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We consider the steady-state two-dimensional motion of an inviscid incompressible fluid which
obeys a nonlinear Poisson equation. By seeking solutions of a specific form, we arrive at some
interesting new nonlinear vortex solutions.

1. Introduction

The study of wakes behind bodies has generated significant interest due to the problem’s
important applications. An excellent review of current theories on the evolution of such
wakes is given by Chomaz [1]. Numerical models of these flows are typically based on the
full three-dimensional Navier-Stokes equations. Still, two-dimensional exact solutions of the
Euler equation add significantly to our understanding of such flows [2]. Recently, vortex
solutions of the steady two-dimensional inviscid problem have been used as initial conditions
for solvers applied to the full three-dimensional time-dependent problem. This approach was
adopted by Faddy and Pullin [3] to model the three-dimensional wake behind an aircraft
wing. Flows which bear strong resemblance to exact vortex solutions occur in many other
applications; a recent experimental study [4] involving cavity flows provides some good
examples of this. In the present contribution we examine a class of exact solutions of the two-
dimensional inviscid problemwhich are related to vortex flows. Similar theoretical efforts are
well documented; in particular, we note two recent contributions [5, 6].
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In plane two-dimensional hydrodynamics, the equation governing the motion of an
inviscid incompressible fluid can be written in terms of a stream function ψ(x, y, t) as

∂

∂t
∇2ψ − ∂

(
ψ,∇2ψ

)

∂
(
x, y

) = 0, (1.1)

where ∂(a, b)/∂(x, y) = (∂a/∂x) (∂b/∂y)−(∂a/∂y) (∂b/∂x) is a Jacobian and∇2 = ∂2/∂x2 +
∂2/∂y2 is the two-dimensional Laplacian. The stream function equation (1.1) admits steady-
state solutions of the form

∇2ψ = F(ψ) (1.2)

for any functionF. Equation (1.2) is a nonlinear Poisson or an elliptic Klein-Gordon equation,
and a number of solutions are known for two-dimensional hydrodynamics. In particular, the
solution corresponding to a row of corotating Stuart vortices [7] is ψ = ln[coshy − ε cosx],
while the solution corresponding to the counter-rotating Mallier-Maslowe (M&M) vortices
[8] is

ψ = ln
[
cosh εy − ε cosx
cosh εy + ε cosx

]
. (1.3)

Stuart vortices satisfy Liouville’s equation [9],∇2ψ = (1−ε2)e−2ψ , and a number of additional
solutions of Liouville’s equation are known, with some of these given in [10–12]. M&M
vortices satisfy the sinh-Poisson, or elliptic sinh-Gordon, equation, ∇2ψ = (−1/2)(1 −
ε2) sinh 2ψ. Again, a number of additional solutions are known [5, 13, 14], some of which
involve Jacobian elliptic functions [15] such as cn and sn, which are doubly periodic functions
of z = x + iy.

The goal of this study is to find solutions to (1.2), that are nonlinear vortex solutions
of the form

ψ = ln
[
Af2(x) + Bg2(y

)
+ C

]
, (1.4)

withA, B, C constants and g(y) = tu(y | a) and f(x) = vw(x | b). Here we employ a compact
notation where t, u, v,w are any four of the letters c, s, d, n, so that tu and vw may represent
any of the 12 Jacobian elliptic functions [15, Table 16.2] with parameters a or b. When t and
u are the same, or v and w are the same, resulting in cc, for example, the corresponding
function is set equal to unity. The original motivation for this form was that the Stuart vortex
can be written as ψ = ln[cosh2y − εcos2x − (1 + ε)/2], and (1.4) suggests itself as a likely form
for a generalization of the Stuart vortex.
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Due to relations between the Jacobian elliptic functions, we need not consider all
twelve. By definition uv(x | a) = un(x | a)/vn(x | a). The squares are related according
to [15]

−dn2(x | a) + ã = −acn2(x | a) = asn2(x | a) − a,

−ãnd2(x | a) + ã = −aãsd2(x | a) = acd2(x | a) − a,

ãsc2(x | a) + ã = ãnc2(x | a) = dc2(x | a) − a,

cs2(x | a) + ã = ds2(x | a) = ns2(x | a) − a,

(1.5)

where ã = 1 − a, so that we can write all twelve in terms of cn, cd, dc, cs. We also have
expressions for change of argument [15], cd(x + Ka | a) = −sn(x | a) and cs(x + Ka | a) =
−ã1/2sc(x | a), whereKa is the quarter-period, so that we can write all twelve in terms of just
two functions, cn and dc.

The Jacobian elliptic functions reduce to circular or hyperbolic functions, or sometimes
constants, when the parameter a is either 0 or 1 [15]. Because of this, we will also look for
solutions when either, or both, of the Jacobian functions in (1.4) are replaced by a circular or
hyperbolic function, and for these solutions we canmake use of the relations cosh2x−sinh2x =
1, cos2x + sin2x = 1, and sin(x + π/2) = cosx.

2. Analysis

We substituted the assumed form (1.4) into the nonlinear Poison equation (1.2) for the
various different f(x) and g(y) under consideration and found the values of the constants
A, B, and C for which the assumed form was indeed a solution. The solutions we found are
presented in Tables 1, 2, and 4.

2.1. Solutions with No Jacobian Functions

There are a number of solutions of the prescribed form involving only hyperbolic and circular
functions, and these are presented in Table 1, with H denoting a hyperbolic function and C
denoting a circular function. The solution HC1 is of course the well-known Stuart vortex [7]
and is unique amongst the solutions in Table 1 in that it represents a family of solutions,
because of the parameter ε, while the other solutions in the table are isolated solutions.
The HC solutions satisfy Liouville’s equation ∇2ψ = kelψ , while the HH and CC solutions
satisfy the equation ∇2ψ = ceψ + de−2ψ , where c = ±16/27 and d = ± 2. It should of course
be remembered that if we replace sec by csc in these solutions, we get the same solution
displaced a distance π/2.

The solutions in Table 1 are plotted in Figure 1. HC1 is the familiar Stuart vortex,
consisting of a row of cat’s eyes in series. HC2 resembles the Stuart vortex, but with each
cat’s eye rotated by 90◦, so that it looks like a row of cat’s eyes in parallel, and HC3 looks like
HH2 but with the cat’s eyes centered on |y| = ∞ instead of y = 0. HC1 appears to consist of
two vortices, one centered on x = y = 0 and a second on |x| = |y| = ∞, HC2 looks like a single
cat’s eye centered on y = 0 and |x| = ∞, and HH3 looks like a vortex centered on |x| = |y| = ∞.
Finally, CC1 is a double periodic array of vortices.
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Table 1: Solutions with only hyperbolic and circular functions.

exp(ψ) ∇2ψ

cosh2y + εcos2x − ε + 1
2

(1 − ε2)e−2ψ HC1

sec2x − sech2y 2eψ HC2

sec2x + csch2y 2eψ HC3

sech2y + sech2x − 2
3 −16

27
e−2ψ − 2eψ

HH1

sech2y − csch2x − 2
3 −16

27
e−2ψ − 2eψ

HH2

csch2y + csch2x +
2
3 −16

27
e−2ψ + 2eψ

HH3

sec2y + sec2x − 2
3

16
27
e−2ψ + 2eψ CC1

Table 2: Solutions with one Jacobian function and one hyperbolic or circular function; α = (1 − aã)1/4,
c1 = (4/27)(2a − 2α2 − 1)(2a + α2 − 1)2 and c2 = (4/27)(2a + 2α2 − 1)(2a − α2 − 1)2.

exp(ψ) ∇2ψ

acn2(y | a) + α2sech2αx +
1 − 2a − α2

3

c1e
−2x − 2ex

HE1

dc2(y | a) − α2sech2αx +
α2 − 1 − a

3
c1e

−2x + 2ex
HE2

acn2(y | a) − α2csch2αx +
1 − 2a − α2

3
c1e

−2x − 2ex
HE3

dc2(y | a) + α2csch2αx +
α2 − 1 − a

3
c1e

−2x + 2ex
HE4

acn2(y | a) − α2sec2αx +
1 − 2a + α2

3
c2e

−2x − 2ex
CE1

dc2(y | a) + α2sec2αx − α2 + 1 + a
3

c2e
−2x + 2ex CE2

Whereas the Stuart vortex HC1 is a smooth solution, the other solutions have
singularities. HC2 is singular on the lines x = ±π/2,± 3π/2, . . . and y = 0. HC3 is singular on
the lines x = ±π/2,± 3π/2, . . . and y = 0. HH1 is singular on the curve sech2y+sech2x = 2/3.
HH2 is singular on the line x = 0 and on the curve sech2y = csch2x + 2/3. HH3 is singular
on the lines x = 0 and y = 0. CC1 is singular on the lines x = ±π/2,± 3π/2, . . . and
y = ±π/2,± 3π/2, . . ..
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Table 3: Limits of eψ from Table 2; †means x and y are interchanged.

a = 0 a = 1 a = 0 a = 1

y +Ka y +Ka

HE1 sech2x HH1 sech2x sech2x − 2
3

HE2 HC2†
2
3
− sech2x HC2† HH2†

HE3 −csch2x HH2 csch2x
2
3
+ csch2x

HE4 HC3† csch2x +
2
3

HC3† HH3

CE1
2
3
− sec2x HC2 sec2x − 2

3
sec2x

CE2 CC1 sec2x CC1 HC3

Table 4: Solutions with two Jacobian functions; γ = αβ and χ = (4/27)[γ6(b− 2)(2b− 1)(b+ 1) + (a− 2)(2a−
1)(a + 1)].

exp(ψ) ∇2ψ

acn2(y | a) + b γ2cn2(γx | b) + 1 − 2a + γ2(1 − 2b)
3

χe−2ψ − 2eψ
EE1

acn2(y | a) − γ2dc2(γx | b) + 1 − 2a + γ2(1 + b)
3

χe−2ψ − 2eψ
EE2

dc2(y | a) + γ2dc2(γx | b) − 1 + a + γ2(1 + b)
3

χe−2ψ + 2eψ EE3

2.2. Solutions with One Jacobian Function

There are also a number of solutions of the prescribed form involving one Jacobian elliptic
function and one hyperbolic or circular function. For the reasons given earlier in this section,
we need only consider cn and dc, and the resulting solutions are presented in Table 2 and
plotted in Figure 2. HE1 looks like a row of cat’s eyes centered on x = 0 and a second
staggered row centered on |x| = ∞. HE2 looks like HC2 rotated through 90◦, HE3 looks like
a row of cat’s eyes centered on |x| = ∞, HE4 looks like HC3 rotated through 90◦, CE1 looks
like a stack of rows of cat’s eyes, or equivalently a row of cat’s eyes in a bounded channel,
and CE2 looks like CC1. When we set the parameter a to either 0 or 1, the Jacobian functions
become either circular or hyperbolic functions, or constant, so in these limits, the solutions in
Table 2 should reduce to either one of the solutions of Section 2.1 or to a function of either x
alone or y alone, and Table 3 confirms that this does indeed occur. Regrettably, none of the
solutions in Table 2 reduces to the Stuart vortex in either limit. The two right-hand columns
of Table 3 labelled y +Ka merit further explanation. The expressions for change of argument,
cd(x + Ka | a) = −sn(x | a) and cs(x + Ka | a) = −ã1/2sc(x | a), mean that the solutions
involving cd look the same as those involving cn, but the limits when a → 0 and a → 1
differ for the two functions, and this is what is shown in those two right-hand columns.

Each of the solutions in Table 2 obeys the equation ∇2ψ = ceψ + de−2ψ , where c = c1 or
c2 and d = ±2. This equation reduces to Liouville’s equation when a = 0 for the HE solutions
and when a = 1 for the CE solutions.

The solutions in Table 2 each have singularities. HE1 is singular on the curve acn2(y |
a) + α2sech2αx + (1 − 2a − α2)/3 = 0. HE2 is singular on the lines y = ±Ka,± 3Ka, . . ., where
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 1: Solutions with only hyperbolic and circular functions: (a) HC1; (b) HC2; (c) HC3; (d) HH1; (e)
HH2; (f) HH3; (g) CC1; definitions in Table 1.

(a) (b) (c)

(d) (e) (f)

Figure 2: Solutions with one Jacobian function and one hyperbolic or circular function, a = 1/2: (a) HE1;
(b)HE2; (c) HE3; (d) HE4; (e) CE1; (f) CE2; definitions in Table 2.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3: Solutions with two Jacobian functions: (a) EE1, a = b = 1/2; (b) EE1, a = 1/16, b = 9/16; (c)
EE2, a = b = 1/2; (d) EE2, a = 1/16, b = 9/16; (e) EE2, a = 9/16, b = 1/16; (f) EE3, a = b = 1/2; (g) EE3,
a = 1/16, b = 9/16; definitions in Table 4.

Ka is the quarter-period of dc(y | a). HE3 is singular at x = 0 and on the curve dc2(y |
a)+α2csch2αx+(α2−1−a)/3. HE4 is singular on the lines x = 0 and y = ±Ka,± 3Ka, . . .. CE1 is
singular on the lines x = ±π/2,± 3π/2, . . .. CE2 is singular on the lines x = ±π/2,± 3π/2, . . .
and y = ± Ka,± 3Ka, . . ..

2.3. Solutions with Two Jacobian Functions

Finally, we come to solutions of the prescribed form involving two Jacobian elliptic functions.
For the reasons given earlier in this section, we need only consider cn and dc, and the
resulting solutions are presented in Table 4 and plotted in Figure 3. The streamlines of EE2
resemble those of CE1 in Figure 2, with the distance between the rows of cat’s eyes varying
as we vary the parameters a and b. The streamlines of EE3 resembles those of CE2. EE1 is
perhaps the most interesting of the solutions. When the parameters are equal, a = b, as in
Figure 3(a), we get an interesting array of vortices with wavy walls between the cells. As the
difference between the parameters increases, as in Figure 3(b), the flow looks a little like CE1,
but with alternating rows of vortices staggered instead of symmetric.

When we set either of the parameters a or b to either 0 or 1, the Jacobian functions
become either circular or hyperbolic functions, or constant, so in these limits, the solutions in
Table 4 should reduce to either one of the solutions of Sections 2.1 and 2.2 or to a function of
either x alone or y alone, and Table 5 confirms that this does indeed occur. As with Table 3,
the columns in Table 5 labelled y +Ka mean that we have cn2(y +Ka | a) and dc2(y +Ka | a)
instead of cn2(y | a) and dc2(y | a), and similarly for the columns labelled x +Kb.

Each of the solutions in Table 2 obeys the equation ∇2ψ = χeψ + de−2ψ , where d = ± 2.
This equation reduces to Liouville’s equation when b2 = ã2.

If we set the parameter b = ã, the solutions in Table 4 have some special cases, which
are given in Table 6; in some of these solutions, we have removed a common factor or replaced
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Table 5: Limits of eψ from Table 4; †means x and y are interchanged.

a = 0 a = 1

EE1 bβ2cn2(βx | b) + 1 + β2(1 − 2b)
3

HE1†

EE2 −β2dc2(βx | b) + β2(1 + b) + 1
3

HE2†

EE3 CE2†
dc2(y | a) + 1 − β2(1 + b)

3
a = 0; y +Ka a = 1; y +Ka

EE1 bβ2cn2(βx | b) + 1 + β2(1 − 2b)
3

bβ2cn2(βx | b) + β2(1 − 2b) − 1
3

EE2 −β2dc2(βx | b) + β2(1 + b) + 1
3

−β2dc2(βx | b) + β2(1 + b) − 1
3

EE3 CE2† HE4†

b = 0 b = 1

EE1 acn2(y | a) + 1 − 2a + α2

3
HE1

EE2 CE1 acn2(y | a) + 1 − 2a − α2
3

EE3 CE2
dc2(y | a) + α2 − 1 − a

3
b = 0; x +Kb b = 1; x +Kb

EE1 acn2(y | a) + 1 − 2a + α2

3
acn2(y | a) + 1 − 2a − α2

3
EE2 CE1 HE3

EE3 CE2 HE4

b = ã

EE1 acn2(y | a) + ã cn2(x | ã) ∇2ψ = −2eψ
EE2 adc2(y | a) − dc2(x | ã) + ã ∇2ψ = −2eψ
EE3 dc2(y | a) + dc2(x | ã) − 1 ∇2ψ = 2eψ

Table 6: Special cases of the solutions from Table 4 with b = ã: EE1A and EE1B are special cases of EE1;
EE2A and EE2B are special cases of EE2.

exp(ψ) ∇2ψ

nd2(y | a) − sn2(x | ã) 2(a − 1)eψ EE1A

sd2(y | a) − sd2(x | ã) 2a(a − 1)eψ EE1B

nc2(y | a) − cn2(x | ã) 2(1 − a)eψ EE2A

nc2(y | a) − asd2(x | ã) 2(1 − a)eψ EE2B

y by y + Ka or x by x + Kb. These special cases are interesting because of the limits of these
solutions when we set the parameter a to either 0 or 1, which are given in Table 7; some of
these limits are ln[cosh2y − cos2x], or ln[cosh2y − sin2x], which are point vortex limits of the
Stuart vortex.
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Table 7: Limits of eψ from Table 6.

a = 0 a = 1

EE1A sech2x cosh2y − sin2x

EE1B cosh2y − cos2x cosh2y − cos2x

EE2A sec2y − sech2x cosh2y − cos2x

EE2B sec2y cosh2y − sin2x

2.4. The General Case

So far in this section, we have sought solutions of the form (1.4), with f and g Jacobian
functions, or their limits circular and hyperbolic functions. For each of the functions
considered, we had

f ′(x) = ±
√
f0 + f2f2(x) + f4f4(x),

g ′(y
)
=
√
g0 + g2g2

(
y
)
+ g4g4

(
y
)
.

(2.1)

In order for this to be a solution, if g4 /= 0, we require g0 = (1/3g4)(3f0f4 + g2
2 − f2

2 ), B =
−f4A/g4 and C = A(f2 + g2)/3g4, and then we have ∇2ψ = D1e

ψ +D2e
−2ψ , with D1 = 2g4/A

and D2 = (4A2/27g2
4)(f2 + g2)(g

2
2 − f2g2 − 2f2

2 + 9f0f4). If g4 = 0, we require f4 = 0, g2 = −f2
and C = (Bf0 − Ag0)/2f2 and then we have ∇2ψ = D3e

−2ψ , with D3 = (B2f2
0 − A2g2

0)/f2,
which again is Liouville’s equation, and the only real-valued solution in this case is the Stuart
vortex.

3. Discussion

In the previous section, we sought solutions to the nonlinear Poisson equation ∇2ψ = F(ψ)
of the form ψ = ln[Ag2(y) + Bf2(x) + C], where f and g where either Jacobian functions,
or their limits circular or hyperbolic functions. These solutions are presented in Tables 1, 2
and 4, and plotted in Figures 1–3. Amongst these solutions, the well-known Stuart vortex [7]
was unique in that it represented a family of solutions, because of the amplitude parameter ε,
while the remaining solutionswere isolated solutions. TheHC solutions fromTable 1 satisfied
Liouville’s equation, with the remaining solutions satisfying the nonlinear Poisson equation
∇2ψ = ceψ+de−2ψ , which reduced to Liouville’s equationwhen the parameter a = 0 for the HE
solutions and when a = 1 for the HC1 solutions from Table 2 and when b = ã for the solutions
in from Table 4. The form of this nonlinear Poisson equation was slightly unexpected: at the
outset, we suspected that any solutions we found would likely obey Liouville’s equation, in
part because so many other solutions obey Liouville’s equation, but in retrospect perhaps
the reason so many solutions to Liouville’s equation have been found in the past can in part
be attributed to the fact that a number of studies have actively sought such solutions while
excluding solutions to other nonlinear Poisson equations from their search.

As can be seen from Figures 1–3, some of the solutions have very interesting flow
patterns. For example, CE1 looks like a row of cat’s eyes in a bounded channel and is regular
except on the walls of that channel. CC1, CE2 and EE3 are all cellular flow fields. HC2 and



10 International Journal of Differential Equations

HE2 look like a stack, as opposed to a row, of cat’s eyes. Finally, for some parameter values,
EE1 gives us an array of vortices with wavy walls.

We remark in closing that there no doubt remain many exact nonlinear vortex
solutions yet to be discovered. In our study, we sought solutions of a very specific form,
and we would suggest that further searches could well prove profitable and unearth more
vortex solutions.
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