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This paper suggests two component homotopy method to solve nonlinear fractional integrod-
ifferential equations, namely, Volterra’s population model. Padé approximation was effectively
used in this method to capture the essential behavior of solutions for the mathematical model
of accumulated effect of toxins on a population living in a closed system. The behavior of the
solutions and the effects of different values of fractional-order α are indicated graphically. The
study outlines significant features of this method as well as sheds some light on advantages of the
method over the other. The results show that this method is very efficient, convenient, and can be
adapted to fit a larger class of problems.

1. Introduction

Ecology is the study of different species in relation to their surroundings, competition for
resources within and among the species, and predator-prey [1] relations among them. At
times the surroundings may be infected by metabolic actions of the crowd [2, 3]. In all
these situations, since time rates of changes of population sizes are concerned, it is natural
that the mathematical modeling be given by differential equations or integrodifferential
equations. Integrodifferential equations are usually difficult to solve especially analytically, so
an effective method is required to analyze the mathematical model which provides solutions
conforming to physical reality. Also, fractional-order models are more accurate than integer-
order models, that is, there are more degrees of freedom in the fractional-order models.
Furthermore, fractional derivatives provide an excellent instrument for the description of
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memory and hereditary properties of various materials and processes due to the existence of
a “memory” term in the model. This memory term insures the history and its impact to the
present and future.

Problems of this type have gained escalating importance in recent years and many
interesting outcomes have been accumulated. In the living thing population, the accumu-
lation of metabolic products may cause inconvenience to the whole population and may
ultimately result in a fall of the birth rate while the death rate is increased. We assumed
that the total toxic effect on birth and death rates be expressed by the following nonlinear
fractional-order integrodifferential equation [4]:
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α = p

(
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)(
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(
t
)
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∫ t

0
p(x)dx

)
, p(0) = k, 0 < α ≤ 1, (1.1)

where a > 0 is the birth rate coefficient, b > 0 is the crowding coefficient, and c > 0 is
the toxicity coefficient. The coefficient c indicates the essential behavior of the population
evolution before its level falls to zero in the long term, k is the initial population, p = p(t)

denotes the population at time t, and the term p(t)
∫ t
0 p(x)dx represents the effect of toxin

accumulation on the species. The individual death rate is proportional to this integral, and
so the population death rate due to toxicity must include a factor α. We apply the scale time
and population by introducing the nondimensional variables t = ct/b, v = bp/a to obtain the
following nondimensional problem:

κ
dαv(t)
dtα

− v(t) + v2(t) + v(t)
∫ t

0
v(x)dx = 0, v(0) = v0, 0 < α ≤ 1, (1.2)

where v(t) is the scaled population of identical individuals at time t, and κ = c/ab is a
prescribed nondimensional parameter. The only equilibrium solution of (1.2) is the trivial
solution v(t) = 0.

Several numerical and analytical methods for approximating the ordinary nonlinear
Volterra’s integrodifferential equation are known (see [5–12]).

In the present paper, we introduce a two component homotopy perturbation method
[13–15] for solving nonlinear fractional-order integrodifferential population model. It is
interesting to note that the method depends only on two components of the homotopy series.
The method is an improvement of the classical homotopy perturbation method [16].

2. Approximations of the Nonlinear Fractional-Order
Integrodifferential Equation

To obtain the solution of (1.2) by two components HPM, we construct the following homo-
topy:
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Applying the inverse operator, Jαt to both sides of (2.1), we obtain

V (t) = V (0) + Jαt v0(t) − εJαt

(
v0(t) − 1

κ

(
V (t) − V 2(t) − V (t)

∫ t

0
V (t)dt

))
. (2.2)

The solution of (2.2) to have the following form

V (t) = V0(t) + εV1(t). (2.3)

Substituting (2.3) in (2.2) and equating the coefficients of like powers of ε, we get

V0(t) = V (0) + Jαt v0(t), (2.4)
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Assuming v0(t) =
∑10

n=0 ant
n, V (0) = v(0) then (2.4) becomes
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Utilizing (2.6) in (2.5), we obtain
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Vanishing V1(t) with α = 1 and comparing the coefficients of t, t2, t3, t4, . . ., we obtain the
coefficients as follows:
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After solving the system of (2.8), we obtain the solutions of (1.2) as follows:
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When α = 1, we recovered [5]. Our objective is to find the behavior of the solutions for differ-
ent values of the parameter α. In order to find the behavior of the solution for fractional values
of α, we use Padé approximants which have the advantage of manipulating the polynomial
approximation into a rational function to gain more information about v(t). It is well known
that Padé approximants will converge on the entire real axis if the solution of the problem is
free of singularities on the real axis. Here, we consider the following two special cases.

Case I. We inspect the case α = 1/2, we reproduce the approximate solution obtained in (2.9)
given by the Taylor expansion of V (t) at t = 0 which gives
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For simplicity, let t1/2 = z, then
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Calculating the [10/10] Padé approximants and recalling that z = t1/2, we get

V[10/10](t) =
0.1 +m1t

1/2 +m2t +m2t
3/2 · · · +mrt

5

n0 + n1t + n2t2 + n3t3 · · · + nst5
, (2.12)

where mi and ni, i = 0, 1, 2 are constants.

Case II. Now, we observe the case α = 3/4, we reproduce the approximate solution obtained
in (2.9) given by the Taylor expansion of V (t) at t = 0 which gives
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Figure 1: Approximate curves of fractional-order integrodifferential equation t versus v.
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Figure 2: Approximate curves of fractional-order integrodifferential equation t versus v.

For simplicity, let t1/4 = z, then
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1
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Calculating the [21/21] Padé approximants and recalling that z = t1/4, we get

v[21/21](t) =
0.1 +M1t

1/4 +M2t
3/4 +M2t

5/4 · · · +Mrt
43/4

N0 +N1t +N2t2 +N3t3 · · · +Nst14
. (2.15)

Figure 1 shows the numerical solutions generated by the two component HPM and
Padé approximation for various values of α and κ = 1/2. It should be noted that solution
falls slowly when value of α decreases. One trend that can be observed in Figures 2,
3, 4, and 5 shows the two component HPM combining with Padé approximants shows
the quick rise along the logistic curve followed by the slow exponential decay later than
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Figure 3: Approximate curves of fractional-order integrodifferential equation t versus v.
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Figure 4: Approximate curves of fractional-order integrodifferential equation t versus v.
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Figure 5: Approximate curves of fractional-order integrodifferential equation t versus v.

reaching the maximum point when κ increases, the amplitude of v(t) decreases whereas the
exponential decay increases, for κ = 1/50, 1/25, 1/10, 1/5. It should be noted that the solution
quickly rises when value of α increasing. These figures give the two component HPM-Padé
approximations for some values of α. From these figures, it is shown that the maximum of
v(t) deceases as κ increases. Figures 1–5 show the impact of fractional time parameter and κ
on the behavior of population.
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Table 1: A comparison of two component HPM-Padé with the exact values of vmax for different fractional-
order.

κ Exact
vmax

Reference [5]
α = 1

Present
α = 3/4

Present
α = 1/2

0.02 0.92342717 0.922942037 1.49200000 2.92000000
0.04 0.87371998 0.873725344 1.24600000 2.01600000
0.1 0.76974149 0.765113089 0.94150000 1.23200000
0.2 0.65905038 0.659050432 0.71690000 0.81130000
0.5 0.48519030 0.485190290 0.45740000 0.44320000

Table 2: A comparison of tPresent with the exact values and fractional values of critical t.

κ tExact
α = 1

Reference [5] t
α = 1

tPresent
α = 3/4

tPresent
α = 1/2

0.02 0.11184543 0.11184543 0.07810000 0.06291000
0.04 0.21024644 0.21024644 0.15400000 0.12370000
0.1 0.46447670 0.46447670 0.35150000 0.29070000
0.2 0.81685810 0.81685810 0.67050000 0.54900000
0.5 1.62671100 1.62594670 1.33900000 1.12600000

3. Conclusions

In this paper, two component homotopy-Padé solutions have been presented for the frac-
tional-order integrodifferential equation. We have calculated the solutions for two different
cases α = 3/4, 1/2. The solutions of the population problem will be helpful in past/future
predictions due to memory term. This version of HPM is independent of solving functional-
differential equations. Also, the procedure can be applied for the system of fractional-order
integrodifferential equations. The obtained outcome indicates that this method is powerful
and has an important effect for solving the nonlinear fractional-order equations. Tables 1 and
2 represents the numerical comparison of ordinary and fractional order results for maximum
population and critical time. Finally, the solutions of the problem for α = 1 have been reported
in [5].
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