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Numerical solution of the modified equal width wave equation is obtained by using lumped
Galerkin method based on cubic B-spline finite element method. Solitary wave motion and
interaction of two solitary waves are studied using the proposed method. Accuracy of the
proposedmethod is discussed by computing the numerical conserved laws L2 and L∞ error norms.
The numerical results are found in good agreement with exact solution. A linear stability analysis
of the scheme is also investigated.

1. Introduction

The modified equal width wave equation (MEW) based upon the equal width wave (EW)
equation [1, 2] which was suggested by Morrison et al. [3] is used as a model partial
differential equation for the simulation of one-dimensional wave propagation in nonlinear
media with dispersion processes. This equation is related with the modified regularized long
wave (MRLW) equation [4] and modified Korteweg-de Vries (MKdV) equation [5]. All the
modified equations are nonlinear wave equations with cubic nonlinearities and all of them
have solitary wave solutions, which are wave packets or pulses. These waves propagate
in non-linear media by keeping wave forms and velocity even after interaction occurs.
Few analytical solutions of the MEW equation are known. Thus numerical solutions of the
MEW equation can be important and comparison between analytic solution can be made.
Geyikli and Battal Gazi Karakoç [6, 7] solved the MEW equation by a collocation method
using septic B-spline finite elements and using a Petrov-Galerkin finite element method with
weight functions quadratic and element shape functions which are cubic B-splines. Esen
applied a lumped Galerkin method based on quadratic B-spline finite elements which have
been used for solving the EW and MEW equation [8, 9]. Saka proposed algorithms for the
numerical solution of the MEW equation using quintic B-spline collocation method [10].
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Zaki considered the solitary wave interactions for the MEW equation by collocation method
using quintic B-spline finite elements [11] and obtained the numerical solution of the EW
equation by using least-squares method [12]. Wazwaz investigated the MEW equation and
two of its variants by the tanh and the sine-cosine methods [13]. A solution based on a
collocation method incorporated cubic B-splines is investigated by and Saka and Dağ [14].
Variational iteration method is introduced to solve the MEW equation by Lu [15]. Evans
and Raslan [16] studied the generalized EW equation by using collocation method based
on quadratic B-splines to obtain the numerical solutions of a single solitary waves and the
birth of solitons. Hamdi et al. [17] derived exact solitary wave solutions of the generalized
EW equation using Maple software. Esen and Kutluay studied a linearized implicit finite
difference method in solving the MEW equation [18]. In the present work we solve the MEW
equation numerically by a lumped Galerkin method using cubic B-spline finite elements.
The accuracy of the proposed method is demonstrated by two test problems: the motion of
a single solitary wave and the interaction of two solitary waves. A linear stability analysis
based on a Fourier method shows that the numerical scheme is unconditionally stable.

2. Cubic B-Spline Lumped Galerkin Method

The modified equal width wave (MEW) equation considered here has the normalized form
[3]

Ut + 3U2Ux − μUxxt = 0, (2.1)

with the physical boundary conditions U → 0 as x → ±∞, where t is time, x is the space
coordinate, μ is a positive parameter, and U(x, t) is wave amplitude. In this study, boundary
conditions are chosen from

U(a, t) = 0, U(b, t) = 0,

Ux(a, t) = 0, Ux(b, t) = 0, t > 0,
(2.2)

and the initial condition

U(x, 0) = f(x), a ≤ x ≤ b, (2.3)

where f(x) is a localized disturbance inside interval [a, b]. The interval [a, b] is par-
titioned into uniformly sized finite elements of length h by the knots xm such that
a = x0 < x1 · · · < xN = b and h = (xm+1 − xm). The cubic B-splines φm(x), (m = −1(1) N + 1),
at the knots xm are defined over the interval [a, b] by [19]

φm(x) =
1
h3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xm−2)3, x ∈ [xm−2, xm−1],

h3 + 3h2(x − xm−1) + 3h(x − xm−1)2 − 3(x − xm−1)3, x ∈ [xm−1, xm],

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1],

(xm+2 − x)3, x ∈ [xm+1, xm+2],

0, otherwise.

(2.4)
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The set of functions {φ−1(x), φ0(x), . . . , φN+1(x)} forms a basis for functions defined over
[a, b]. The approximate solution UN(x, t) to the exact solution U(x, t) is given by

UN(x, t) =
N+1∑

j=−1
φj(x)δj(t), (2.5)

where δj are time-dependent parameters to be determined from the boundary and weighted
residual conditions. Each cubic B-spline covers 4 elements so that each element [xm, xm+1] is
covered by 4 splines. In each element, using the following local coordinate transformation

hξ = x − xm, 0 ≤ ξ ≤ 1, (2.6)

cubic B-spline shape functions in terms of ξ over the element [0, 1] can be defined as

φm−1

φm

φm+1

φm+2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ξ)3,

1 + 3(1 − ξ) + 3(1 − ξ)2 − 3(1 − ξ)3,

1 + 3ξ + 3ξ2 − 3ξ3,

ξ3.

(2.7)

All splines apart from φm−1(x), φm(x), φm+1(x), and φm+2(x) are zero over the element [0, 1].
Variation of the function U(x, t) over element [0, 1] is approximated by

UN(ξ, t) =
m+2∑

j=m−1
δjφj , (2.8)

where δm−1, δm, δm+1, δm+2 act as element parameters and B-splines φm−1, φm, φm+1, φm+2 as
element shape functions. Using trial function (2.5) and cubic splines (2.4), the values of
U,U′, U′′ at the knots are determined in terms of the element parameters δm by

Um = U(xm) = δm−1 + 4δm + δm+1,

U′
m = U′(xm) = 3(−δm−1 + δm+1),

U′′
m = U′′(xm) = 6(δm−1 − 2δm + δm+1),

(2.9)

where the symbols ′ and ′′ denote first and second differentiation with respect to x,
respectively. The splines φm(x) and its two principle derivatives vanish outside the interval
[xm−2, xm+2]. Use Galerkin’s method with weight function W(x) to obtain the weak form of
(2.1) which is

∫b

a

W
(
Ut + 3U2Ux − μUxxt

)
dx = 0. (2.10)
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For a single element [xm, xm+1] using transformation (2.6) into the (2.10) we obtain

∫1

0
W

(

Ut +
3
h
Û2Uξ −

μ

h2
Uξξt

)

dξ = 0, (2.11)

where Û is taken to be a constant over an element to simplify the integral. Integrating (2.11)
by parts leads to

∫1

0

[
WUt + λWUξ + βWξUξt

]
dξ = βWUξt

∣
∣1
0 (2.12)

where λ = 3Û2/h and β = μ/h2. Taking the weight function with cubic B-spline shape
functions given by (2.7) and substituting approximation (2.8) in integral equation (2.12)with
some manipulation, we obtain the element contributions in the form

m+2∑

j=m−1

[(∫1

0
φiφj + βφ′

iφ
′
j

)

dξ − βφiφ
′
j |10

]

δ̇e
j +

m+2∑

j=m−1

(

λ

∫1

0
φiφ

′
jdξ

)

δe
j . (2.13)

In matrix notation this equation becomes

[
Ae + β(Be − Ce)

]
δ̇e + λDeδe, (2.14)

where δe = (δm−1, δm, δm+1, δm+2)
T are the element parameters and the dot denotes differen-

tiation with respect to t. The element matrices Ae, Be, Ce, and De are given by the following
integrals:

Ae
ij =
∫1

0
φiφjdξ =

1
140

⎡

⎢
⎢
⎢
⎢
⎢
⎣

20 129 60 1

129 1188 933 60

60 933 1188 129

1 60 129 20

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Be
ij =
∫1

0
φ′
iφ

′
jdξ =

1
10

⎡

⎢
⎢
⎢
⎢
⎢
⎣

18 21 −36 −3
21 102 −87 −36
−36 −87 102 12

−3 −36 21 18

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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Ce
ij = φiφ

′
j

∣
∣
∣
1

0
= 3

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 −1 0

4 −1 −4 1

1 −4 −1 4

0 −1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

De
ij =
∫1

0
φiφ

′
jdξ =

1
20

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−10 −9 18 1

−71 −150 183 38

−38 −183 150 71

−1 −18 9 10

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(2.15)

where the suffices i, j take only the values m − 1, m,m + 1, m + 2 for the typical element
[xm, xm+1]. A lumped value for λ is found from (1/4)(Um +Um+1)

2 as

λ =
3
4h

(δm−1 + 5δm + 5δm+1 + δm+2)
2. (2.16)

By assembling all contributions from all elements, (2.14) leads to the following matrix equa-
tion:

[
Ae + β(Be − Ce)

]
δ̇e + λDeδe = 0, (2.17)

where δ = (δ−1, δ0 · · · δN, δN+1)
T is a global element parameter. The matricesA,B, and λD are

septadiagonal and row of each has the following form:

A =
1

140
(1, 120, 1191, 2416, 1191, 120, 1),

B =
1
10

(−3,−72,−45, 240,−45,−72,−3),

λD =
1
20

(−λ1,−18λ1 − 38λ2, 9λ1 − 183λ2 − 71λ3, 10λ1 + 150λ2 − 150λ3 − 10λ4,

71λ2 + 183λ3 − 9λ4, 38λ3 + 18λ4, λ4),

(2.18)

where

λ1 =
3
4h

(δm−2 + 5δm−1 + 5δm + δm+1)
2,

λ2 =
3
4h

(δm−1 + 5δm + 5δm+1 + δm+2)
2,

λ3 =
3
4h

(δm + 5δm+1 + 5δm+2 + δm+3)
2,

λ4 =
3
4h

(δm+1 + 5δm+2 + 5δm+3 + δm+4)
2.

(2.19)
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Replacing the time derivative of the parameter δ̇ by usual forward finite difference approxi-
mation and parameter δ by the Crank-Nicolson formulation

δ̇ =
δn+1 − δn

Δt
, δ =

1
2

(
δn + δn+1

)
(2.20)

into equation (2.17), gives the (N + 3) × (N + 3) septadiagonal matrix system

[

A + β(B − C) +
λΔt

2
D

]

δn+1 =
[

A + β(B − C) − λΔt

2
D

]

δn, (2.21)

whereΔt is time step. Applying the boundary conditions (2.2) to the system (2.21)we obtain
an (N + 1) × (N + 1) septadiagonal matrix system. This system is efficiently solved with a
variant of the Thomas algorithm, but an inner iteration is also needed at each time step to
cope with the non-linear term. A typical member of the matrix system (2.21) may be written
in terms of the nodal parameters δn and δn+1 as

γ1δ
n+1
m−2 + γ2δ

n+1
m−1 + γ3δ

n+1
m + γ4δ

n+1
m+1 + γ5δ

n+1
m+2 + γ6δ

n+1
m+3 + γ7δ

n+1
m+4

= γ7δ
n
m−2 + γ6δ

n
m−1 + γ5δ

n
m + γ4δ

n
m+1 + γ3δ

n
m+2 + γ2δ

n
m+3 + γ1δ

n
m+4,

(2.22)

where

γ1 =
1

140
− 3β
10

− λΔt

40
,

γ2 =
120
140

− 72β
10

− 56λΔt

40
,

γ3 =
1191
140

− 45β
10

− 245λΔt

40
,

γ4 =
2416
140

+
240β
10

,

γ5 =
1191
140

− 45β
10

+
245λΔt

40
,

γ6 =
120
140

− 72β
10

+
56λΔt

40
,

γ7 =
1

140
− 3β
10

+
λΔt

40

(2.23)

which all depend on δn. The initial vector of parameter δ0 = (δ0
−1, . . . , δ

0
N+1) must be deter-

mined to iterate system (2.21). To do this, the approximation is rewritten over the interval
[a, b] at time t = 0 as follows:

UN(x, 0) =
N+1∑

m=−1
φm(x)δ0

m, (2.24)
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where the parameters δ0
m will be determined. UN(x, 0) are required to satisfy the following

relations at the mesh points xm:

UN(xm, 0) = U(xm, 0), m = 0, 1, . . . ,N,

U′
N(x0, 0) = U′(xN, 0) = 0.

(2.25)

The above conditions lead to a tridiagonal matrix system of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3 0 3

1 4 1

. . .

1 4 1

−3 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ0
−1

δ0
0

...

δ0
N

δ0
N+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

U(x0)

...

U(xN)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.26)

which can be solved using a variant of the Thomas algorithm.

2.1. Stability Analysis

The stability analysis is based on the Von Neumann theory in which the growth factor g of
the error in a typical mode of amplitude δ̂n,

δn
j = δ̂neijkh, (2.27)

where k is the mode number and h the element size, is determined from a linearization of the
numerical scheme. To apply the stability analysis, the MEW equation needs to be linearized
by assuming that the quantityU in the non-linear termU2Ux is locally constant. Substituting
the Fourier mode (2.27) into (2.22) gives the growth factor g of the form

g =
a − ib

a + ib
, (2.28)

where

a = 2416 + 3360β +
(
2382 − 1260β

)
cos θh +

(
240 − 2016β

)
cos 2θh +

(
2 − 84β

)
cos 3θh,

b = 5145λΔt sin θh + 1176λΔt sin 2θh + 21λΔt sin 3θh.
(2.29)

The modulus of |g| is 1, therefore the linearized scheme is unconditionally stable.

3. Numerical Examples and Results

In this part, we consider the following two test problems: the motion of a single solitary wave
and interaction of two solitary waves. All computations are executed on a Pentium 4 PC in
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the Fortran code using double precision arithmetic. For the MEW equation, it is important to
discuss the following three invariant conditions given in [11], which, respectively, correspond
to conversation of mass, momentum, and energy. The accuracy of the method is measured by
both the L2 error norm

C1 =
∫b

a

U dx � h
N∑

J=1

Un
j ,

C2 =
∫b

a

U2 + μ(Ux)2dx � h
N∑

J=1

(
Un

j

)2
+ μ(Ux)nj ,

C3 =
∫b

a

U4dx � h
N∑

J=1

(
Un

j

)4
,

(3.1)

L2 =
∥
∥Uexact −UN

∥
∥
2 �
√
√
√
√h

N∑

J=0

∣
∣
∣Uexact

j − (UN)j
∣
∣
∣
2

(3.2)

and the L∞ error norm

L∞ =
∥
∥Uexact −UN

∥
∥
∞ � max

j

∣
∣
∣Uexact

j − (UN)j
∣
∣
∣ (3.3)

to show how well the scheme predicts the position and amplitude of the solution as the
simulation proceeds. The variable Un

j and its first derivative appearing in (3.1) can be
computed from (2.9), respectively.

3.1. The Motion of Single Solitary Wave

For this problem we consider (2.1) with the boundary condition U → 0 as x → ±∞ and the
initial condition

U(x, 0) = A sech[k(x − x0)]. (3.4)

An exact solution of this problem is given by [11]

U(x, t) = A sech[k(x − x0 − vt)] (3.5)

which represents the motion of a single solitary wave with amplitude A, where the wave
velocity v = A2/2 and k =

√
1/μ. For this problem the analytical values of the invariants are

[11]

C1 =
Aπ

k
, C2 =

2A2

k
+
2μkA2

3
, C3 =

4A4

3k
. (3.6)
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Table 1: Invariants and error norms for single solitary wave with h = 0.1, Δt = 0.05.

t C1 C2 C3 L2 × 103 L∞ × 103

0 0.7853966 0.1666661 0.0052083 0.0000000 0.0000000
5 0.7853966 0.1666662 0.0052083 0.0204838 0.0115451
10 0.7853966 0.1666662 0.0052083 0.0407743 0.0231561
15 0.7853967 0.1666662 0.0052083 0.0606975 0.0347169
20 0.7853967 0.1666663 0.0052083 0.0800980 0.0460618
20 [9] 0.7853898 0.1667614 0.0052082 0.0796940 0.0465523
20 [16] 0.7849545 0.1664765 0.0051995 0.2905166 0.2498925
20 [18] 0.7853977 0.1664735 0.0052083 0.2692812 0.2569972

For the numerical simulation of the motion of a single solitary wave, we choose the
parameters h = 0.1, Δt = 0.05, μ = 1, x0 = 30, A = 0.25 through the interval 0 ≤ x ≤ 80.
The analytical values for the invariants are C1 = 0.7853982, C2 = 0.1666667, C3 = 0.0052083.
The invariants C1 and C2 change from their initial values by less than 1 × 10−7 and 2 × 10−7

respectively, during the time of running, whereas the changes of invariant C3 approach to
zero throughout. The computations are done until time t = 20, and we find L2, L∞ error
norms and numerical invariants C1, C2, C3 at various times. Results are documented in Table
1. One may also compare our results with those in the other studies [9, 16, 18]. According
to both L2, L∞ error norms, agreement between numerical values and exact solution appears
very satisfactorily through illustrations of three invariants and norms. Figure 1 shows that
the proposed method performs the motion of propagation of a solitary wave satisfactorily,
which moved to the right at a constant speed and preserved its amplitude and shape with
increasing time as expected. Amplitude is 0.25 at t = 0 which is located at x = 30, while it
is 0.249900 at t = 20 which is located at x = 30.6. The absolute difference in amplitudes at
times t = 0 and t = 20 is 1 × 10−4 so that there is a little change between amplitudes. The
convergence rates for the numerical method in space sizes hm and time steps UΔtm can be
calculated by following formula [9], respectively,

order =
log10

(∣
∣
∣Uexact −Unum

hm

∣
∣
∣/
∣
∣
∣Uexact −Unum

hm+1

∣
∣
∣

)

log10(hm/hm+1)
,

order =
log10

(∣
∣
∣Uexact −Unum

Δtm

∣
∣
∣/
∣
∣
∣Uexact −Unum

Δtm+1

∣
∣
∣

)

log10(Δtm/Δtm+1)
.

(3.7)

Table 2 displays the convergence rates for different values of space size h and a fixed value of
the time step Δtm. We have clearly seen that the convergence rates when Δt is fixed are not
good these for size. In addition, the time rate of the convergence for the numerical method is
computed with various time stepUΔtm and fixed space step h in Table 3. It can clearly be seen
that the present method provides remarkable reductions in convergence rates for the smaller
time.
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t = 0

0 10 20 30 40 50 60 70 80

0.05

0

0.2

0.15

0.1

0.25

U
(x

,t
)

(a)
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U
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)

(b)

Figure 1: The motion of a single solitary wave with h = 1, Δt = 0.05 at t = 0 and t = 20.

3.2. Interaction of Two Solitary Waves

In this section, we consider (2.1)with boundary conditionsU → 0 as x → ±∞ and the initial
condition

U(x, 0) =
2∑

j=1

Ajsech
(
k
[
x − xj

])
(3.8)

where k =
√
1/μ.

Firstly we studied the interaction of two positive solitary waves with the parameters
h = 0.1, Δt = 0.025, μ = 1, A1 = 1, A2 = 0.5, x1 = 15, x2 = 30 through the interval 0 ≤ x ≤ 80
which used the earlier papers [9–11]. The analytic invariants are [16] C1 = π(A1 + A2) =
4.7123889, C2 = (8/3)(A2

1 + A2
2) = 3.3333333, C3 = (4/3)(A4

1 + A4
2) = 1.4166667 and changes

in C1, C2, and C3 are less than 4.1 × 10−3, 4.3 × 10−3, and 3.6 × 10−3 percent, respectively, as
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Table 2: The order of convergence at t = 20, Δt = 0.05, A = 0.25.

hm L2 × 103 order L∞ × 103 order
0.8 4.16296467 — 2.78665608 —
0.4 1.21228931 1.77987727 0.68462204 2.02515531
0.2 0.31752640 1.93278558 0.18175645 1.91330117
0.1 0.08009801 1.9803824 0.04606181 1.98036355
0.05 0.01932448 2.05133680 0.01122974 2.03624657
0.025 0.00530959 1.86375722 0.00304044 1.88497250

Table 3: The order of convergence at t = 20, h = 0.1, A = 0.25.

Δtm L2 × 103 order L∞ × 103 order
0.8 0.08383192 — 0.08300304 —
0.4 0.07424489 0.17520793 0.05061152 0.71369837
0.2 0.07833790 −0.07817543 0.04448503 0.18614587
0.1 0.07972878 −0.02539013 0.04573242 −0.03989733
0.05 0.08009801 −0.00666580 0.04606181 −0.01035383
0.025 0.08019167 −0.00168598 0.04614408 −0.00257446

Table 4: Invariants for the interaction of two solitary waves.

A1 = 1, A2 = 0.5 (0 ≤ x ≤ 80) A1 = −2, A2 = 1 (0 ≤ x ≤ 150)
t C1 C2 C3 C1 C2 C3

0 4.7123732 3.3333253 1.4166643 −3.1415737 13.3332816 22.6665313
5 4.7123861 3.3333482 1.4166852 −3.1458603 13.3449843 22.7133525
10 4.7123959 3.3333621 1.4166982 −3.1377543 13.3031153 22.5832812
15 4.7124065 3.3333785 1.4167141 −3.1625436 13.3838991 22.8926223
20 4.7124249 3.3334164 1.4167521 −3.1658318 13.3999304 22.9451481
25 4.7124899 3.3335832 1.4169238 −3.1701819 13.4126391 22.9954601
30 4.7127643 3.3333557 1.4177617 −3.1747553 13.4251358 22.0458834
35 4.7130474 3.3352500 1.4188849 −3.1793707 13.4376785 23.0966349
40 4.7124881 3.3336316 1.4171690 −3.1840126 13.4502895 23.1477374
45 4.7123002 3.3331878 1.4167580 −3.1886789 13.4629730 23.1991979
50 4.7122479 3.3330923 1.4167142 −3.1933699 13.4757303 23.2510209
55 4.7122576 3.3331149 1.4167237 −3.1980856 13.4885624 23.3032108

can be seen in Table 4. The experiment was run from t = 0 to t = 55 to allow the interaction
to take place. This condition is propagated to the right with velocities dependent upon their
magnitudes and a stage is reached where the larger wave has passed through the smaller
solitary wave and has emerged with their original shapes. Figure 2 shows the interactions of
two positive solitary waves. Interaction started at about time t = 25, overlapping processes
occurred between times t = 25 and t = 40 and, waves started to resume their original shapes
after time t = 40. It can be seen that, at t = 5, the wave with larger amplitude is on the left
of the second wave with smaller amplitude. The larger wave catches up with the smaller one
as time increases. At t = 55, the amplitude of larger waves is 0.999581 at the point x = 44.4
whereas the amplitude of the smaller one is 0.510464 at the point x = 34.7. It is found that
the absolute difference in amplitude is 1.04 × 10−1 for the smaller wave and 0.419 × 10−3 for
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Figure 2: Interaction of two solitary waves at different times.

the larger wave for this algorithm. Finally, we have studied the interaction of two solitary
waves with the following parameters, μ = 1, x1 = 15, x2 = 30, A1 = −2, A2 = 1 together with
time step Δt = 0.025 and space step h = 0.1 in the range 0 ≤ x ≤ 150. The experiment was run
from t = 0 to t = 55 to allow the interaction to take place. Figure 3 shows the development
of the solitary wave interaction. As is seen from Figure 3, at t = 0, a wave with the negative
amplitude is on the left of another wave with the positive amplitude. The larger wave with
the negative amplitude catches up with the smaller one with the positive amplitude as
the time increases. At t = 55, the amplitude of the smaller wave is 0.972910 at the point
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Figure 3: Interaction of two solitary waves at different times.

x = 52.5, whereas the amplitude of the larger one is −2.016990 at the point x = 124.3. It
is found that the absolute difference in amplitudes is 0.27 × 10−1 for the smaller wave and
0.16×10−1 for the larger wave. The analytical invariants can be found asC1 = −3.1415927, C2 =
13.3333333, C3 = 22.6666667 and changes in C1, C2, and C3 are less than 10.5×10−3, 3.7×10−3,
and 10.9 × 10−3, percent, respectively. Table 4 lists the values of the invariants of the two
solitary waves with amplitudes A1 = 1, A2 = 0.5, and A1 = −2, A2 = 1. It can be seen
that the values obtained for the invariants are satisfactorily constant during the computer
run. We have also compared the computed values of the invariants of the two solitary waves
with results from [9] in Table 5.
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Table 5: Comparison of invariants for the interaction of two solitary waves with results from [9] with
h = 0.1, Δt = 0.025, A1 = 1, A2 = 0.5, (0 ≤ x ≤ 80).

t C1 C2 C3 C1 [9] C2 [9] C3 [9]
0 4.7123732 3.3333253 1.4166643 4.7123884 3.3352890 1.4166697
5 4.7123861 3.3333482 1.4166852 4.7123718 3.3352635 1.4166486
10 4.7123959 3.3333621 1.4166982 4.7123853 3.3352836 1.4166647
15 4.7124065 3.3333785 1.4167141 4.7123756 3.3352894 1.4166772
20 4.7124249 3.3334164 1.4167521 4.7123748 3.3353041 1.4166926
25 4.7124899 3.3335832 1.4169238 4.7124173 3.3354278 1.4168363
30 4.7127643 3.3333557 1.4177617 4.7126410 3.3359464 1.4176398
35 4.7130474 3.3352500 1.4188849 4.7128353 3.3364247 1.4186746
40 4.7124881 3.3336316 1.4171690 4.7123946 3.3355951 1.4170695
45 4.7123002 3.3331878 1.4167580 4.7122273 3.3352364 1.4166637
50 4.7122479 3.3330923 1.4167142 4.7121567 3.3351175 1.4165797
55 4.7122576 3.3331149 1.4167237 4.7121400 3.3350847 1.4165527

4. Conclusion

In this paper, the cubic B-spline lumped Galerkin method has been successfully applied to
obtain the numerical solution of the modified equal width wave equation. The efficiency of
the method was tested on two test problems of wave propagation: the motion of a single
solitary wave and the interaction of two solitary waves, and its accuracy was shown by
calculating error norms L2 and L∞. It is clear that the error norms are adequately small and the
invariants are satisfactorily constant in all computer run. The method can be also efficiently
applied for solving a large number of physically important non-linear problems.
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