at the outer boundary we obtain

σ∞(re) = σ∞(re)g(r̂e) = σ∞(re)g
(
θ, φ
)

for re ∈ Se. (3.5)

Before we proceed with the solution of the problem, it is worth mentioning the
eigenfunctions we will use, which are the surface spherical harmonics, defined as

Ym,s
l

(
θ, φ
)
= Pm

l (cos θ)

{
cosmφ, s = e

sinmφ, s = o,
(3.6)

which satisfy the following orthogonality property:

∫
S2
Ym,s
l

(
θ, φ
)
Ym′,s′

l′
(
θ, φ
)
ds
(
θ, φ
)
=

1
εm

4π
(2l + 1)

(l +m)!
(l −m)!

δll′δmm′δss′ , where εm =

{
1, m = 0
2, m ≥ 1.

(3.7)

Moreover, for notation convenience, we will replace the triple summation symbol by the
following

∑+∞
l=0
∑l

m=0
∑

s=e,o · · · ≡
∑

l,m,s · · · in all the expansions.
Within this aim, we expand the nutrient concentration in each domain, in spherical

harmonics, demanding the field to be continuous at the center of the spherical core. In that
way we, obtain

σn(r) =
∑
l,m,s

a
(i)m,s
l,σ rlYm,s

l

(
θ, φ
)

for r ∈ Ωn,

σq(r) =
γq

6
r2 +
∑
l,m,s

(
b
(i)m,s
l,σ rl + b

(e)m,s
l,σ r−(l+1)

)
Ym,s
l

(
θ, φ
)

for r ∈ Ωq,
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σp(r) =
γp

6
r2 +
∑
l,m,s

(
c
(i)m,s
l,σ

rl + c
(e)m,s
l,σ

r−(l+1)
)
Ym,s
l

(
θ, φ
)

for r ∈ Ωp,

σe(r) =
∑
l,m,s

(
d
(i)m,s
l,σ rl + d

(e)m,s
l,σ r−(l+1)

)
Ym,s
l

(
θ, φ
)

for r ∈ Ωe.

(3.8)

In addition, the spherical expansion of the nutrient supply field σ∞(re) on Se reads as

σ∞(re) = σ∞(re)g
(
θ, φ
)
= σ∞(re)

∑
l,m,s

gm,s
l Ym,s

l

(
θ, φ
)
, (3.9)

where gm,s
l

= ((2l + 1)/4π)((l − m)!/(l + m)!)εm
∫2π
0

∫π
0 g(θ, φ)Ym,s

l
(θ, φ) sin θdθdφ. Applying

boundary conditions (3.3)–(3.5) into expansions (3.8) with (3.9), one has to deal with a
seventh-order linear algebraic system with respect to the seven sequences of unknown
coefficients. Long but straightforward calculations lead to the nutrient concentration field,
where σi(r, θ, φ) is defined for r ∈ Ωi with i = n, q, p, e, that is,

σn

(
r, θ, φ

)
=

γp − γq

2
r2q

(
1 − 2

3
rq

re

)
+
γq

2
r2n

(
1 − 2

3
rn
re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)

+ σ∞(re)
∑
l,m,s

gm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
,

(3.10)

σq

(
r, θ, φ

)
=

γp − γq

2
r2q

(
1 − 2

3
rq

re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)

+
γq

3
r3n

(
1
r
− 1
re

)
+
γq

6
r2 + σ∞(re)

∑
l,m,s

gm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
,

(3.11)

σp

(
r, θ, φ

)
=

γp

6
r2 − γp

2
r2p

(
1 − 2

3
rp

re

)
+
[
γq

3
r3n +

γp − γq

3
r3q

](
1
r
− 1
re

)

+ σ∞(re)
∑
l,m,s

gm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
,

(3.12)

σe

(
r, θ, φ

)
=
[
γq

3
r3n +

γp − γq

3
r3q −

γp

3
r3p

](
1
r
− 1
re

)

+ σ∞(re)
∑
l,m,s

gm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
.

(3.13)
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Substituting expression (3.10) into condition (2.23), we perform trivial calculations to obtain
the following equation:

σ∗
n =

γp − γq

2
r2q

(
1 − 2

3
rq

re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)
+
γq

3
r3n

(
1
rn

− 1
re

)
+
γq

6
r2n

+ σ∞(re)
∑
l,m,s

gm,s
l

(
rn
re

)l

Ym,s
l

(
θ, φ
)
.

(3.14)

Equation (3.14) can be considered in two ways, either as one that holds true pointwise
on all (rn, θ, φ) ∈ Sn or as an equation that holds true at the average over the surface Sn.

In the first case, we imply the orthogonality property of Ym,s
l

(θ, φ) in (3.14) and we
conclude that all coefficients gm,s

l
for l ≥ 1 should vanish and the nutrient supply should be

defined uniformly over all directions on Se, meaning that σ∞(re) = σ∞(re), where we have
assumed for simplicity and without loss of generality that g0,e

0 = 1.
In the second case, we take the mean value of both sides of (3.14) by integrating over

Sn. Due to orthogonality of Ym,s
l (θ, φ), the angular dependence will vanish and the result will

read as

σ∗
n =

γp − γq

2
r2q

(
1 − 2

3
rq

re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)
+
γq

3
r3n

(
1
rn

− 1
re

)
+
γq

6
r2n + σ∞(re), (3.15)

which is also the result if the first argument is considered. The difference lies in that,
considering (3.14) as an average equation, the external nutrient supply is allowed to be
defined nonuniformly. Though the drawback in this case lies on the perturbation implied
in the locus of the points that enjoy the critical nutrient concentration σ∗

n, which is no longer
a spherical surface.

In what follows, the treatment of either case is indifferent. Nevertheless, we will
come back to the different approaches in Section 3.4, when the evolution equation is studied.
Therefore, relationship (2.24) along with (3.12) gives in a similar way

σ∗
p =

γp − γq

2
r2q

(
1 − 2

3
rq

re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)
+
γq

3
r3n

(
1
rq

− 1
re

)
+
γq

6
r2q + σ∞(re). (3.16)

Both (3.15) and (3.16) should hold throughout all time of the tumour’s evolution, which
provides restrictions on the evolution of all boundaries rn(t), rq(t), rp(t) and re(t). In addition,
from relations (3.15) and (3.16), we are provided with a relation depending only on rn(t) and
rq(t), that is,

σ∗
n − σ∗

p =
γq

3
r3n

(
1
rn

− 1
rq

)
+
γq

6

(
r2n − r2q

)
. (3.17)
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3.2. The Inhibitor Concentration Problem

The spherical expansions of the inhibitor concentration that solve the boundary value
problem (2.7)-(2.8), with continuous boundary conditions and also with (2.13), assume the
following forms:

βn(r) =
pn
6
r2 +
∑
l,m,s

a
(i)m,s
l,β rlYm,s

l

(
θ, φ
)

for r ∈ Ωn,

βq(r) =
cq

6
r2 +
∑
l,m,s

(
b
(i)m,s
l,β rl + b

(e)m,s
l,β r−(l+1)

)
Ym,s
l

(
θ, φ
)

for r ∈ Ωq,

βp(r) =
cp

6
r2 +
∑
l,m,s

(
c
(i)m,s
l,β rl + c

(e)m,s
l,β r−(l+1)

)
Ym,s
l

(
θ, φ
)

for r ∈ Ωp,

βe(r) =
∑
l,m,s

d
(e)m,s
l,β

r−(l+1)Ym,s
l

(
θ, φ
)

for r ∈ R
3 − (Ωp ∪Ωq ∪Ωn

)
,

(3.18)

where for simplicity we have used the notation −(Pn/kβ) = pn and (Ci/kβ) = ci with i = p, q.
Following similar track of calculations as in Section 3.1, we arrive at the following

expression for the inhibitor concentration field:

βn(r) =
cq − pn

2
r2n +

cp − cq

2
r2q −

cp

2
r2p +

pn
6
r2, (3.19)

βq(r) =
cp − cq

2
r2q −

cp

2
r2p +

cq − pn

3
r3n
r

+
cq

6
r2, (3.20)

βp(r) = −cp
2
r2p +
[
cq − pn

3
r3n +

cp − cq

3
r3q

]
1
r
+
cp

6
r2, (3.21)

βe(r) =
[
cq − pn

3
r3n +

cp − cq

3
r3q −

cp

3
r3p

]
1
r
. (3.22)

The inhibitor concentration is, by definition, a decreasing function of r in R
3 −Ωn. The critical

inhibitor concentration β∗p appears on Sq, and its further decrease permits cell proliferation in
Ωp. Hence, (2.25) together with (3.20) leads to

β∗p =
(
cp

2
− cq

3

)
r2q −

cp

2
r2p +

cq − pn

3
r3n
rq
, (3.23)

which provides another restriction between the boundaries rn(t), rq(t), and rp(t), which
should hold for every t > 0.
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3.3. The Pressure Field

The pressure field satisfies the boundary value problem (2.17)–(2.20) completed with conti-
nuity conditions for both the field and its gradient in all inner interfaces. The corresponding
spherical expansions read as

Pn(r) =
Fn

6
r2 +
∑
l,m,s

a
(i)m,s
l,P

rlYm,s
l

(
θ, φ
)

for r ∈ Ωn,

Pq(r) =
Fq

6
r2 +
∑
l,m,s

(
b
(i)m,s
l,P rl + b

(e)m,s
l,P r−(l+1)

)
Ym,s
l

(
θ, φ
)

for r ∈ Ωq,

Pp(r) =
Fp

6
r2 +
∑
l,m,s

(
c
(i)m,s
l,P rl + c

(e)m,s
l,P r−(l+1)

)
Ym,s
l

(
θ, φ
)

for r ∈ Ωp,

Pe(r) =
∑
l,m,s

(
d
(i)m,s
l,P

rl + d
(e)m,s
l,P

r−(l+1)
)
Ym,s
l

(
θ, φ
)

for r ∈ Ωe,

(3.24)

while the exterior pressure distribution P∞(re) on Se is expanded in spherical harmonics as

P∞(re) = P∞(re)h
(
θ, φ
)
= P∞(re)

∑
l,m,s

hm,s
l

Ym,s
l

(
θ, φ
)
, (3.25)

where hm,s
l = ((2l+1)/4π)((l−m)!/(l+m)!))εm

∫2π
0

∫π
0 h(θ, φ)Ym,s

l (θ, φ) sin θdθdφ. The solution
of the above boundary value problem is obtained in the form

Pn(r) =
Fq − Fn

2
r2n

(
1 − 2

3
rn
re

)
+
Fp − Fq

2
r2q

(
1 − 2

3
rq

re

)
− Fp

2
r2p

(
1 − 2

3
rp

re

)
+
ap

rp
+
Fn

6
r2

+ P∞(re)
∑
l,m,s

hm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
,

(3.26)

Pq(r) =
Fp − Fq

2
r2q

(
1 − 2

3
rq

re

)
− Fp

2
r2p

(
1 − 2

3
rp

re

)
+
ap

rp
+
Fq − Fn

3
r3n

(
1
r
− 1
re

)
+
Fq

6
r2

+ P∞(re)
∑
l,m,s

hm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
,

(3.27)

Pp(r) = − Fp

2
r2p

(
1 − 2

3
rp

re

)
+
ap

rp
+
(
Fq − Fn

3
r3n +

Fp − Fq

3
r3q

)(
1
r
− 1
re

)
+
Fp

6
r2

+ P∞(re)
∑
l,m,s

hm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
,

(3.28)

Pe(r) =
(
Fq − Fn

3
r3n +

Fp − Fq

3
r3q −

Fp

3
r3p

)(
1
r
− 1
re

)
+ P∞(re)

∑
l,m,s

hm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
. (3.29)
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3.4. The Evolution Equation

In the sequel, we collect all the results for the concentration fields and for the pressure field,
as traced on Sp, and we substitute them into the differential equation (2.22). Here, we have
to recall the two different approaches that are possible for the nutrient concentration field,
mentioned in Section 3.1.

3.4.1. The Homogeneous Approach

Following the demand that the nutrient trace on the exterior boundary Se is homogeneous,
the nutrient concentration (3.12) in the proliferating region is

σp

(
r, θ, φ

)
= σ∞(re) +

γp

6
r2 − γp

2
r2p

(
1 − 2

3
rp

re

)
+
[
γq

3
r3n +

γp − γq

3
r3q

](
1
r
− 1
re

)
. (3.30)

Substituting (3.30), (3.21), and (3.28) in (2.22) and performing algebraic manipulations the
following evolution equation is obtained:

drp

dt
= rp

⎧⎨⎩
(

rn
rp

)3(
μP

Fq − Fn

3
+ μβ

cq − pn

3
− μσ

γq

3

)

+

(
rq

rp

)3(
μP

Fp − Fq

3
+ μβ

cp − cq

3
− μσ

γp − γq

3

)
− μP

Fp

3
− μβ

cp

3
+ μσ

γp

3

⎫⎬⎭
− μp

P∞(re)
rp

∑
l,m,s

hm,s
l l

(
rp

re

)l

Ym,s
l

(
θ, φ
)
.

(3.31)

We note here that the whole model’s treatment is based on the assumption that as the tumour
evolves, all its boundaries remain members of the concentric spherical coordinate system, so
that all the Laplace and the Poisson partial differential equations can be treated analytically
through the separation of variables method. This implies that rp = rp(t), and consequently its
derivative cannot depend on the direction r̂ ≡ (θ, φ). As a consequence, only the zeroth-order
term of the spherical expansion can be included in (3.31), a fact that eliminates the effect
of any pressure that is imposed to the host tissue by the exterior medium on the tumour’s
evolution. Moreover, the host tissue’s boundary re = re(t) itself does not seem to be involved
by the tumour’s evolution. Therefore, the evolution equation is written as follows:

drp

dt
= rp

⎧⎨⎩
(

rn
rp

)3(
μP

Fq − Fn

3
+ μβ

cq − pn

3
− μσ

γq

3

)

+

(
rq

rp

)3(
μP

Fp − Fq

3
+ μβ

cp − cq

3
− μσ

γp − γq

3

)
− μP

Fp

3
− μβ

cp

3
+ μσ

γp

3

⎫⎬⎭,

(3.32)
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where the physical implementation was secured mathematically by imposing hm,s
l = 0 for

l ≥ 1, m = 0, 1, . . . , l, and s = e, o into (3.31) concluding to (3.32). This equation describes the
transitory phase until it reaches its steady state. From (3.32), one can obtain the radii of the
tumour’s steady-state boundaries by setting the right-hand side equal to zero.

3.4.2. The Nonhomogeneous Approach

By considering (3.14) as an average condition, the nutrient concentration in the proliferation
shell reads as

σp

(
r, θ, φ

)
=

γp

6
r2 − γp

2
r2p

(
1 − 2

3
rp

re

)
+
[
γq

3
r3n +

γp − γq

3
r3q

](
1
r
− 1
re

)

+ σ∞(re)
∑
l,m,s

gm,s
l

(
r

re

)l

Ym,s
l

(
θ, φ
)
.

(3.33)

Then, the corresponding evolution equation for drp/dt becomes

drp

dt
= rp

⎧⎨⎩
(

rn
rp

)3(
μP

Fq − Fn

3
+ μβ

cq − pn

3
− μσ

γq

3

)

+

(
rq

rp

)3(
μP

Fp − Fq

3
+ μβ

cp − cq

3
− μσ

γp − γq

3

)
− μP

Fp

3
− μβ

cp

3
+ μσ

γp

3

⎫⎬⎭
− μp

P∞(re)
rp

∑
l,m,s

hm,s
l

l

(
rp

re

)l

Ym,s
l

(
θ, φ
)
+ μσ

σ∞(re)
rp

∑
l,m,s

gm,s
l

l

(
rp

re

)l

Ym,s
l

(
θ, φ
)
,

(3.34)

or

drp

dt
= rp

⎧⎨⎩
(

rn
rp

)3(
μP

Fq − Fn

3
+ μβ

cq − pn

3
− μσ

γq

3

)

+

(
rq

rp

)3(
μP

Fp − Fq

3
+ μβ

cp − cq

3
− μσ

γp − γq

3

)
− μP

Fp

3
− μβ

cp

3
+ μσ

γp

3

⎫⎬⎭
+

1
rp

∑
l,m,s

l

(
rp

re

)l(
μσσ∞(re)g

m,s
l

− μpP∞(re)h
m,s
l

)
Ym,s
l

(
θ, φ
)
.

(3.35)

The arguments stated in Section 3.4.1 hold true in this case as well, provided that between the
spherical coefficients of the nutrient exterior field and the pressure field, as they are dictated
on Se, the following condition is considered:

gm,s
l

=
μpP∞(re)
μσσ∞(re)

hm,s
l

for l = 1, 2, . . . , m = 1, 2, . . . , l and s = e, o, (3.36)
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and hence

σ∞(re) = σ∞(re) −
μp

μσ
P∞(re)h

0,e
0 +

μp

μσ
P∞(re) (3.37)

or

μσ(σ∞(re) − σ∞(re)) = μp

(
P∞(re) − P∞(re)h

0,e
0

)
. (3.38)

Consequently, the tumour’s boundaries evolve as concentric spheres and the evolution
(3.35), provided (3.36), coincides with (3.32). From there after, it is obvious that the
nonhomogeneous and the homogeneous approaches are treated in the same way.

We stress that the restrictions on the type of inhomogeneity exhibited by the exterior
pressure are implied by the assumption (2.22) for the evolution equation, in the model
presented in this work. Nevertheless, following a different approach on the evolution
condition, one could investigate further the possibility of imposing an inhomogeneous
pressure trace upon Se, which is under our current investigation. For this reason, we do not
imply this restriction on the results of Section 3.3, since they hold true up to the point that
they are imposed properly in Section 3.4 and so after.

Equation (3.32) is a nonlinear ordinary differential equation, which includes the
rates (rn/rp) and (rq/rp), accompanied by rp, which are all unknown functions of time. In
order to make (3.32) solvable, we need the expressions that connect all the unknown rates
with function rp = rp(t). This is accomplished via expressions (3.15)–(3.17) and (3.23). In
particular, (3.17) can be written as

σ∗
n − σ∗

p

r2p
=

γq

3

(
rn
rp

)3(
rp

rn
− rp

rq

)
+
γq

6

⎛⎝(rn
rp

)2

−
(

rq

rp

)2
⎞⎠, (3.39)

or using the following simple symbols for the rates under consideration, those are (rn/rp) ≡
x = x(t), (rq/rp) ≡ y = y(t), and (rp/re) ≡ z = z(t), where by definition 0 < x, y, z < 1,
expression (3.39) yields

−γq
3
x3 +

γq

2
x2y − γq

6
y3 −

σ∗
n − σ∗

p

r2p
y = 0. (3.40)

The third-degree nonlinear algebraic equation (3.40) provides x as a function of y and rp.
Similarly, (3.23) assumes the form

cq − pn

3
x3 +
(
cp

2
− cq

3

)
y3 −
[
cp

2
+
β∗p
r2p

]
y = 0. (3.41)

Equations (3.40) and (3.41) form a nonlinear algebraic system, whichwhen it is solved,
provide the rates (rn/rp) ≡ x(t) and (rq/rp) = y(t) with respect to rp(t) and the differential
(3.32) is solvable, under the initial condition rp(0) = Rp, which corresponds to the first
observed tumour radius.
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Continuing, the rate (rp/re) is also connected to rp = rp(t) via (3.15), or equivalently
(3.16); it is worthwhile to specify this connection, as it provides the evolution of the host
boundary and also it appears in the nutrient field, the inhibitor field, and the pressure field
provided in Sections 3.1, 3.2, and 3.3, respectively. In particular, using (3.15), we arrive at

σ∗
n − σ∞(re)

r2p
=

γp − γq

2

(
rq

rp

)2(
1 − 2

3
rq

rp

rp

re

)
− γp

2

(
1 − 2

3
rp

re

)

+
γq

3

(
rn
rp

)3(
rp

rn
− rp

re

)
+
γq

6

(
rn
rp

)2
(3.42)

or, in terms of the x, y, z symbols,

(
−γq
3
x3 − γp − γq

3
y3 +

γp

3

)
z = −γq

2
x2 − γp − γq

2
y2 +

γp

2
+
σ∗
n − σ∞(re)

r2p
, (3.43)

and if one substitutes the (x, y) solution of the system (3.40) and (3.41), then (3.43) provides
the rate (rp/re) ≡ z(t) as a function of rp(t).

4. Special Cases

In this section, we implement the results obtained in Section 3 in three special cases that
correspond to different physical approaches. At the end, we reduce the results to recover
the corresponding existing results that appear in the relative literature, mainly in [5, 6].

4.1. Inhomogeneous Data Imposed on Se

For the purpose of illuminating the inhomogeneous case, we suppose that the pressure’s trace
on Se implies an inhomogeneity in the form

P∞(re) = P∞(re)
(
1 ± ae

(
rp

re

)
sin2θ

)
for re ∈ Se, (4.1)

where ae is a positive proportionality constant. Expression (4.1) in terms of spherical har-
monics assumes the form

P∞(re) = P∞(re)
(
1 ± 2ae

3

(
rp

re

)
∓ 2ae

3

(
rp

re

)
P2(cos θ)

)
, (4.2)
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which in terms of (3.25) corresponds to

h0,e
0 =
(
1 ± 2ae

3

(
rp

re

))
,

h0,e
2 =

5
4π

2
∫2π
0

∫π
0

(
∓2ae

3

(
rp

re

)
P2(cos θ)

)
Y 0,e
2

(
θ, φ
)
sin θdθdφ = ∓2ae

3

(
rp

re

)
,

(4.3)

and h0,o
2 = 0, hm,s

2 = 0 form = 1, 2 and s = e, o, while hm,s
l = 0 for every l = 1, 3, . . .,m = 0, 1, . . . , l

and s = e, o. Then, the pressure field (3.26)–(3.29) enjoys a corresponding modification. In
order for the evolution of the tumour’s exterior boundary to maintain angular independence,
a solution of the model exists, when the nutrient supply is also nonhomogeneous and its
spherical coefficients are defined by (3.36). Then,

σ∞(re) = σ∞(re) + σ∞(re)
∑
l,m,s
l≥1

μpP∞(re)
μσσ∞(re)

hm,s
l

Ym,s
l

(
θ, φ
)

(4.4)

or, for the case under consideration,

σ∞(re) = σ∞(re) +
μp

μσ
P∞(re)

(
∓2ae

3

(
rp

re

)
P2(cos θ)

)
. (4.5)

The evolution equation is not affected by this inhomogeneity, and it is given by (3.32).

4.2. Homogeneous Pressure Distribution Implying
the Young-Laplace Law on Se

In this Section we consider the host nutritive environment to lie within an infinite medium,
considered to be an incompressible fluid characterized by physical parameters different from
those of both the host tissue and the tumour. Let us suppose that this medium imposes in
the host tissue a uniform pressure P∞. Then, in the interface Se, the Young-Laplace equation
should hold, which yields the boundary condition

Pe(re) − P∞ =
ae

re
for re ∈ Se, (4.6)

where ae is a positive proportionality constant. Condition (4.6) corresponds to the results of
the problem under investigation, if the trace of the pressure field on Se is interpreted as

Pe(re) = P∞(re) ≡ P∞ +
ae

re
. (4.7)
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In terms of expression (2.20), which yields P∞(re) = P∞ + (ae/re), we have hm,s
l = 0 for

l ≥ 1, m = 0, 1, . . . , l, and s = e, o, while h0,e
0 = 1. Then, the pressure field (3.26)–(3.29) would

be affected as follows:

Pn(r)=P∞+
ae

re
+
ap

rp
+
Fq − Fn

2
r2n

(
1 − 2

3
rn
re

)
+
Fp − Fq

2
r2q

(
1 − 2

3
rq

re

)
− Fp

2
r2p

(
1 − 2

3
rp

re

)
+
Fn

6
r2,

Pq(r)=P∞+
ae

re
+
ap

rp
+
Fp − Fq

2
r2q

(
1 − 2

3
rq

re

)
− Fp

2
r2p

(
1 − 2

3
rp

re

)
+
Fq − Fn

3
r3n

(
1
r
− 1
re

)
+
Fq

6
r2,

Pp(r)=P∞+
ae

re
+
ap

rp
− Fp

2
r2p

(
1 − 2

3
rp

re

)
+
(
Fq − Fn

3
r3n+

Fp − Fq

3
r3q

)(
1
r
− 1
re

)
+
Fp

6
r2,

Pe(r)=P∞+
ae

re
+
(
Fq − Fn

3
r3n+

Fp − Fq

3
r3q −

Fp

3
r3p

)(
1
r
− 1
re

)
.

(4.8)

Though, the exterior pressure should not affect the evolution equation at all, as it is explained
in Section 3.4.

4.3. Homogeneous Nutrient Concentration Implying the Gibbs-Thomson
Relation on Se

Following a related idea presented in [11], one can assume the Gibbs-Thomson relation for
connecting the nutrient concentration trace at the point re ∈ Se with the corresponding
curvature of Se, that is,

σe(re) − σ∞ =
ae,σ

re
for re ∈ Se, (4.9)

where ae,σ is a positive proportionality constant. This jump condition is justified if we
consider two facts. Firstly, as in Section 4.1, we consider that the host nutritive environment
lies within an infinite medium of constant nutrient concentration σ∞. Secondly, we assume
that the noncancerous cells at the boundary Se of the host organ consume nutrients in order
to provide the energy necessary for maintaining the bonds between them and the solidity of
the whole structure and this energy is curvature related as dictated by the Gibbs-Thomson
relation (4.9). This case corresponds to the results obtained in the present paper if we imply

σ∞(re) = σ∞(re) ≡ σ∞ +
ae,σ

re
(4.10)

inside (3.9).
The nutrient field in this case is immediately derived from relationships (3.10)–(3.13),

by substitution of (4.10), in the form

σn(r) = σ∞ +
ae,σ

re
+
γp − γq

2
r2q

(
1 − 2

3
rq

re

)
+
γq

2
r2n

(
1 − 2

3
rn
re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)
,

σq(r) =
γp − γq

2
r2q

(
1 − 2

3
rq

re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)
+
γq

3
r3n

(
1
r
− 1
re

)
+
γq

6
r2 + σ∞ +

ae,σ

re
,
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σp(r) = −γp
2
r2p

(
1 − 2

3
rp

re

)
+
(
γq

3
r3n +

γp − γq

3
r3q

)(
1
r
− 1
re

)
+
γp

6
r2 + σ∞ +

ae,σ

re
,

σe(r) =
(
γq

3
r3n +

γp − γq

3
r3q −

γp

3
r3p

)(
1
r
− 1
re

)
+ σ∞ +

ae,σ

re
.

(4.11)

The corresponding modifications upon (3.15) and (3.16), related to the nutrient critical
values, are

σ∗
n =

γp − γq

2
r2q

(
1 − 2

3
rq

re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)
+
γq

3
r3n

(
1
rn

− 1
re

)
+
γq

6
r2n + σ∞ +

ae,σ

re
,

σ∗
p =

γp − γq

2
r2q

(
1 − 2

3
rq

re

)
− γp

2
r2p

(
1 − 2

3
rp

re

)
+
γq

3
r3n

(
1
rq

− 1
re

)
+
γq

6
r2q + σ∞ +

ae,σ

re
.

(4.12)

Since (3.15) and (3.16) provide the restrictions that interconnect the tumour’s boundaries, the
evolution equation is affected by the assumption (4.10) through its effect upon (4.12).

The above results fully recover the corresponding nutrient results obtained in [11] for
the case where γp = γq and re = rp.

4.4. Recovery of Existing Results

In order to let the results obtained in Section 3 to recover existing results in the literature [5, 6],
we take the limit of our results where re → rp, at the case where γp = γq and σe(re) = σ∞.
Then, expressions (3.10)–(3.13) become

σn

(
r, θ, φ

)
=

γq

2
r2n

(
1 − 2

3
rn
rp

)
− γp

6
r2p + σ∞,

σq

(
r, θ, φ

)
= σp

(
r, θ, φ

)
= −γp

6
r2p +

γp

3
r3n

(
1
r
− 1
rp

)
+
γp

6
r2 + σ∞.

(4.13)

Moreover, if the inhibitor is considered to vanish far away from the tumour and not on
the tumour’s boundary and also if cp = cq = 0, then the results (3.19)–(3.22) for the inhibitor
concentration coincide with the case examined in [5] and yield

βn(r) = −pn
2
r2n +

pn
6
r2,

βq(r) = βp(r) = −pn
3
r3n
r
.

(4.14)
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Then, (3.15) and (3.23) reveal

σ∞ − σ∗
n = −γp

3

(
1
2

(
r2p − r2n

)
− r3n

(
1
rn

− 1
rp

))
,

β∗p = −pn
3
r3n
rq
,

(4.15)

respectively, while they provide the inner boundaries rn, rq with respect to the exterior
boundary rp of the tumour.

The corresponding results for the pressure field when no exterior pressure is imposed
on the tumor are found in [6], where the interior of the tumor is characterized by Fn = Fq = Fp

and P∞(re) = 0. Then, the expressions (3.26)–(3.28) meet the corresponding result in [6] and
become

Pn(r) = Pq(r) = Pp(r) =
Fp

6

(
r2 − r2p

)
+
ap

rp
. (4.16)

The evolution equation studied in [6] coincides with the one included in the present
work with the parameter values μp = 1, μσ = (λ/μ), and μβ = 0. The results cannot be
compared further with [5] or [6] as they have been obtained either due to the use of different
evolution equation or because the nutrient satisfies different conditions on the tumour’s
boundary.

5. Discussion

In the present work, we have studied a continuous model of avascular tumour growth,
under two basic assumptions. Firstly, it evolves maintaining a spherical multilayer structure,
lying inside a finite concentric spherical host medium. Secondly, its evolution is regulated
by the diffusion of an inhomogeneous nutrient field and of a growth inhibitory factor and
by the pressure that results from the cell proliferation and disintegration, as well as from an
externally imposed inhomogeneous pressure from the finite surrounding medium. All the
structure interfaces evolve in time, but the time scale of the space expansion of the tumour
is so much different than the diffusion time scales of the substances in the tumour that the
equilibrium assumption is well justified.

Hence, the model is formulated in three boundary value problems that hold true as the
tumour evolves and provide the nutrient field, the internally produced inhibitor field and the
pressure field throughout the tumour and the host surrounding. The model includes an
assumption for the boundaries’ evolution, which is formulated as a nonlinear ordinary differ-
ential equation with respect to the tumour’s exterior boundary, and also it includes connec-
tion formulae between all the other boundaries with respect to the tumour’s exterior one.

The same formulation and analysis can probably be adapted in different models with
alternative interpretations, for example, the nutrient concentration can be considered as a
drug substance supplied externally that inhibits the growth, in which case the evolution
equation would be respectively modified and so on.

In the present work we focus on the type of inhomogeneity that can be compatible
with the specific model that we present. The inhomogeneities that we are focused on concern
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the data that are independent of the tumour’s development, that is, the nutrient supply and
the pressure field imposed by the exterior to the host organ surrounding. It turns out that a
concentric spherical multilayer development could be secured under homogeneous nutrient
supply and pressure field, or by a nutrient supply and an exterior pressure that exhibit a
special connection between them, expressed in (3.36). In particular, the assumption that the
spherical interfaces that separate the tumour regions are characterized by the critical nutrient
values, demands that the nutrient supply should be homogeneous. Moreover, the assumption
that the interfaces evolve maintaining their concentric spherical shape, together with the
specific assumption for the tumour’s evolution, impose, the direction independence for the
pressure trace on the exterior host tissue surface. On the other hand, relaxing the first demand
and allowing the interfaces to be perturbed, the nutrient supply can be inhomogeneous and
consequently the pressure trace can exhibit a type of inhomogeneity that secures the angular
independence of the evolution equation.

These considerations are illuminated, by implementing the general results in special
cases, in Section 4. In particular, it is shown that an angular-dependent pressure field of
the form (4.1) permits a concentric spherical tumour development only under a similarly
nonhomogeneous nutrient distribution in the surrounding, given in (4.5). A homogeneous
pressure of the form (4.7), that takes into account the exterior boundary’s curvature and is
dictated by the Young-Laplace law of different fluids’ interface, is shown to have no effect on
the evolution equation of the tumour’s boundary and also to be irrelevant of the form of the
nutrient supply. On the other hand, a homogeneous nutrient field that takes into account
the exterior spherical curvature, dictated by the Gibbs-Thomson relation, has an indirect
effect on the tumour’s evolution, as it effects the connection formulae (4.12), between the
tumour’s interfaces. Though, as the two latter cases refer to homogeneous imposed fields,
the interrelation (3.36), in view of (3.9) and (3.25), does not exist, as it is expected. Finally,
the reduction to the simple cases of both homogeneous fields in an infinite host surrounding
exhibits the lack of interdependence between the imposed pressure and the nutrient supply
and fully recovers the existing radial results from the literature, as mentioned in Section 4.4.
The consideration of the model presented in Section 3 under shape perturbations is not
examined in the present research, as the focus of this work is on studying the consistency
of the spherical development with nonhomogeneous imposed data. However, the sensitivity
analysis of the proposed model is within our future consideration.

Clearly, it is a drawback of the model presented, that it incorporates a rather ideal
concentric spherical structure and the results refer to such an idealistic configuration or
simplified assumptions. Alternative evolution approaches for the same spherical structure in
avascular tumour development, and also alternative geometrical structure of the develop-
ment, which is much more applicable to cancer growing in humans, are under our current
investigation.
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