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We utilize the improved Riccati equation method to construct more general exact solutions to
nonlinear equations. And we obtain the travelling wave solutions involving parameters, which
are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions.
When the parameters are taken as special values, the method provides not only solitary wave
solutions but also periodic waves solutions. The method appears to be easier and more convenient
by means of a symbolic computation system. Of course, it is also effective to solve other nonlinear
evolution equations in mathematical physics.

1. Introduction

More and more problems in the branches of modern mathematical physics are described
in terms of suitable nonlinear models, and nonlinear physical phenomena are related to
nonlinear equations, which are involved in many fields from physics to biology, chemistry,
mechanics, and so forth. Nonlinear wave phenomena are very important in nonlinear
sciences, in recent years, much effort has been spent on the construction of exact solutions
of nonlinear partial differential equations. Many powerful and efficient methods have been
presented to obtain the exact traveling wave solutions of nonlinear evolution equations, such
as the Backlund transformation method [1, 2], Exp-function method [3, 4], homogeneous
balance method [5, 6], tanh-function method [7, 8], the Jacobi elliptic function expansion
[9, 10], and the G′/G-expansion method [11, 12]. A search of directly seeking for exact
solutions of nonlinear equations has been more interesting because of the availability of
symbolic computation, Mathematica or Maple. These computation systems are adequately
utilized to perform some complicated and tedious algebraic and differential calculations on
a computer. By using these methods and tools, one can successfully obtain exact solutions.
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The ZK equation governs the behavior of weakly nonlinear ion-acoustic waves in
plasma comprising cold ions and hot isothermal electrons in the presence of a uniform
magnetic field. When the ion or electron plasma does not meet the Boltzmann distribution,
Munro and Parkes derive the modified ZK equation (mZK equation), they also studied
planar periodic two-dimensional long-wave perturbation wave solutions and the stability
of traveling wave solutions in isolation [13, 14]. The mZK equation represents an anisotropic
two-dimensional generalization of the KdV equation and can be derived in a magnetized
plasma for small amplitude Alfven wave at a critical angle to undisturbed magnetic field.
mZK equation is effectively applied to describe the evolution of various solitary waves
in isothermal multicomponent magnetized plasma, similarly the description of stability of
solitary waves of mZK equation has also appeared in [15]. The mZK equation has attracted
the attention of many researchers in the past few years. For instance, from the mathematical
point of view, local and global existence for the Cauchy problem was studied in [16–18].

The G′/G-expansion method was proposed originally by Wang et al., which is one
of the most effective direct methods to obtain travelling wave solutions for a large number
of nonlinear evolution equations. This useful method is widely employed by many authors
[11, 12]. The key ideas of the G′/G-expansion method are that the travelling wave solutions
of nonlinear evolution equations can be expressed by polynomials in G′/G, where G satisfies
a second order linear differential equation, the degree of the polynomials can be determined
by considering the homogeneous balance between the highest order partial derivatives and
nonlinear terms appearing in nonlinear evolution equations considered, the coefficients of the
polynomials can be obtained by solving a set of simultaneous algebraic equations resulted
from the process of using the proposed method.

The paper is motivated by the desire to present a new method, named the improved
Riccati equation method, so that it can be successfully applied to seeking the exact travelling
wave solutions to the mZK equation. We will obtion two group values of coefficients
regarding Riccati equation and nonlinear evolution equation. By contrast to both Riccati
equation method and G′/G-expansion method, at this point, it is surely a meaningful
improvement and innovation we have made to obtain much more abundant solutions.
Following the description of the improved Riccati equation method, one can have access to
exact solutions to nonlinear evolution equations smoothly.

2. Description of the Improved Riccati Equation Method

Step 1. We consider the nonlinear evolution equations in three independent variables x, y, t
and dependent variable u:

N
(
u, ux, ut, uxx, uxt, utt, uy, uxy, . . .

)
= 0. (2.1)

We seek their traveling wave solutions in the following form

u
(
x, y, t

)
= u(ξ), ξ = kx + cy + dt, (2.2)

where k, c, and d are arbitrary constants.
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Equation (2.1) can be converted to an ordinary differential equation

N1
(
u, u′, u′′, . . .

)
= 0. (2.3)

Step 2. In order to construct travelling wave solutions of nonlinear equations, it is reasonable
to introduce the following ansatz

u
(
x, y, t

)
= u(ξ) =

n∑

i=−n
aif

i(ξ), (2.4)

where ai are constants to be determined later, the balancing number n is a positive integer
which can be determined by balancing the highest order derivative terms with the highest
power nonlinear terms in (2.3) and f(ξ) satisfies the following elliptic equation:

f ′(ξ) = p + rf(ξ) + qf2(ξ), (2.5)

where p, r, q are real parameters. And f(ξ) can also be expanded to the following ansatz:

f(ξ) =
m∑

i=−m
bi

(
G′

G

)m

, (2.6)

and G(ξ) satisfies the following elliptic equations:

G′′(ξ) + λG′(ξ) + μG(ξ) = 0, (2.7)

where bi are constants to be determined later, λ, μ are real parameters. m is a positive integer
which can be determined by balancing the highest order derivative terms with the highest
power nonlinear terms in (2.5), and so we can get m = 1.

Step 3. We substitute (2.6) and (2.7) into (2.5), equating the coefficients of all powers of
(G′/G) to zero, and we can get solutions of f(ξ) with computerized symbolic computation.

Step 4. Then we substitute (2.4) and (2.5) into (2.3), equating the coefficients of all powers of
f(ξ) to zero, solving this set of algebraic equation with computerized symbolic computation,
inserting these results and solutions of f(ξ) into (2.4). Finally, setting ξ = kx + cy + dt, we
obtain the exact travelling wave solutions of (2.1).

3. Applications

We consider the modified Zakharov-Kuznetsov (mZK) equations in the following form:

ut + u2ux + uxxx + uxyy = 0. (3.1)
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We also make the transformation ξ = kx + sy − ωt, where ω, k, s are constants to be
determined later. Then (3.1) is reduced to the following:

−ωu +
ku3

3
+
(
k3 + ks2

)
u′′ = 0. (3.2)

By balancing the highest order derivative terms and nonlinear terms in (3.2), so we get
n = 1. Then we can suppose that (3.2) has the solutions in the form:

u(ξ) = a−1f−1(ξ) + a0 + a1f(ξ). (3.3)

On substituting (2.5) and (3.3) into (3.2), collecting all terms with the same powers
of fi(ξ) and setting each coefficient of the polynomials to zero, solving the over-determined
algebraic equations by Mathematica, we can obtain the following results.

Set 1.

ω = −1
2
k
(
4pq − r2

)(
k2 + s2

)
, a−1 = ±p

√
6(−k2 − s2),

a0 = ±
√

3
2
r2(−k2 − s2), a1 = 0, k2 + s2 /= 0, k /= 0, p /= 0, r /= 0.

(3.4)

Set 2.

ω = −1
2
k
(
4pq − r2

)(
k2 + s2

)
, a−1 = 0, a0 = ±

√
3
2
r2(−k2 − s2),

a1 = ±q
√
6(−k2 − s2), k2 + s2 /= 0, k /= 0, q /= 0, r /= 0.

(3.5)

Similarly, we can also get the following result.

Case 1.

q /= 0, p =
r2 − λ2 + 4μ

4q
, b0 =

−λ − r

2q
, b1 = −1

q
, b−1 = 0. (3.6)

Case 2.

q /= 0, p =
r2 − λ2 + 4μ

4q
, b0 =

λ − r

2q
, b1 = 0, b−1 = p +

λ2 − r2

4q
. (3.7)

Using Case 1, substituting Sets 1, 2, and the general solutions of (2.6) into formula
(3.3), we have three types of travelling wave solutions as follows (c1 and c2 are arbitrary
constants, ξ = kx + sy + (1/2)k(4pq − r2)(k2 + s2)t).
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When r2 − 4pq > 0, we obtain the hyperbolic function solutions of (3.1)

u1(ξ)

= ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ+r

2q
− 1
q

⎛

⎜
⎝

√
r2−4pq
2

c1 sinh
(√

r2−4pq/2
)
ξ+c2 cosh

(√
r2−4pq/2

)
ξ

c2 sinh
(√

r2−4pq/2
)
ξ+c1 cosh

(√
r2−4pq/2

)
ξ
− λ

2

⎞

⎟
⎠

⎞

⎟
⎠

−1

,

u2(ξ)

= ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ+r

2q
− 1
q

⎛

⎜
⎝

√
r2−4pq
2

c1 sinh
(√

r2− 4pq/2
)
ξ+c2 cosh

(√
r2− 4pq/2

)
ξ

c2 sinh
(√

r2− 4pq/2
)
ξ+c1 cosh

(√
r2− 4pq/2

)
ξ
− λ

2

⎞

⎟
⎠

⎞

⎟
⎠.

(3.8)

If c1 /= 0, c21 > c22, then u(ξ) becomes the solitary wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
r2 − 4pq

2
tanh

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠

−1

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
r2 − 4pq

2
tanh

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠,

(3.9)

where ξ0 = tanh−1(c2/c1).
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If c2 /= 0, c22 > c21, then u(ξ) becomes the solitary wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
r2 − 4pq

2
coth

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠

−1

,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
r2 − 4pq

2
coth

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠,

(3.10)

where ξ0 = tanh−1(c1/c2).
When r2 − 4pq = 0, we get the rational function solutions of (3.1)

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

(
−λ + r

2q
− 1
q

(
c2

c1 + c2ξ
− λ

2

))−1
,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

(
−λ + r

2q
− 1
q

(
c2

c1 + c2ξ
− λ

2

))
.

(3.11)

When r2 − 4pq < 0, we obtain the trigonometric function solutions of (3.1)

u1(ξ)

= ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
4pq − r2

2

c2 cos
(√

4pq − r2/2
)
ξ − c1 sin

(√
4pq − r2/2

)
ξ

c1 cos
(√

4pq − r2/2
)
ξ + c2 sin

(√
4pq − r2/2

)
ξ
− λ

2

⎞

⎟
⎠

⎞

⎟
⎠

−1

,

u2(ξ)

= ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
4pq − r2

2

c2 cos
(√

4pq − r2/2
)
ξ − c1 sin

(√
4pq − r2/2

)
ξ

c1 cos
(√

4pq − r2/2
)
ξ + c2 sin

(√
4pq − r2/2

)
ξ
− λ

2

⎞

⎟
⎠

⎞

⎟
⎠.

(3.12)
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If c1 /= 0, c21 > c22, then u(ξ) becomes the periodic wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
4pq − r2

2
tan

⎛

⎜
⎝ξ0 −

√
4pq − r2

2
ξ

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠

−1

,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
4pq − r2

2
tan

⎛

⎜
⎝ξ0 −

√
4pq − r2

2
ξ

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠,

(3.13)

where ξ0 = tan−1(c2/c1).
If c2 /= 0, c22 > c21, then u(ξ) becomes the periodic wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
4pq − r2

2
cot

⎛

⎜
⎝

√
4pq − r2

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠

−1

,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝−λ + r

2q
− 1
q

⎛

⎜
⎝

√
4pq − r2

2
cot

⎛

⎜
⎝

√
4pq − r2

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

⎞

⎟
⎠,

(3.14)

where ξ0 = tan−1(c1/c2).
Using Case 2, substituting Sets 1, 2, and the general solutions of (2.6) into formula

(3.3), we have three types of travelling wave solutions as follows (c1 and c2 are arbitrary
constants, ξ = kx + sy + (1/2)k(4pq − r2)(k2 + s2)t).
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When r2 − 4pq > 0, we obtain the hyperbolic function solutions of (3.1)

u1(ξ)

= ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
r2 − 4pq

2

c1 sinh
(√

r2 − 4pq/2
)
ξ + c2 cosh

(√
r2 − 4pq/2

)
ξ

c2 sinh
(√

r2 − 4pq/2
)
ξ + c1 cosh

(√
r2 − 4pq/2

)
ξ
− λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠

−1

,

u2(ξ)

= ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
r2 − 4pq

2

c1 sinh
(√

r2 − 4pq/2
)
ξ + c2 cosh

(√
r2 − 4pq/2

)
ξ

c2 sinh
(√

r2 − 4pq/2
)
ξ + c1 cosh

(√
r2 − 4pq/2

)
ξ
− λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠.

(3.15)

If c1 /= 0, c12 > c2
2, then u(ξ) becomes the solitary wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
r2 − 4pq

2
tanh

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠

−1

,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
r2 − 4pq

2
tanh

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠,

(3.16)

where ξ0 = tanh−1(c2/c1).
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If c2 /= 0, c22 > c21, then u(ξ) becomes the solitary wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
r2 − 4pq

2
coth

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠

−1

,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
r2 − 4pq

2
coth

⎛

⎜
⎝

√
r2 − 4pq

2
ξ + ξ0

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠,

(3.17)

where ξ0 = tanh−1(c1/c2).
When r2 − 4pq = 0, we get the rational function solutions of (3.1)

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

(
λ − r

2q
+
μ

q

(
c2

c1 + c2ξ
− λ

2

)−1)−1
, (3.18)

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

(
λ − r

2q
+
μ

q

(
c2

c1 + c2ξ
− λ

2

)−1)

. (3.19)

When r2 − 4pq < 0, we obtain the trigonometric function solutions of (3.1)

u1(ξ)

= ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
4pq − r2

2

c2 cos
(√

4pq − r2/2
)
ξ − c1 sin

(√
4pq − r2/2

)
ξ

c1 cos
(√

4pq − r2/2
)
ξ + c2 sin

(√
4pq − r2/2

)
ξ
− λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠,

u2(ξ)

= ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
4pq − r2

2

c2 cos
(√

4pq − r2/2
)
ξ − c1 sin

(√
4pq − r2/2

)
ξ

c1 cos
(√

4pq − r2/2
)
ξ + c2 sin

(√
4pq − r2/2

)
ξ
− λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠,

(3.20)
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If c1 /= 0, c21 > c22, then u(ξ) becomes the periodic wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
4pq − r2

2
tan

⎛

⎜
⎝ξ0 −

√
4pq − r2

2
ξ

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠

−1

,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q

√
6(−k2 − s2)

×

⎛

⎜
⎝

λ − r

2q
+
μ

q

⎛

⎜
⎝

√
4pq − r2

2
tan

⎛

⎜
⎝ξ0 −

√
4pq − r2

2
ξ

⎞

⎟
⎠ − λ

2

⎞

⎟
⎠

−1⎞

⎟
⎠,

(3.21)

where ξ0 = tan−1(c2/c1).
If c2 /= 0, c22 > c21, then u(ξ) becomes the periodic wave solutions of (3.1) as follows:

u1(ξ) = ±
√

3
2
r2(−k2 − s2) ± p

√
6(−k2 − s2)

×

⎛

⎜
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,

u2(ξ) = ±
√

3
2
r2(−k2 − s2) ± q
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⎜
⎝

λ − r

2q
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⎜
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⎟
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2
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⎟
⎠

−1⎞

⎟
⎠,

(3.22)

where ξ0 = tan−1(c1/c2).

4. Conclusion

In summary, the improved Riccati equation method has been proposed and used to find out
exact solutions of nonlinear equations with the aid of Mathmatica software. Our method
allows us carry out the solution process of nonlinear wave equations more systematically
and conveniently by computer algebra systems such as Maple and Mathematica. We have
successfully obtained some travelling wave solutions of the mZK equations. When the
parameters are taken as special values, the solitary wave solutions and periodic wave
solutions are obtained. We surely believe that these solutions will be of great importance
for analyzing the nonlinear phenomena arising in applied physical sciences. The work shows
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that the improved Riccati equation method is sufficient, effective and suitable for solving
other nonlinear evolution equations, it deserves further applying and studying as well.
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Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 159–169, 2005.

[3] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and
Fractals, vol. 30, no. 3, pp. 700–708, 2006.

[4] J.-H. He and L.-N. Zhang, “Generalized solitary solution and compacton-like solution of the Jaulent-
Miodek equations using the Exp-function method,” Physics Letters A, vol. 372, no. 7, pp. 1044–1047,
2008.

[5] L. WangM, Y. B. Zhou, and Z. B. Li, “Application of homogeneous balance method to exact solutions
of nonlinear equations in mathematical physics,” Physics Letters A, vol. 216, pp. 67–75, 1996.

[6] M. H. M. Moussa and R. M. El Shikh, “Two applications of the homogeneous balance method for
solving the generalized Hirota-Satsuma coupled KdV systemwith variable coefficients,” International
Journal of Nonlinear Science, vol. 7, no. 1, pp. 29–38, 2009.

[7] A. A. Soliman, “The modified extended tanh-function method for solving Burgers-type equations,”
Physica A, vol. 361, no. 2, pp. 394–404, 2006.

[8] M. A. Abdou and A. A. Soliman, “Modified extended tanh-function method and its application on
nonlinear physical equations,” Physics Letters A, vol. 353, pp. 487–492, 2006.

[9] S. K. Liu, Z. T. Fu, S. D. Liu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic
wave solutions of nonlinear wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74, 2001.

[10] Z. T. Fu, S. K. Liu, S. D. Liu, and Q. Zhao, “New Jacobi elliptic function expansion and new periodic
solutions of nonlinear wave equations,” Physics Letters A, vol. 290, no. 1-2, pp. 72–76, 2001.

[11] M. Wang, X. Li, and J. Zhang, “The (G′/G)-expansion method and travelling wave solutions of non-
linear evolution equations in mathematical physics,” Physics Letters A, vol. 372, no. 4, pp. 417–423,
2008.

[12] A. Bekir, “Application of the (G′/G)-expansion method for nonlinear evolution equations,” Physics
Letters A, vol. 372, no. 19, pp. 3400–3406, 2008.

[13] S. Munro and E. J. Parkes, “The derivation of a modified Zakharov-Kuznetsov equation and the
stability of its solutions,” Journal of Plasma Physics, vol. 62, no. 3, pp. 305–317, 1999.

[14] S. Munro and E. J. Parkes, “Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov
equation,” Journal of Plasma Physics, vol. 64, no. 4, pp. 411–426, 2000.

[15] A. de Bouard, “Stability and instability of some nonlinear dispersive solitary waves in higher dimen-
sion,” Proceedings of the Royal Society of Edinburgh Section A, vol. 126, no. 1, pp. 89–112, 1996.

[16] F. Linares and A. Pastor, “Local and global well-posedness for the 2D generalized Zakharov-Kuznet-
sov equation,” Journal of Functional Analysis, vol. 260, no. 4, pp. 1060–1085, 2011.

[17] F. Ribaud and S. Vento, “A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov
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