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The present paper deals with fractional-order version of a dynamical system introduced by
Chongxin et al. (2006). The chaotic behavior of the system is studied using analytic and numerical
methods. The minimum effective dimension is identified for chaos to exist. The chaos in the
proposed system is controlled using simple linear feedback controller. We design a controller to
place the eigenvalues of the system Jacobian in a stable region. The effectiveness of the controller
in eliminating the chaotic behavior from the state trajectories is also demonstrated using numerical
simulations. Furthermore, we synchronize the system using nonlinear feedback.

1. Introduction

A variety of problems in engineering and natural sciences are modeled using chaotic
dynamical systems. A chaotic system is a nonlinear deterministic system possessing complex
dynamical behaviors such as being extremely sensitive to tiny variations of initial conditions,
unpredictability, and having bounded trajectories in the phase space [1]. Controlling the
chaotic behavior in the dynamical systems using some form of control mechanism has
recently been the focus of much attention. Somany approaches are proposed for chaos control
namely, OGYmethod [2], backstepping designmethod [3], differential geometricmethod [4],
inverse optimal control [5], sampled-data feedback control [6], adaptive control [7], and so
on. One simple approach is the linear feedback control [8]. Linear feedback controllers are
easy to implement, they can perform the job automatically, and stabilize the overall control
system efficiently [9].

The controllers can also be used to synchronize two identical or distinct chaotic
systems [10–13]. Synchronization of chaos refers to a process wherein two chaotic systems
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adjust a given property of their motion to a common behavior due to a coupling.
Synchronization has many applications in secure communications of analog and digital
signals [14] and for developing safe and reliable cryptographic systems [15].

Fractional calculus deals with derivatives and integration of arbitrary order [16–
18] and has deep and natural connections with many fields of applied mathematics,
engineering, and physics. Fractional calculus has wide range of applications in control theory
[19], viscoelasticity [20], diffusion [21–25], turbulence, electromagnetism, signal processing
[26, 27], and bioengineering [28]. Study of chaos in fractional order dynamical systems and
related phenomena is receiving growing attention [29, 30]. I. Grigorenko and E. Grigorenko
investigated fractional ordered Lorenz system and observed that below a threshold order
the chaos disappears [31]. Further, many systems such as Li and Peng [32], Lu [33], Li
and Chen [34], Daftardar-Gejji and Bhalekar [35], and unified system [36] were investigated
in this regard. Effect of delay on chaotic solutions in fractional order dynamical system is
investigated by the present author [37]. It is demonstrated that the chaotic systems can be
transformed into limit cycles or stable orbits with appropriate choice of delay parameter.
Synchronization of fractional order chaotic systems was also studied by many researchers
[38–41].

In this paper, we propose fractional version of the Lorenz-like chaotic dynamical
system [42]. We investigate minimum effective dimension of the system for chaos to exist.
Then we control the chaos using simple linear feedback control. Further, we synchronize the
proposed fractional order system using feedback control.

2. Preliminaries

2.1. Fractional Calculus

Few definitions of fractional derivatives are known [16–18]. Probably the best known is the
Riemann-Liouville formulation.

The Riemann-Liouville integral of order μ, μ > 0 is given by

Iμf(t) =
1

Γ
(
μ
)
∫ t

0
(t − τ)μ−1f(τ)dτ, t > 0. (2.1)

An alternative definition was introduced by Caputo. Caputo’s derivative is defined as

Dμf(t) =
dm

dtm
f(t), μ = m

= Im−μ d
mf(t)
dtm

, m − 1 < μ < m,

(2.2)
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wherem ∈ N. The main advantage of the Caputo’s formulation is that the Caputo derivative
of a constant is equal to zero, that is not the case for the Riemann-Liouville derivative. Note
that for m − 1 < μ ≤ m,m ∈ N,

IμDμf(t) = f(t) −
m−1∑

k=0

dkf

dtk
(0)

tk

k!
,

Iμtν =
Γ(ν + 1)

Γ
(
μ + ν + 1

) tμ+ν.

(2.3)

2.2. Numerical Method for Solving Fractional Differential Equations

Numerical methods used for solving ODEs have to be modified for solving fractional
differential equations (FDEs). A modification of Adams-Bashforth-Moulton algorithm is
proposed by Diethelm et al. in [43–45] to solve FDEs.

Consider for α ∈ (m − 1, m] the initial value problem (IVP)

Dαy(t) = f
(
t, y(t)

)
, 0 ≤ t ≤ T,

y(k)(0) = y
(k)
0 , k = 0, 1, . . . , m − 1.

(2.4)

The IVP (2.4) is equivalent to the Volterra integral equation

y(t) =
m−1∑

k=0

y
(k)
0

tk

k!
+

1
Γ(α)

∫ t

0
(t − τ)α−1f

(
τ, y(τ)

)
dτ. (2.5)

Consider the uniform grid {tn = nh/n = 0, 1, . . . ,N} for some integer N and h := T/N. Let
yh(tn) be approximation to y(tn). Assume that we have already calculated approximations
yh(tj), j = 1, 2, . . . , n, and we want to obtain yh(tn+1) by means of the equation

yh(tn+1) =
m−1∑

k=0

tkn+1
k!

y
(k)
0 +

hα

Γ(α + 2)
f
(
tn+1, y

P
h (tn+1)

)

+
hα

Γ(α + 2)

n∑

j=0

aj,n+1f
(
tj , yn

(
tj
))
,

(2.6)

where

aj,n+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nα+1 − (n − α)(n + 1)α if j = 0,
(
n − j + 2

)α+1 +
(
n − j

)α+1

−2(n − j + 1
)α+1 if 1 ≤ j ≤ n,

1 if j = n + 1.

(2.7)
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The preliminary approximation yP
h (tn+1) is called predictor and is given by

yP
h (tn+1) =

m−1∑

k=0

tkn+1
k!

y
(k)
0 +

1
Γ(α)

n∑

j=0

bj,n+1f
(
tj , yn

(
tj
))
, (2.8)

where

bj,n+1 =
hα

α

((
n + 1 − j

)α − (
n − j

)α)
. (2.9)

Error in this method is

max
j=0,1,...,N

∣
∣y

(
tj
) − yh

(
tj
)∣∣ = O(hp), (2.10)

where p = min(2, 1 + α).

2.3. Asymptotic Stability of the Fractional-Ordered System

Consider the following fractional-ordered dynamical system:

Dαxi = fi(x1, x2, x3), 1 ≤ i ≤ 3. (2.11)

Let p ≡ (x∗
1, x

∗
2, x

∗
3) be an equilibrium point of the system (2.11) that is, fi(p) = 0, 1 ≤ i ≤ 3 and

ξi = xi − x∗
i a small disturbance from a fixed point. Then

Dαξi = Dαxi

= fi(x1, x2, x3) = fi
(
ξ1 + x∗

1, ξ2 + x∗
2, ξ3 + x∗

3
)

= fi
(
x∗
1, x

∗
2, x

∗
3
)
+ ξ1

∂fi
(
p
)

∂x1
+ ξ2

∂fi
(
p
)

∂x2
+ ξ3

∂fi
(
p
)

∂x3

+ higher-ordered terms

≈ ξ1
∂fi

(
p
)

∂x1
+ ξ2

∂fi
(
p
)

∂x2
+ ξ3

∂fi
(
p
)

∂x3
.

(2.12)

System (2.12) can be written as

Dαξ = Jξ, (2.13)

where ξ = (ξ1, ξ2, ξ3)
t and

J =

⎛

⎝
∂1f1

(
p
)

∂2f1
(
p
)

∂3f1
(
p
)

∂1f2
(
p
)

∂2f2
(
p
)

∂3f2
(
p
)

∂1f3
(
p
)

∂2f3
(
p
)

∂3f3
(
p
)

⎞

⎠. (2.14)
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Consider the linear autonomous system

Dαξ = Jξ, ξ(0) = ξ0, (2.15)

where J is n × n matrix and 0 < α < 1 is asymptotically stable if and only if | arg(λ)| > απ/2
for all eigenvalues λ of J . In this case, each component of solution ξ(t) decays towards 0 like
t−α [29, 46].

This shows that if | arg(λ)| > απ/2 for all eigenvalues λ of J then the solution ξi(t)
of the system (2.13) tends to 0 as t → ∞. Thus, the equilibrium point p of the system is
asymptotically stable if | arg(λ)| > απ/2, for all eigenvalues λ of J , that is, if

min
i

∣
∣arg(λi)

∣
∣ >

απ

2
. (2.16)

3. Fractional Lorenz-Like System

In [42], Chongxin et al. proposed novel Lorenz-like chaotic system

ẋ = a
(
y − x

)
,

ẏ = bx − lxz,

ż = −cz + hx2 +my2,

(3.1)

where a = 10, b = 40, c = 2.5, m = h = 2, l = 1 and initial conditions ((2.2),(2.3), and (28)). In
this paper, we study the corresponding fractional order system

Dαx = a
(
y − x

)
,

Dαy = bx − lxz,

Dαz = −cz + hx2 +my2,

(3.2)

where α ∈ (0, 1). The equilibrium points of the system (3.1) and the eigenvalues of
corresponding Jacobian matrix

J
(
x, y, z

)
=

⎛

⎝
−a a 0

b − lz 0 −lx
2hx 2my −c

⎞

⎠ (3.3)

are given in Table 1. An equilibrium point p of the system (3.1) is called as saddle point if
the Jacobian matrix at p has at least one eigenvalue with negative real part (stable) and one
eigenvalue with nonnegative real part (unstable). A saddle point is said to have index one
(/two) if there is exactly one (/two) unstable eigenvalue/s. It is established in the literature
[47–51] that scrolls are generated only around the saddle points of index two. Saddle points
of index one are responsible only for connecting scrolls.
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Table 1: Equilibrium points and corresponding eigenvalues.

Equilibrium point Eigenvalues
O(0, 0, 0) −25.6155, 15.6155,−2.5
E1(5, 5, 40) −13.8776, 0.688787 ± 11.9851i
E2(−5,−5, 40) −13.8776, 0.688787 ± 11.9851i

x

y
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5

4

4 4.5 5 5.5 6

Figure 1: xy-phase portrait for α = 0.96.

It is clear from Table 1 that the equilibrium points E1 and E2 are saddle points of index
two; hence, there exists a two-scroll attractor [47] in the system (3.2).

The system (3.2) shows regular behavior if it satisfies (2.16), that is, the system is
stable if

α <
2
π
min

i

∣∣arg(λi)
∣∣ ≈ 0.96345. (3.4)

Thus, the system does not show chaotic behavior for α < 0.96345. This result is supported by
numerical experiments. Figure 1 shows phase portrait in xy-plane for α = 0.96. It is observed
that the system shows chaotic behavior for α ≥ 0.97. For α = 0.97 xz-phase portrait is shown
in Figure 2. Figures 3 and 4 show xy- and yz-phase portraits, respectively, for α = 0.98. The
phase portraits in xy- and xz-plane are drawn for α = 0.99 in Figures 5 and 6 respectively.
Thus, the minimum effective dimension of the system is 0.97 × 3 = 2.91.
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Figure 2: xz-phase portrait for α = 0.97.
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Figure 3: xy-phase portrait for α = 0.98.
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Figure 4: yz-phase portrait for α = 0.98.
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Figure 5: xy-phase portrait for α = 0.99.
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Figure 6: xz-phase portrait for α = 0.99.
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Figure 7: Estimate for the control k.

4. Control of Chaos

In this section, we control the chaos in system (3.2). Consider

Dαx = 10
(
y − x

)
,

Dαy = 40x − xz,

Dαz = −2.5z + 2x2 + 2y2 + u,

(4.1)

where u is the linear feedback control term. We set u = kx, where k is a parameter to
be determined so that the system (4.1) is stable. Equilibrium points of system (4.1) are
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Figure 8: Controlled signal α = 1 (k = 22).
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Figure 9: Controlled signal α = 0.99 (k = 20).

z(t)

50

40

30

20 40 60 80 100
t

Figure 10: Controlled signal α = 0.98 (k = 15).
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Figure 11: Controlled signal α = 0.97 (k = 7).
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O = (0, 0, 0), P1 = (−0.125(k +
√
1600 + k2),−0.125(k +

√
1600 + k2), 40) and P2 = (−0.125(k −√

1600 + k2),−0.125(k −
√
1600 + k2), 40). The points P1 and P2 decide. The stability of the

system. The Jacobian matrix is given by

J1
(
x, y, z

)
=

⎛

⎝
−10 10 0
40 − z 0 −x
k + 4x 4y −2.5

⎞

⎠. (4.2)

One eigenvalue e0 of the matrix J1 at point P1 is

− 4.1667 −
(
0.419974

(
218.75 + 0.375k2 + 0.375k

√
1600 + k2

))

/
(
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

+√((
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

)2

+4
(
218.75 + 0.375k2 + 0.375k

√
1600 + k2

)3
))1/3

− (0.132283 ± 0.229122i)
(
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

+√((
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

)2

+4
(
218.75 + 0.375k2 + 0.375k

√
1600 + k2

)3
))1/3

.

(4.3)

The eigenvalue e0 is having negative real part for all k ≥ 0 and hence stable for all 0 ≤ α ≤ 1.
Other two complex-conjugate eigenvalues λ+,− are given by

− 4.1667 −
(
(0.209987 ± 0.363708i)

(
218.75 + 0.375k2 + 0.375k

√
1600 + k2

))

/
(
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

+√((
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

)2

+4
(
218.75 + 0.375k2 + 0.375k

√
1600 + k2

)3
))1/3

− (0.132283 ± 0.229122i)
(
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

+√((
−43843.8 − 19.6875k2 − 19.6875k

√
1600 + k2

)2

+4
(
218.75 + 0.375k2 + 0.375k

√
1600 + k2

)3
))1/3

.

(4.4)
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The stability of eigenvalues λ+,− depends on k. We have plotted the curves | arg(λ)| and απ/2
for α = 0.97, 0.98, 0.99, 1 in Figure 7. The intersection points of the curve | arg(λ)| with the
curves 0.97π/2, 0.98π/2, 0.99π/2 andπ/2 are k ≈ 3.5, k ≈ 8.5, k ≈ 14 and k ≈ 21, respectively.
Following stability condition (2.16), it is clear that the chaos in the system can be controlled
if we take the value of k greater than the corresponding intersection point. Figure 8 shows
controlled time series for α = 1 and k = 22. Similarly, Figures 9, 10, and 11 show controlled
time series for α = 0.99, 0.98, 0.97, and k = 20, 15, 7, respectively.

5. Synchronization

Present section deals with synchronization of proposed fractional-order system. Consider the
master system

Dαx1 = a
(
y1 − x1

)
,

Dαy1 = bx1 − lx1z1,

Dαz1 = −cz1 + hx2
1 +my2

1 ,

(5.1)

and the slave system

Dαx2 = a
(
y2 − x2

)
+ u1,

Dαy2 = bx2 − lx2z2 + u2,

Dαz2 = −cz2 + hx2
2 +my2

2 + u3.

(5.2)

The unknown terms u1, u2, u3 in (5.2) are control functions to be determined. Define the error
functions as

e1 = x1 − x2, e2 = y1 − y2, e3 = z1 − z2. (5.3)

Equation (5.3) together with (5.1) and (5.2) yields the error system

Dαe1 = a(e2 − e1) − u1,

Dαe2 = be1 + lx2z2 − lx1z1 − u2,

Dαe3 = −ce3 + h
(
x2
1 − x2

2

)
+m

(
y2
1 − y2

2

)
− u3.

(5.4)

The control terms ui are chosen so that the system (5.4) becomes stable. There is not a unique
choice for such functions. We choose

u1 = ae2,

u2 = lx2z2 − lx1z1 + e2,

u3 = h
(
x2
1 − x2

2

)
+m

(
y2
1 − y2

2

)
.

(5.5)
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Figure 12: Synchronized signals x1;x2 (α = 0.99).
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Figure 13: Synchronized signals y1;y2 (α = 0.99).

With the choice of ui given by (5.5), the error system (5.4) becomes

Dαe1 = −ae1 = −10e1,
Dαe2 = be1 − e2 = 40e1 − e2,

Dαe3 = −ce3 = −2.5e3.

(5.6)

The eigenvalues of the coefficient matrix of linear system (5.6) are −10,−1, and −2.5. Hence,
the stability condition (2.16) is satisfied for 0 ≤ α ≤ 1 and the errors ei(t) tend to zero as
t → ∞. Thus, we achieve the required synchronization. The simulation results in case α =
0.99 are summarized in Figures 12–15. Synchronization is shown in Figure 12 (signals x1, x2),
Figure 13 (signals y1, y2), and Figure 14 (signals z1, z2). Note that the master systems are
shown by solid lines whereas slave systems are shown by dashed lines. The errors e1(t) (solid
line), e2(t) (dashed line) and e3(t) (dot-dashed line) in the synchronization are shown in
Figure 15. We have studied other cases of α namely, 0.97, and 0.98 but the results are omitted.

6. Conclusion

In the present work, we demonstrate the fractional order Lorenz-like system. We have
observed that the system is chaotic for the fractional order α ≥ 0.97, that is, the minimum
effective dimension of the system is 2.91. We have used simple linear feedback controller
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Figure 14: Synchronized signals z1; z2 (α = 0.99).
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Figure 15: Synchronization errors.

u = kx, (k > 0) and given sufficient condition on k to control the chaos in the proposed
system. Further, we have synchronized the system using feedback control.
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