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We study the oscillation of all solutions of a general class of forced second-order differential equations, where their second derivative
is not necessarily a continuous function and the coefficients of the main equation may be discontinuous. Our main results are not
included in the previously published known oscillation criteria of interval type. Many examples and consequences are presented
illustrating the main results.

1. Introduction

Let 𝑡
0
> 0 and let 𝐴𝐶loc([𝑡0,∞),R) denote the set of all real

functions absolutely continuous on every bounded interval
[𝑎, 𝑏] ⊂ [𝑡

0
,∞). We study the oscillatory behaviour of all

solutions 𝑥 = 𝑥(𝑡) of the following class of forced second-
order differential equations:

(𝑟 (𝑡) Φ (𝑥 (𝑡) , 𝑥

(𝑡)))


+ 𝑞 (𝑡) 𝑓 (𝑥 (𝑡)) = 𝑒 (𝑡) ,

a.e. in [𝑡
0
,∞) ,

𝑥, 𝑟Φ (𝑥, 𝑥

) ∈ 𝐴𝐶loc ([𝑡0,∞) ,R) ,

(1)

where the functions Φ : R2 → R, Φ = Φ(𝑢, V), 𝑓 :

R → R, and 𝑓 = 𝑓(𝑢) satisfy some general conditions
given in Section 2. A continuous function 𝑥 = 𝑥(𝑡) is said
to be oscillatory if there is a sequence 𝑡

𝑛
∈ [𝑡
0
,∞), such that

𝑥(𝑡
𝑛
) = 0 for all 𝑛 ∈ N and 𝑡

𝑛
→ ∞ as 𝑛 → ∞. A differential

equation is oscillatory if all its solutions are oscillatory.
The forcing term 𝑒(𝑡) is a sign-changing function (possi-

bly discontinuous). This can be formulated by the following
hypothesis: for every 𝑇 ≥ 𝑡

0
there exist two intervals (𝑎

1
, 𝑏
1
)

and (𝑎
2
, 𝑏
2
), 𝑇 ≤ 𝑎

1
< 𝑏
1
≤ 𝑎
2
< 𝑏
2
, such that

𝑒 (𝑡) ≥ 0, 𝑡 ∈ (𝑎
1
, 𝑏
1
) ,

𝑒 (𝑡) ≤ 0, 𝑡 ∈ (𝑎
2
, 𝑏
2
) .

(2)

The coefficient 𝑞(𝑡) may be a discontinuous function on
[𝑡
0
,∞) and the case 𝑥 ∉ 𝐶

2
((𝑡
0
,∞),R) occurs in our

main results and examples too. Two important classes of
functions Φ(𝑢, V) are included in the differential operator
(𝑟(𝑡)Φ(𝑥, 𝑥


))
 as

Φ (𝑢, V) = 𝜙 (𝑢) V, Φ (𝑢, V) =
𝜙 (𝑢) V

√1 + V2
, (𝑢, V) ∈ R

2
. (3)

The first one is the classic second-order differential operator
which is linear in 𝑥

 and the second one is the so-called
one-dimensional mean curvature differential operator; see
Examples 1 and 2.

Depending on 𝑞(𝑡), we propose the following four simple
models for (1):

(i) 𝑞(𝑡) is strictly positive and continuous on [𝑡
0
,∞) as

𝑥

+ 4𝑚
2
𝑓 (𝑥) = ℎ (sin (𝑚𝑡)) , a.e. in [𝑡

0
,∞) ,

𝑥, 𝑥

∈ 𝐴𝐶loc ([𝑡0,∞) ,R) , 𝑥 ∉ 𝐶

2
((𝑡
0
,∞) ,R) ;

(4)

(ii) 𝑞(𝑡) is nonnegative and continuous on [𝑡
0
,∞) as

𝑥

+ 𝑚
2
𝜋
2
[cos (𝑚𝑡)]+𝑓 (𝑥) = ℎ (sin (𝑚𝑡)) ,

a.e. in [𝑡
0
,∞) ,

𝑥, 𝑥

∈ 𝐴𝐶loc ([𝑡0,∞) ,R) ;

(5)
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Figure 1: Function 𝑥(𝑡) = |sin(𝑡)| sin(𝑡) is a solution of (4).
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Figure 2:𝑥(𝑡) = 2|sin(𝑡)| cos(𝑡) and hence𝑥(𝑡) is not a continuous
function.

(iii) 𝑞(𝑡) is nonnegative and discontinuous on [𝑡
0
,∞) as

𝑥

+ 4𝑚
2
[sign (cos (𝑚𝑡))]+𝑓 (𝑥) = ℎ (sin (𝑚𝑡)) ,

a.e. in [𝑡
0
,∞) ,

𝑥, 𝑥

∈ 𝐴𝐶loc ([𝑡0,∞) ,R) ;

(6)

(iv) 𝑞(𝑡) is sign changing and discontinuous on [𝑡
0
,∞) as

𝑥

+ 4𝑚
2 sign (cos (𝑚𝑡)) 𝑓 (𝑥) = ℎ (sin (𝑚𝑡)) ,

a.e. in [𝑡
0
,∞) ,

𝑥, 𝑥

∈ 𝐴𝐶loc ([𝑡0,∞) ,R) ,

(7)

where 𝑚 ∈ N and ℎ(𝑠) is an arbitrary function such that
ℎ(𝑠) 𝑠 > 0 for all 𝑠 ̸= 0, for instance, ℎ(𝑠) = 𝑠 or ℎ(𝑠) = sign(𝑠).
According to Corollaries 7 and 10, we will show that (4)–
(7) are oscillatory provided the function 𝑓 = 𝑓(𝑢) satisfies
𝑓(𝑢)/𝑢 ≥ 𝐾 ≥ 1 for all 𝑢 ̸= 0; see Examples 8–13. It is
interesting that in particular for 𝑓(𝑢) = 𝑢 and ℎ(𝑠) =

2𝑚
2 sign(𝑠), (4) allows an explicit oscillatory solution 𝑥(𝑡) =

|sin(𝑚𝑡)| sin(𝑚𝑡) as shown in Figures 1 and 2.
Moreover, as a consequence of Corollary 7, one can

show that all solutions of (4) are oscillatory; for details see
Example 8. The main goal of this paper is to give some
sufficient conditions on functions Φ(𝑢, V), 𝑓(𝑢) and the
coefficients 𝑟(𝑡), 𝑞(𝑡), and 𝑒(𝑡) such that (1) is oscillatory; see
Theorems 3 and 4. It will also cover the model equations (4)–
(7) as well as some other examples presented in Section 2.

To the best of our knowledge, it seems that there are only
few papers which study the oscillation of the second-order
differential equations with nonsmooth (local integrable)
coefficients; see [1–3].More precisely, in [1] the author studied
the interval oscillation criteria for the following second-order
half-linear differential equation:

(𝑟 (𝑡)

𝑥

(𝑡)


𝜎−1

𝑥

(𝑡))



+ 𝑞 (𝑡) |𝑥 (𝑡)|
𝜎−1

𝑥 (𝑡) = 0,

a.e. in (0,∞) ,

𝑥, 𝑟

𝑥


𝜎−1

𝑥

∈ 𝐴𝐶loc ((0,∞) ,R) ,

(8)

where 𝜎 > 1 and 1/𝑟, 𝑞 ∈ 𝐿 loc((0,∞),R) such that
∫
∞

0
𝑟
−1/𝜎

(𝑡)𝑑𝑟 = ∞. See also [2] but with the solution
space𝐶1((0,∞),R) instead of𝐴𝐶loc((0,∞),R), that is, 𝑥 and
𝑟|𝑥

|
𝜎−1

𝑥

∈ 𝐶
1
((0,∞),R).

In [3], the authors consider the following second-order
differential equation:

(𝑟 (𝑡) 𝑥

(𝑡))


+ 𝑄 (𝑡, 𝑥 (𝑡) , 𝑥

(𝑡)) = 0, 𝑡 ≥ 𝑡

0
, (9)

where 𝑟(𝑡) > 0 a.e. in [𝑡
0
,∞), 1/𝑟 ∈ 𝐿 loc([𝑡0,∞),R), and

𝑄(𝑡, 𝑦, 𝑧) is locally integrable function in 𝑡 and continuous in
(𝑦, 𝑧). Equation (9) allows the forcing term 𝑒(𝑡) in the next
sense as follows:

𝑦𝑄 (𝑡, 𝑦, 𝑧) ≥ 𝑞 (𝑡) 𝑦𝑓 (𝑦) − 𝑒 (𝑡) 𝑦

∀ (𝑡, 𝑦, 𝑧) ∈ [𝑡
0
,∞) ×R

2
,

(10)

where 𝑒 = 𝑒(𝑡) satisfies (2), but the functions 𝑞 = 𝑞(𝑡) and
𝑓 = 𝑓(𝑦) are smooth enough in their variables, that is, 𝑞 ∈

𝐶([𝑡
0
,∞),R) and 𝑓 ∈ 𝐶

1
(R,R).

On certain oscillation criteria for various classes of
forced second-order differential equations with continuous
coefficients, we refer the reader to [4–13]. Our method
modifies a recently used one in [14, 15] and it contains
the classic Riccati transformation of the main equation, a
blow-up argument and pointwise comparison principle. The
comparison principle applies to all sub- and supersolutions of
a class of the generalized Riccati differential equations with
nonlinear terms that are supposed to be locally integrable
in the first variable and locally Lipschitz continuous in the
second variable.

2. Hypotheses, Results, and Consequences

First of all, the functionΦ(𝑢, V)which appears in the second-
order differential operator of (1) satisfies

|𝑢|
𝛾−2

VΦ (𝑢, V) ≥ 𝑔 (|Φ (𝑢, V)|) ∀𝑢, V ∈ R, (11)

where 𝛾 ≥ 2 and 𝑔 : R
+
→ R
+
is a locally Lipschitz function

𝑔
0
: R
+
→ R
+
satisfying

𝑔 (𝑐𝑠) ≥ 𝑐
𝛾
𝑔
0 (𝑠) ∀𝑐 > 0, 𝑠 > 0,

𝑔
0
(𝑠) + 𝑀

0
≥ 𝑠
2 for some 𝑀

0
≥ 0 and all 𝑠 ∈ R

+
.

(12)

In most cases, 𝑔(𝑠) = 𝑔
0
(𝑠)𝑔
1
(𝑠), 𝑠 > 0, where 𝑔

0
(𝑠) = 𝑠

𝛾,
𝛾 ≥ 2, and 𝑔

1
(𝑠) is an arbitrary function satisfying 𝑔

1
(𝑠) ≥ 1.

Thus, for such 𝑔(𝑠) with 𝑔
1
(𝑠) ≡ 1, condition (11) became:

|𝑢|
𝛾−2

VΦ (𝑢, V) ≥ |Φ (𝑢, V)|
𝛾

∀𝑢, V ∈ R. (13)

It is not difficult to check that if 𝑔
0
∈ 𝐶
1
(R
+
) or 𝑔

0
(𝑠) is a

convex function, then it is locally Lipschitz onR
+
too; see for

instance [16, Theorem 1.3.3].
Two essential classes of the second-order differential

operators (𝑟(𝑡)Φ(𝑥, 𝑥)) satisfy condition (13), as is shown in
the next examples.
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Example 1. We consider the second-order differential opera-
tor which is linear in 𝑥 as follows:

(𝑟 (𝑡) Φ (𝑥, 𝑥

))


= 𝛼(𝜙 (𝑥) 𝑥

)


, (14)

where 𝛼 > 0 and 0 ≤ 𝜙(𝑢) ≤ 1 for all 𝑢 ∈ R. Obviously, the
functionΦ(𝑢, V) = 𝜙(𝑢)V satisfies condition (13) in particular
for 𝛾 = 2. Two usual choices for 𝜙(𝑢) are 𝜙(𝑢) = |sin 𝑢| and
𝜙(𝑢) = |𝑢|/(1 + |𝑢|).

Example 2. We consider a quasilinear differential operator
(the so-called one-dimensional prescribed mean curvature
operator) as follows:

(𝑟 (𝑡) Φ (𝑥, 𝑥

))


= 𝛼(𝜙 (𝑥)
𝑥


√1 + 𝑥
2
)



, (15)

where 𝛼 > 0 and 0 ≤ 𝜙
𝛾−1
(𝑢) ≤ |𝑢|

𝛾−2 for all 𝑢 ∈ R. It is not
difficult to check that condition (13) is satisfied in particular
for Φ(𝑢, V) = 𝜙(𝑢)V/(1 + V2)1/2 and for any 𝛾 > 1. For 𝜙(𝑢),
we can take the same choice as in the previous example.

Next, we suppose the existence of a constant𝐾 such that

𝑓 (𝑢)

𝑢
≥ 𝐾 > 0 ∀𝑢 ̸= 0. (16)

In order to simplify our consideration here, inmany examples
we often use 𝑓(𝑢) = 𝐾𝑢.

Condition (2) means that there exists a sequence of pairs
of intervals 𝐽

1𝑗
= [𝑎
1𝑗
, 𝑏
1𝑗
] and 𝐽

2𝑗
= [𝑎
2𝑗
, 𝑏
2𝑗
], 𝑗 ∈ N,

contained in (𝑡
0
,∞), such that the sequences (𝑎

1𝑗
)
𝑗≥1

, (𝑏
1𝑗
)
𝑗≥1

,
(𝑎
2𝑗
)
𝑗≥1

, and (𝑏
2𝑗
)
𝑗≥1

are increasing, 𝑎
1𝑗
< 𝑏
1𝑗
≤ 𝑎
2𝑗
< 𝑏
2𝑗
for

each 𝑗, and

𝑒 (𝑡) ≥ 0 on 𝐽
1𝑗
, 𝑒 (𝑡) ≤ 0 on 𝐽

2𝑗

for each 𝑗 ∈ N,

lim
𝑗→∞

𝑎
1𝑗
= ∞.

(17)

On the intervals 𝐽
1𝑗
and 𝐽
2𝑗
, the coefficient 𝑟(𝑡) satisfies

𝑟 (𝑡) > 0 on 𝐽
𝑖𝑗
, 𝑟
1−𝛾

∈ 𝐿
1
(𝐽
𝑖𝑗
)

∀𝑖 ∈ {1, 2} , 𝑗 ∈ N.
(18)

Let there be a real function 𝐶 = 𝐶(𝑡), 𝐶 ∈

𝐿
1

loc((𝑡0,∞),R), and let there exist a sequence of positive real
numbers (𝜆

𝑗
)
𝑗∈N such that

𝐶 (𝑡) ≥ 0 on 𝐽
𝑖𝑗
, 𝑐
𝑖𝑗
:= ∫

𝐽𝑖𝑗

𝐶 (𝜏) 𝑑𝜏 > 0

∀𝑖 ∈ {1, 2} , 𝑗 ∈ N,

1

𝑐
𝑖𝑗

𝐶 (𝑡) ≤
1

𝜋
min{(𝜆

𝑗
𝑟 (𝑡))
1−𝛾

,
𝐾

𝑀
0
+ 1

𝜆
𝑗
𝑞 (𝑡)}

∀𝑡 ∈ 𝐽
𝑖𝑗
, 𝑖 ∈ {1, 2} , 𝑗 ∈ N,

(19)

where 𝛾, 𝑀
0
, and 𝐾 are constants defined in (11), (12), and

(16), respectively.
The proof of the following main result will be presented

in Section 4.

Theorem 3. Let the functions Φ(𝑢, V), 𝑓(𝑢), 𝑒(𝑡), and 𝑟(𝑡)

satisfy (11), (12), (16), (17), and (18), respectively. Let 𝑞(𝑡) ≥ 0

and 𝑞(𝑡) ̸≡ 0 on each interval 𝐽
𝑖𝑗
, 𝑖 ∈ {1, 2}, 𝑗 ∈ N. If (19) is

fulfilled, then (1) is oscillatory.

Condition (19) can be replaced by an equivalent one,
which has a more practical value and takes a simpler form
since we do not need a sequence of auxiliary parameters
(𝜆
𝑗
)
𝑗∈N: let there be a real function 𝐶 = 𝐶(𝑡), 𝐶 ∈

𝐿
1

loc((𝑡0,∞),R) such that

𝐶 (𝑡) ≥ 0 on 𝐽
𝑖𝑗
, 𝑐
𝑖𝑗
:= ∫

𝐼𝑖𝑗

𝐶 (𝜏) 𝑑𝜏 > 0 ∀𝑖 ∈ {1, 2} ,

𝑗 ∈ N,

sup
𝑡∈𝐽𝑖𝑗

[
𝐶 (𝑡)

𝑞 (𝑡)
] sup
𝑡∈𝐽𝑖𝑗

[𝑟 (𝑡) 𝐶(𝑡)
1/(𝛾−1)

] ≤
𝐾

𝑀
0
+ 1

(

𝑐
𝑖𝑗

𝜋
)

𝛾/(𝛾−1)

∀𝑖 ∈ {1, 2} , 𝑗 ∈ N,

(20)

where 𝛾, 𝑀
0
, and 𝐾 are constants defined in (11), (12), and

(16), respectively. Since we will show that (19) and (20)
are equivalent, see page 8, the next oscillation criterion
immediately follows fromTheorem 3.

Theorem 4. Let the functions Φ(𝑢, V), 𝑓(𝑢), 𝑒(𝑡), and 𝑟(𝑡)

satisfy (11), (12), (16), (17), and (18), respectively. Let 𝑞(𝑡) ≥ 0

and 𝑞(𝑡) ̸≡ 0 on each interval 𝐽
𝑖𝑗
, 𝑖 ∈ {1, 2}, 𝑗 ∈ N. If (20) is

fulfilled, then (1) is oscillatory.

Remark 5. Assuming that 𝐿 := lim
𝑗→∞

𝑎
1𝑗

< ∞, we
can ensure the oscillation in the point 𝐿. Note that 𝐿 =

lim
𝑗→∞

𝑎
2𝑗

since 𝑎
1𝑗

< 𝑎
2𝑗

< 𝑎
1𝑗+1

. Thus, we can generate
a one-sided (right) limit.

Now, we consider some consequences of Theorem 4,
which depend on the qualitative properties of the coefficient
𝑞(𝑡).

Substituting 𝐶(𝑡) ≡ 1 in (20), Theorem 4 implies the
following result involving lower bounds on the lengths of
intervals |𝐽

𝑖𝑗
| = 𝑏
𝑖𝑗
− 𝑎
𝑖𝑗
.

Corollary 6 (𝑞(𝑡) is positive). Let the functionsΦ(𝑢, V), 𝑓(𝑢),
𝑒(𝑡), and 𝑟(𝑡) satisfy (11), (12), (16), (17), and (18), respectively.
Let inf

𝑡∈𝐽𝑖𝑗
𝑞(𝑡) > 0 for each 𝑖 ∈ {1, 2}, 𝑗 ∈ N. If


𝐽
𝑖𝑗


≥ 𝜋(

(𝑀
0
+ 1) sup

𝑡∈𝐽𝑖𝑗
𝑟 (𝑡)

𝐾inf
𝑡∈𝐽𝑖𝑗

𝑞 (𝑡)
)

(𝛾−1)/𝛾

∀𝑖 ∈ {1, 2} , 𝑗 ∈ N,

(21)

then (1) is oscillatory.
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Corollary 7 (𝑞(𝑡) is bounded from below by a positive
constant). Let the functionsΦ(𝑢, V),𝑓(𝑢), 𝑒(𝑡), and 𝑟(𝑡) satisfy
(11), (12), (16), (17), and (18), respectively. Let there be two
constants 𝑟

0
, 𝑞
0
satisfying

0 < 𝑟 (𝑡) ≤ 𝑟
0
, 𝑞 (𝑡) ≥ 𝑞

0
> 0 ∀𝑖 ∈ {1, 2} , 𝑗 ∈ N. (22)

If


𝐽
𝑖𝑗


≥ 𝜋(

(𝑀
0
+ 1) 𝑟
0

𝐾𝑞
0

)

(𝛾−1)/𝛾

∀𝑖 ∈ {1, 2} , 𝑗 ∈ N, (23)

then (1) is oscillatory, where 𝛾,𝑀
0
, and𝐾 are constants defined

in (11), (12), and (16), respectively.

Example 8 (oscillation of (4)). We know that 𝑥(𝑡) =

|sin(𝑚𝑡)| sin(𝑚𝑡) is an oscillatory solution of (4). However,
according to Corollary 7, we can show that all solutions of (4)
are oscillatory. Indeed, since Φ(𝑢, V) ≡ V, the conditions (11)
and (12) are satisfied especially for 𝛾 = 2, 𝑔(𝑠) = 𝑔

0
(𝑠) = 𝑠

2

and 𝑀
0
= 0. Next, 𝑓(𝑢) ≡ 𝑢 implies that condition (16) is

satisfied especially for 𝐾 = 1. Since 𝑟(𝑡) ≡ 1 and 𝑞(𝑡) ≡ 4𝑚
2,

it is clear that conditions (18) and (22) are also satisfied in
particular for 𝑟

0
= 1 and 𝑞

0
= 4𝑚

2. Moreover, since 𝑒(𝑡) =
ℎ(sin(𝑚𝑡)) and ℎ(𝑠)𝑠 > 0, 𝑠 ̸= 0, we have that (17) is fulfilled for
𝑎
1𝑗
= 2𝑗𝜋/𝑚, 𝑏

1𝑗
= (2𝑗 + 1)𝜋/𝑚 = 𝑎

2𝑗
and 𝑏
2𝑗
= (2𝑗 + 2)𝜋/𝑚.

Moreover,

𝐽
𝑖𝑗


= 𝑏
𝑖
− 𝑎
𝑖
=
𝜋

𝑚
> 0, 𝑖 ∈ {1, 2} . (24)

Hence, we conclude that the required condition (23) is
fulfilled, that is,

𝐽
𝑖𝑗


=
𝜋

𝑚
≥

𝜋

√4𝑚
2

= 𝜋(
(𝑀
0
+ 1) 𝑟
0

𝑞
0

)

(𝛾−1)/𝛾

≥ 𝜋(
(𝑀
0
+ 1) 𝑟
0

𝐾𝑞
0

)

(𝛾−1)/𝛾

.

(25)

Thus, all conditions of Corollary 7 are satisfied and hence (4)
is oscillatory.

Example 9. We consider the following class of equations:

𝑥

− 2

𝑆

(𝑡)

𝑆 (𝑡)
𝑥 = 2 sign (𝑆 (𝑡)) 𝑆

2

(𝑡) , a.e. in [𝑡
0
,∞) ,

𝑥, 𝑥

∈ 𝐴𝐶loc ([𝑡0,∞) ,R) , 𝑥 ∉ 𝐶

2
((𝑡
0
,∞) ,R) ,

(26)

where 𝑆 = 𝑆(𝑡), 𝑆 ∈ 𝐶2(R) is an oscillatory function such that
the zeros 𝑡

𝑛
of the function sign(𝑆(𝑡))𝑆2(𝑡) satisfy 𝑡

𝑛
→ ∞,

there is a 𝜏
0
∈ R such that 𝑡

𝑛+1
− 𝑡
𝑛
≥ 𝜏
0
> 0 for all 𝑛 ∈ N, and

𝑆(𝑡) ̸= 0 on (𝑡
𝑛
, 𝑡
𝑛+1
). This equation allows an explicitly given

oscillatory solution 𝑥(𝑡) = |𝑆(𝑡)|𝑆(𝑡). Moreover, if there is a
constant 𝑠

0
> 0 such that

−2
𝑆

(𝑡)

𝑆 (𝑡)
≥ 𝑠
0
, 𝑡 ∈ (𝑡

𝑛
, 𝑡
𝑛+1
) , 𝜏

0
≥

𝜋

√𝑠0

, (27)

then by Corollary 7 we conclude that (26) is oscillatory.
Indeed, conditions (11), (12), and (16) are satisfied by the same
reasons as in Example 8. Condition (18) is satisfied because
of 𝑟(𝑡) ≡ 1. Also, from (27) it follows that (22) and (23) are
fulfilled in particular for 𝛾 = 2,𝑀

0
= 0, 𝑟

0
= 1, 𝑞

0
= 𝑠
0
, and

𝐾 ≥ 1, that is,

𝐽
𝑖𝑗


=

𝑡
𝑗+1

− 𝑡
𝑗


≥ 𝜏
0
≥

𝜋

√𝑠0

= 𝜋(
(𝑀
0
+ 1) 𝑟
0

𝑞
0

)

(𝛾−1)/𝛾

≥ 𝜋(
(𝑀
0
+ 1) 𝑟
0

𝐾𝑞
0

)

(𝛾−1)/𝛾

.

(28)

Hence Corollary 7 proves this result.

As the second consequence ofTheorem3 is unlike the first
one, we consider the case when the coefficient 𝑞(𝑡) is not a
strictly positive function. Here by {𝑞 = 0} we denote the set
of all 𝑡 ∈ R such that 𝑞(𝑡) = 0.

Corollary 10 (𝑞(𝑡) is nonnegative, but not ≡ 0). Let the
functions Φ(𝑢, V), 𝑓(𝑢), 𝑒(𝑡), and 𝑟(𝑡) satisfy (11), (12), (16),
(17), and (18), respectively. Let 𝑞(𝑡) ≥ 0 on each interval 𝐽

𝑖𝑗
,

𝑖 ∈ {1, 2}, 𝑗 ∈ N, such that

𝑞
𝑖𝑗
:= ∫

𝐽𝑖𝑗

𝑞 (𝜏) 𝑑𝜏 > 0, 𝑖 ∈ {1, 2} , 𝑗 ∈ N. (29)

If

𝑞
𝛾

𝑖𝑗

𝑞 (𝑡)
≥ 𝜋
𝛾
(
(𝑀
0
+ 1) 𝑟 (𝑡)

𝐾
)

𝛾−1

,

𝑡 ∈ 𝐽
𝑖𝑗
\ {𝑞 = 0} , 𝑖 ∈ {1, 2} , 𝑗 ∈ N,

(30)

then (1) is oscillatory.

Proof. It suffices to show that (30) is equivalent to the
existence of a real number 𝜆

𝑗
such that

𝜆
𝑗
≥
𝜋 (𝑀
0
+ 1)

𝐾

1

𝑞
𝑖𝑗

,
1

𝑞
𝑖𝑗

𝑞 (𝑡) ≤
1

𝜋
(𝜆
𝑗
𝑟 (𝑡))
1−𝛾

,

𝑡 ∈ 𝐽
𝑖𝑗
, 𝑖 ∈ {1, 2} , 𝑗 ∈ N.

(31)

The claim will then follow fromTheorem 3. Inequality (31) is
for any 𝑡 ∈ 𝐽

𝑖𝑗
\ {𝑞 = 0} equivalent to

𝜋 (𝑀
0
+ 1)

𝐾

1

𝑞
𝑖𝑗

≤ 𝜆
𝑗
≤ (

𝑞
𝑖𝑗

𝜋𝑞 (𝑡)
)

1/(𝛾−1)
1

𝑟 (𝑡)
, (32)

that is, to

𝜋 (𝑀
0
+ 1)

𝐾

1

𝑞
𝑖𝑗

≤ (

𝑞
𝑖𝑗

𝜋𝑞 (𝑡)
)

1/(𝛾−1)
1

𝑟 (𝑡)
. (33)

This inequality is easily seen to be equivalent to (30) for any
𝑡 ∈ 𝐽
𝑖𝑗
\ {𝑞 = 0}. Note that if 𝑡 ∈ {𝑞 = 0}, then the second

inequality in (31) is trivially satisfied.
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The following three examples are simple consequences of
Corollary 10.

Example 11 (oscillation of (5)). Equation (5) as well as
equation

𝑥

+ 𝑚
2
𝜋
2
[sin (𝑚𝑡)]+𝑓 (𝑥) = ℎ (cos (𝑚𝑡)) ,

a.e. in [𝑡
0
,∞) ,

𝑥, 𝑥

∈ 𝐴𝐶loc ([𝑡0,∞) ,R) ,

(34)

are oscillatory, where 𝑓(𝑢) satisfies (16) with 𝐾 ≥ 1 and
ℎ(𝑠)𝑠 > 0, 𝑠 ̸= 0. Indeed, in (5) we have 𝑟(𝑡) ≡ 1, 𝑞(𝑡) =

𝑚
2
𝜋
2
[cos(𝑚𝑡)] and 𝑒(𝑡) = ℎ(sin(𝑚𝑡)), and so, (17) and (18) are

fulfilled, and 𝑞(𝑡) ≥ 0, 𝑞(𝑡) ̸≡ 0 on each interval 𝐽
𝑖𝑗
, 𝑖 ∈ {1, 2},

𝑗 ∈ N, where 𝐽
1𝑗
= [𝑎
1𝑗
, 𝑏
1𝑗
], 𝐽
2𝑗
= [𝑎
2𝑗
, 𝑏
2𝑗
], and

𝑎
1𝑗
=
2𝑗𝜋

𝑚
, 𝑏

1𝑗
=
(2𝑗 + 1/2) 𝜋

𝑚
,

𝑎
2𝑗
=
(2𝑗 + 3/2) 𝜋

𝑚
, 𝑏

2𝑗
=
(2𝑗 + 2) 𝜋

𝑚
.

(35)

Moreover,

𝑞
𝑖𝑗
= ∫

𝐽𝑖𝑗

𝑞 (𝜏) 𝑑𝜏

= 𝑚
2
𝜋
2
∫

𝑏𝑖𝑗

𝑎𝑖𝑗

[cos (𝑚𝜏)]+𝑑𝜏 = 𝑚𝜋2, 𝑖 ∈ {1, 2} , 𝑗 ∈ N,

(36)

and since 𝛾 = 2, 𝑟(𝑡) ≡ 1,𝐾 ≥ 1, and𝑀
0
= 0, for 𝜆

𝑗
= 1/(𝑚𝜋)

we have

𝜆
𝑗
=

1

𝑚𝜋
≥
1

𝐾

1

𝑚𝜋
=
𝜋 (𝑀
0
+ 1)

𝐾

1

𝑚𝜋
2

=
𝜋 (𝑀
0
+ 1)

𝐾

1

𝑞
𝑖𝑗

, 𝑖 ∈ {1, 2} , 𝑗 ∈ N,

1

𝑞
𝑖𝑗

𝑞 (𝑡) =
1

𝑚𝜋
2
𝑚
2
𝜋
2
[cos (𝑚𝑡)]+ ≤ 𝑚

=
1

𝜋

1

(1/𝑚𝜋)
=
1

𝜋

1

(𝜆
𝑗
𝑟 (𝑡))
𝛾−1

,

𝑡 ∈ 𝐽
𝑖𝑗
, 𝑖 ∈ {1, 2} , 𝑗 ∈ N.

(37)

Thus, the required condition (30) is fulfilled in this case and
hence we may apply Corollary 10 to (5) to verify that this
equation is oscillatory. Analogously, we can show that (34)
is oscillatory too.

In the next example, the coefficient 𝑞(𝑡) is a discontinuous
function on [𝑡

0
,∞).

Example 12 (oscillation of (6)). If 𝑓(𝑢) satisfies (16) with𝐾 ≥

1, then (6) is oscillatory since the required condition (30) is
satisfied especially for 𝑞(𝑡) = 4𝑚

2 sign(cos(𝑚𝑡)) on 𝐽
𝑖𝑗
, 𝜆
𝑗
=

1/(2𝑚), and 𝐽
𝑖𝑗
as in (35), 𝛾 = 2, 𝑟(𝑡) ≡ 1,𝐾 ≥ 1, and𝑀

0
= 0.

Indeed,

𝑞
𝑖𝑗
= ∫

𝐽𝑖𝑗

𝑞 (𝜏) 𝑑𝜏 = 4𝑚
2
∫

𝐽𝑖𝑗

[sign (cos (𝑚𝜏))]+𝑑𝜏

= 4𝑚
2 𝜋

2𝑚
= 2𝑚𝜋, 𝑖 ∈ {1, 2} , 𝑗 ∈ N,

𝜆
𝑗
=

1

2𝑚
=

𝜋

2𝑚𝜋
= 𝜋 (𝑀

0
+ 1)

1

𝑞
𝑖𝑗

≥
𝜋 (𝑀
0
+ 1)

𝐾

1

𝑞
𝑖𝑗

, 𝑖 ∈ {1, 2} , 𝑗 ∈ N,

1

𝑞
𝑖

𝑞 (𝑡) =
1

2𝑚𝜋
4𝑚
2
[sign (cos (𝑚𝑡))]+

≤
2𝑚

𝜋
=
1

𝜋

1

√1/ (4𝑚
2
)

=
1

𝜋
(𝜆
𝑗
𝑟 (𝑡))
𝛾−1

,

𝑡 ∈ 𝐽
𝑖𝑗
, 𝑖 ∈ {1, 2} , 𝑗 ∈ N,

(38)

which shows that (30) is satisfied.

At the end of this section, we consider the case when 𝑞(𝑡)
changes sign on [𝑡

0
,∞) but with the help of Corollary 10 since

𝑞(𝑡) is strictly positive on all intervals 𝐽
𝑖𝑗
.

Example 13 (oscillation of (7)). If 𝑓(𝑢) satisfies (16) with𝐾 ≥

1, then model equation (7) is oscillatory. In fact, let 𝐽
𝑖𝑗
be as

in (35). If ℎ(𝑠)𝑠 > 0, 𝑠 ̸= 0, it is clear that 𝑒(𝑡) = ℎ(sin(𝑚𝑡))
satisfies (2), that is, 𝑒(𝑡) ≥ 0 on 𝐽

1𝑗
and 𝑒(𝑡) ≤ 0 on 𝐽

2𝑗
. On

the other hand, we have 𝑞(𝑡) = 4𝑚
2 sign(cos(𝑚𝑡)) on 𝐽

𝑖𝑗
and

so 𝑞(𝑡) ≥ 0, 𝑞(𝑡) ̸≡ 0 on 𝐽
𝑖𝑗
for all 𝑖 ∈ {1, 2}, 𝑗 ∈ N. Hence,

the proof of the fact that all assumptions of Corollary 7 are
fulfilled is the same as in the preceding example.

3. Proofs of Theorems 3 and 4

Let 𝐴𝐶loc([𝑎, 𝑏),R) denote the set of all real functions which
are absolutely continuous on every interval [𝑎, 𝑏 − 𝜀], where
𝜀 ∈ (0, 𝑏 − 𝑎). For arbitrary numbers 𝑇

0
< 𝑇
∗ and functions

𝐺 = 𝐺(𝑡, 𝑢) and 𝑏 = 𝑏(𝑡), we consider the ordinary differential
equation

𝑤

= 𝐺 (𝑡, 𝑤) + 𝑏 (𝑡) , a.e. in [𝑇

0
, 𝑇
∗
) , (39)

which generalizes the classic Riccati equation 𝑤 = 𝑎(𝑡)𝑤
2
+

𝑏(𝑡), where 𝑎(𝑡) is an arbitrary function. We associate to
(39) the corresponding sub- and supersolutions 𝑤,𝑤 ∈

𝐴𝐶loc([𝑇0, 𝑇
∗
),R) which satisfy, respectively,

𝑤

≤ 𝐺 (𝑡, 𝑤) + 𝑏 (𝑡) , 𝑤


≥ 𝐺 (𝑡, 𝑤) + 𝑏 (𝑡)

a.e. in [𝑇
0
, 𝑇
∗
) .

(40)

We are interested in studying the following property:

𝑤 (𝑇
0
) ≤ 𝑤 (𝑇

0
) implies 𝑤 (𝑡) ≤ 𝑤 (𝑡)

∀𝑡 ∈ [T
0
, 𝑇
∗
) .

(41)

In this way, we introduce the following definition.
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Definition 14. We say that comparison principle holds for (39)
on an interval [𝑇

0
, 𝑇
∗
), 𝑇 ≤ 𝑇

0
< 𝑇
∗, if property (41)

is fulfilled for all sub- and supersolutions 𝑤,𝑤 ∈

𝐴𝐶loc([𝑇0, 𝑇
∗
),R) of (39) on [𝑇

0
, 𝑇
∗
).

Now, we are able to state the next result.

Lemma 15. Let 𝑇 ≤ 𝑇
0
< 𝑇
∗. Let 𝐺 = 𝐺(𝑡, 𝑢) and 𝑏 = 𝑏(𝑡) be

two arbitrary function. For any𝑀 > 0, let there be a function
𝐿 = 𝐿(𝑡) > 0 depending on 𝑇

0
, 𝑇
∗
,𝑀 such that

𝐿 (𝑡) > 0 on [𝑇
0
, 𝑇
∗
) , 𝐿 ∈ 𝐿

1
(𝑇
0
, 𝑇
∗
) ,


𝐺 (𝑡, 𝑢

1
) − 𝐺 (𝑡, 𝑢

2
)

≤ 𝐿 (𝑡)


𝑢
1
− 𝑢
2



∀𝑡 ∈ [𝑇
0
, 𝑇
∗
) , 𝑢
1
, 𝑢
2
∈ [−𝑀,𝑀] .

(42)

Then comparison principle (41) holds for (39) on an interval
[𝑇
0
, 𝑇
∗
), 𝑇 ≤ 𝑇

0
< 𝑇
∗.

Proof. It is enough to use the idea of the proof of [14, Lemma
4.1]. Hence, this proof is left to the reader.

Corollary 16. Let 𝜆 > 0, and let 𝑔
0
: R
+
→ R
+
be a locally

Lipschitz function on R
+
. Let 𝐾 be an arbitrary real number

and 𝑞(𝑡) an arbitrary function. Let 𝑇 ≤ 𝑇
0
< 𝑇
∗. If 𝑟(𝑡) > 0

on [𝑇
0
, 𝑇
∗
) and 𝑟−1+𝛾 ∈ 𝐿1(𝑇

0
, 𝑇
∗
), then comparison principle

(41) holds for the Riccati differential equation

𝑤

=

1

(𝜆𝑟 (𝑡))
𝛾−1

𝑔
0 (|𝑤|) + 𝐾𝜆𝑞 (𝑡) , a.e. in [𝑇

0
, 𝑇
∗
) .

(43)

Proof. It is clear that (43) is a particular case of (39) in
particular for

𝐺 (𝑡, 𝑢) =
1

(𝜆𝑟 (𝑡))
𝛾−1

𝑔
0 (|𝑢|) , 𝑏 (𝑡) = 𝐾𝜆𝑞 (𝑡) . (44)

Since𝑔
0
is a locally Lipschitz function onR

+
, for every𝑀 > 0

there is an 𝐿
0
> 0 depending on𝑀 such that


𝑔
0
(𝑠
1
) − 𝑔
0
(𝑠
2
)

≤ 𝐿
0


𝑠
1
− 𝑠
2


, ∀𝑠

1
, 𝑠
1
∈ [−𝑀,𝑀] .

(45)

Hence, for any𝑀 > 0 and all 𝑢
1
, 𝑢
2
∈ [−𝑀,𝑀], we obtain:


𝐺 (𝑡, 𝑢

1
) − 𝐺 (𝑡, 𝑢

2
)

=

1

(𝜆𝑟 (𝑡))
𝛾−1


𝑔
0
(

𝑢
1


) − 𝑔
0
(

𝑢
2


)


≤
𝐿
0

(𝜆𝑟 (𝑡))
𝛾−1




𝑢
1


−

𝑢
2





≤
𝐿
0

(𝜆𝑟 (𝑡))
𝛾−1


𝑢
1
− 𝑢
2


.

(46)

Thus, according to assumption 𝑟
−1+𝛾

∈ 𝐿
1
(𝑇
0
, 𝑇
∗
), the

required condition (42) is fulfilled in particular for 𝐿(𝑡) =

𝐿
0
(𝜆𝑟(𝑡))

−𝛾+1 and so Lemma 15 proves this corollary.

Before we give the proof ofTheorem 3, we state and prove
the next two propositions. In the first one, by a nonoscillatory
solution 𝑥(𝑡) of the main equation (1), we get the existence
of a supersolution 𝑤(𝑡) of the Riccati differential equation
(43) on the interval (𝑎

1
, 𝑏
1
) or (𝑎

2
, 𝑏
2
). In the second one, we

construct two subsolutions 𝑤
1
(𝑡) and 𝑤

2
(𝑡) of (43) which

blow up on intervals (𝑎
1
, 𝑇
∗

1
) ⊆ (𝑎

1
, 𝑏
1
) and (𝑎

2
, 𝑇
∗

2
) ⊆ (𝑎

2
, 𝑏
2
),

respectively.

Proposition 17. Let Φ(𝑢, V) and 𝑓(𝑢) satisfy (11), (12), and
(16), respectively, and let 𝑒(𝑡) satisfy (2). Let 𝑟(𝑡) > 0, 𝑞(𝑡) ≥
0 and 𝑞(𝑡) ̸≡ 0 on [𝑎

1
, 𝑏
1
] ∪ [𝑎

2
, 𝑏
2
]. Let 𝑥 = 𝑥(𝑡) be a

nonoscillatory solution of (1) and let, for some 𝑇 ≥ 𝑡
0
and

𝜆 > 0, the function 𝑤 = 𝑤(𝑡) be defined by

𝑤 (𝑡) = −

𝜆𝑟 (𝑡)Φ (𝑥 (𝑡) , 𝑥

(𝑡))

𝑥 (𝑡)
, 𝑡 ≥ 𝑇. (47)

Then 𝑤 ∈ 𝐴𝐶loc([𝑇,∞),R) and 𝑤(𝑡) satisfies the inequality

𝑤

≥ (𝜆𝑟 (𝑡))

1−𝛾
𝑔
0
(|𝑤|) + 𝐾𝜆𝑞 (𝑡) a.e. in 𝐽, (48)

where 𝐽 = (𝑎
1
, 𝑏
1
) if 𝑥(𝑡) < 0 and 𝐽 = (𝑎

2
, 𝑏
2
) if 𝑥(𝑡) > 0.

Proof. Since 𝑥 = 𝑥(𝑡) is a nonoscillatory solution of (1), there
is a 𝑇 ≥ 𝑡

0
such that 𝑥(𝑡) ̸= 0 on [𝑇,∞). Hence, 𝑤(𝑡) is well

defined by (47).
Because of (2), we have 𝑒(𝑡)/𝑥(𝑡) ≤ 0 for all 𝑡 ∈ 𝐽, where

𝐽 = (𝑎
1
, 𝑏
1
) if 𝑥(𝑡) < 0 and 𝐽 = (𝑎

2
, 𝑏
2
) if 𝑥(𝑡) > 0 and since

𝜆 > 0 we have

−𝜆
𝑒 (𝑡)

𝑥 (𝑡)
≥ 0 in 𝐽. (49)

Next, since 𝑥 and 𝑟(𝑡)Φ(𝑥(𝑡), 𝑥

(𝑡)) are from

𝐴𝐶loc([𝑡0,∞),R), we can take the first derivative of 𝑤(𝑡)
for almost everywhere in 𝐽, which together with 𝑟(𝑡) > 0,
𝑞(𝑡) ≥ 0 and 𝑞(𝑡) ̸≡ 0 on 𝐽 gives

𝑤

(𝑡) = −

𝜆(𝑟 (𝑡) Φ (𝑥 (𝑡) , 𝑥

(𝑡)))


𝑥 (𝑡)

+

𝜆𝑟 (𝑡)Φ (𝑥 (𝑡) , 𝑥

(𝑡))

𝑥
2
(𝑡)

𝑥

(𝑡)

=
𝜆𝑟 (𝑡)

|𝑥 (𝑡)|
𝛾
Φ(𝑥 (𝑡) , 𝑥


(𝑡)) 𝑥

(𝑡) |𝑥 (𝑡)|

𝛾−2

+ 𝜆𝑞 (𝑡)
𝑓 (𝑥 (𝑡))

𝑥 (𝑡)
− 𝜆

𝑒 (𝑡)

𝑥 (𝑡)
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≥
𝜆𝑟 (𝑡)

|𝑥 (𝑡)|
𝛾
𝑔 (

Φ (𝑥 (𝑡) , 𝑥


(𝑡))


) + 𝐾𝜆𝑞 (𝑡) − 𝜆

𝑒 (𝑡)

𝑥 (𝑡)

=
𝜆𝑟 (𝑡)

|𝑥 (𝑡)|
𝛾
𝑔(

|𝑥 (𝑡)|

𝜆𝑟 (𝑡)
|𝑤 (𝑡)|) + 𝐾𝜆𝑞 (𝑡) − 𝜆

𝑒 (𝑡)

𝑥 (𝑡)

≥
𝜆𝑟 (𝑡)

|𝑥 (𝑡)|
𝛾

|𝑥 (𝑡)|
𝛾

(𝜆𝑟 (𝑡))
𝛾
𝑔
0 (|𝑤 (𝑡)|)

+ 𝐾𝜆𝑞 (𝑡) − 𝜆
𝑒 (𝑡)

𝑥 (𝑡)
a.e. in 𝐽,

(50)

that is,

𝑤

≥ (𝜆𝑟 (𝑡))

1−𝛾
𝑔
0
(|𝑤|) + 𝐾𝜆𝑞 (𝑡) − 𝜆

𝑒 (𝑡)

𝑥 (𝑡)
a.e. in 𝐽.

(51)

Hence, (49) and (51) prove the desired inequality (48).

Proposition 18. Let (19) be satisfied. Let 𝑅
1
and 𝑅

2
be two

arbitrary real numbers. Then there are two points 𝑇∗
1
∈ (𝑎
1
, 𝑏
1
)

and 𝑇
∗

2
∈ (𝑎
2
, 𝑏
2
) and two continuous functions 𝑤

1
(𝑡) and

𝑤
2
(𝑡), such that

𝑤
𝑖
(𝑎
𝑖
) ≤ 𝑅
𝑖
, lim
𝑡→𝑇

∗

𝑖

𝑤
𝑖
(𝑡) = ∞, 𝑖 ∈ {1, 2} ,

𝑤


𝑖
≤ (𝜆𝑟 (𝑡))

1−𝛾
𝑔
0
(

𝑤
𝑖


) + 𝐾𝜆𝑞 (𝑡)

for a.e. 𝑡 ∈ (𝑎
𝑖
, 𝑇
∗

𝑖
) , 𝑖 ∈ {1, 2} .

(52)

Proof. Since the function 𝑦(𝑠) = tan(𝑠) is a bijection from
the interval (−𝜋/2, 𝜋/2) intoR, we observe that there are two
𝑠
1
, 𝑠
2
∈ (−𝜋/2, 𝜋/2) such that

tan (𝑠
𝑖
) ≤ 𝑅
𝑖
, 𝑖 ∈ {1, 2} . (53)

Next, we define two functions 𝑉
1
(𝑡) and 𝑉

2
(𝑡) by

𝑉
𝑖 (𝑡) = 𝑠𝑖 +

𝜋

𝑐
𝑖

∫

𝑡

𝑎𝑖

𝐶 (𝜏) 𝑑𝜏, 𝑡 ∈ [𝑎
𝑖
, 𝑏
𝑖
] , 𝑖 ∈ {1, 2} , (54)

where the real numbers 𝑐
1
, 𝑐
2
and the function 𝐶(𝑡) are

defined in (19). From (19) and (54), one can immediately
conclude that

𝑉
𝑖
(𝑎
𝑖
) = 𝑠
𝑖
<
𝜋

2
, 𝑉

𝑖
(𝑏
𝑖
) = 𝑠
𝑖
+ 𝜋 >

𝜋

2
, 𝑖 ∈ {1, 2} . (55)

Since 𝐶 ∈ 𝐿
1

loc((𝑡0,∞),R), it follows that 𝐶 ∈ 𝐿
1
((𝑡
0
,∞),R),

which implies that 𝑉
𝑖
∈ 𝐴𝐶([𝑎

𝑖
, 𝑏
𝑖
],R), 𝑖 ∈ {1, 2}. Therefore,

exploiting the fact that in (55) we have 𝑉
𝑖
∈ 𝐶([𝑎

𝑖
, 𝑏
𝑖
],R), we

obtain the existence of two points 𝑇∗
1
∈ (𝑎
1
, 𝑏
1
) and 𝑇

∗

2
∈

(𝑎
2
, 𝑏
2
) such that

𝑉
𝑖
(𝑇
∗

𝑖
)=

𝜋

2
, −

𝜋

2
<𝑉
𝑖
(𝑡)<

𝜋

2

∀𝑡 ∈ [𝑎
𝑖
, 𝑇
∗

𝑖
) , 𝑖 ∈ {1, 2} .

(56)

Now, we are able to define the following two functions 𝜔
1
(𝑡)

and 𝜔
2
(𝑡) by

𝜔
𝑖
(𝑡) = tan (𝑉i (𝑡)) , 𝑡 ∈ [𝑎

𝑖
, 𝑇
∗

𝑖
) , 𝑖 ∈ {1, 2} . (57)

That are well defined because of (56). Moreover, from (53),
(54), and (56) we obtain

𝜔
𝑖
(𝑎
𝑖
) = tan (𝑠

𝑖
) ≤ 𝑅
𝑖
,

lim
𝑡→𝑇

∗

𝑚

𝜔
𝑖
(𝑡) = tan (𝑉

𝑖
(𝑇
∗

𝑖
)) = tan(𝜋

2
) = ∞.

(58)

Also, since𝑉
𝑖
∈ 𝐴𝐶([𝑎

𝑖
, 𝑏
𝑖
],R), we can take the first derivative

of 𝜔
𝑖
(𝑡) and hence from (19) and (57) we obtain

𝑤


𝑖
(𝑡) =

𝜋

𝑐
𝑖

𝐶 (𝑡)
1

cos2 (𝑉
𝑖 (𝑡))

=
𝜋

𝑐
𝑖

𝐶 (𝑡) (

𝜔
𝑖
(𝑡)


2
+ 1)

≤
𝜋

𝑐
𝑖

𝐶 (𝑡) [𝑔
0
(

𝜔
𝑖
(𝑡)

) + 𝑀

0
+ 1]

≤
𝜋

𝑐
𝑖

𝐶 (𝑡) 𝑔
0
(

𝜔
𝑖
(𝑡)

) +

𝜋

𝑐
𝑖

𝐶 (𝑡) (𝑀
0
+ 1)

≤ (𝜆𝑟 (𝑡))
1−𝛾
𝑔
0
(

𝜔
𝑖
(𝑡)

) + 𝐾𝜆𝑞 (𝑡) , a.e. in (𝑎

𝑖
, 𝑇
∗

𝑖
) ,

(59)

which together with (58) proves this proposition.

Now we are able to present the proof of Theorem 3 based
on Lemma 15 and Propositions 17 and 18.

Proof of Theorem 3. Assuming the contrary, then there is a
nonoscillatory solution 𝑥(𝑡) and 𝑇 ≥ 𝑡

0
such that 𝑥(𝑡) ̸= 0 for

all 𝑡 ≥ 𝑇, 𝑥(𝑡) and 𝑟(𝑡)Φ(𝑥, 𝑥) are from 𝐴𝐶loc([𝑡0,∞),R).
In order to simplify notation, let every 𝑗 ∈ N be fixed and
omitted in the notation. For instance, instead of (𝑎

1𝑗
, 𝑏
1𝑗
) and

(𝑎
2𝑗
, 𝑏
2𝑗
) we write (𝑎

1
, 𝑏
1
) and (𝑎

2
, 𝑏
2
), respectively, and so on.

On one hand, we observe by Proposition 17 that the
function 𝑤(𝑡) defined by (47) is a supersolution of the
following Riccati differential equation:

𝑤

= (𝜆𝑟 (𝑡))

1−𝛾
𝑔
0
(|𝑤|) + 𝐾𝜆𝑞 (𝑡) a.e. in 𝐽, (60)

where 𝑤 ∈ 𝐴𝐶loc(𝐽,R) and 𝐽 = (𝑎
1
, 𝑏
1
) if 𝑥(𝑡) < 0 and 𝐽 =

(𝑎
2
, 𝑏
2
) if 𝑥(𝑡) > 0; see the proof of Proposition 17. Let for

instance 𝑥(𝑡) < 0 and thus 𝐽 = (𝑎
1
, 𝑏
1
).

On the other hand, by Proposition 18 there are a number
𝑇
∗

1
∈ (𝑎
1
, 𝑏
1
) and subsolutions 𝑤

1
(𝑡), 𝑤
1
∈ 𝐴𝐶([𝑎

1
, 𝑇
∗

1
),R) of

the Riccati differential equation (60) such that

𝑤
1
(𝑎
1
) ≤ 𝑤 (𝑎

1
) , lim

𝑡→𝑇
∗

1

𝑤
1
(𝑡) = ∞, (61)

(in the case when 𝐽 = (𝑎
2
, 𝑏
2
), then we work with𝑇∗

2
∈ (𝑎
2
, 𝑏
2
)

and the other subsolution 𝑤
2
(𝑡), 𝑤

2
∈ 𝐴𝐶([𝑎

2
, 𝑇
∗

2
),R)).

Hence by Corollary 16 and (61) we conclude that𝑤
1
(𝑡) ≤ 𝑤(𝑡)

for all 𝑡 ∈ [𝑎
1
, 𝑇
∗

1
) and therefore,

∞ = lim
𝑡→𝑇

∗

1

𝑤
1
(𝑡) ≤ lim
𝑡→𝑇

∗

1

𝑤 (𝑡) , (62)

which contradicts 𝑤 ∈ 𝐴𝐶loc([𝑇,∞),R). Thus, the assump-
tion that 𝑥(𝑡) is nonoscillatory is not possible and hence every
solution of (1) is oscillatory.
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Proof of Theorem 4. There is only one difference between
Theorems 3 and 4, and it is the difference between conditions
(19) and (20). Hence, Theorem 4 immediately follows from
Theorem 3 provided that we prove the equivalence between
(19) and (20).

First of all, we need the following two lemmas.

Lemma 19. Let 𝑎, 𝑏, and 𝑐 be positive real numbers, and 𝛾 > 1.
Then the existence of a positive real number 𝜆 such that

𝑐 ≤ min { 𝑎

𝜆
𝛾−1

, 𝑏𝜆} (63)

is equivalent to

𝑐 ≤ 𝑎
1/𝛾
𝑏
1/𝛾


. (64)

Here 𝛾 := 𝛾/(𝛾 − 1) is the conjugate exponent of 𝛾.

Proof. Let us define 𝑔(𝜆) = min{𝑎/𝜆𝛾−1, 𝑏𝜆}. Since 𝜆 →

𝑎/𝜆
𝛾−1 is decreasing and 𝜆 → 𝑏𝜆 is increasing, there exists

a unique point of maximum of 𝑔. It is achieved at 𝜆 = 𝜆
0

which is a solution of 𝑎/𝜆𝛾−1
0

= 𝑏𝜆
0
, hence 𝜆

0
= (𝑎/𝑏)

1/𝛾.
If there is a positive real number 𝜆 such that 𝑐 ≤ 𝑔(𝜆),

then 𝑐 ≤ 𝑔(𝜆
0
) = 𝑏𝜆

0
= 𝑏(𝑎/𝑏)

1/𝛾
= 𝑎
1/𝛾
𝑏
1/𝛾


. Conversely,
if 𝑐 ≤ 𝑎

1/𝛾
𝑏
1/𝛾


, then 𝑐 ≤ 𝑔(𝜆
0
), and the equivalence in the

lemma is proved.

The preceding lemma is a special case of the following
more general statement.

Lemma 20. Assume that 𝑎(𝑡), 𝑏(𝑡), and 𝑐(𝑡) are positive real
functions defined on a subset 𝐽 ⊆ R. Then the existence of a
positive real number 𝜆 such that for all 𝑡 ∈ 𝐽,

𝑐 (𝑡) ≤ min {𝑎 (𝑡)
𝜆
𝛾−1

, 𝑏 (𝑡) 𝜆} , (65)

is equivalent to

sup
𝑡∈𝐽

𝑐 (𝑡)

𝑏 (𝑡)
≤ (inf
𝑡∈𝐽

𝑎 (𝑡)

𝑐 (𝑡)
)

1/(𝛾−1)

. (66)

Proof. The condition that there exists 𝜆 > 0 such that (65)
is true for all 𝑡 ∈ 𝐽 is equivalent with the following two
inequalities, which have to hold simultaneously:

𝑐 (𝑡) ≤
𝑎 (𝑡)

𝜆
𝛾−1

, 𝑐 (𝑡) ≤ 𝑏 (𝑡) 𝜆, (67)

that is, with

𝑐 (𝑡)

𝑏 (𝑡)
≤ 𝜆 ≤ (

𝑎 (𝑡)

𝑐 (𝑡)
)

1/(𝛾−1)

∀𝑡 ∈ 𝐽. (68)

Taking the supremum of the left-hand side and the infimum
of the right-hand side, we obtain (66). Conversely, if (66)
is satisfied, then, since the left-hand side in (66) cannot
be equal to zero, while the right-hand side is less than ∞,
then inequality (66) defines a nonempty closed interval in R

(possibly reducing to just one point), in which we can choose
any positive 𝜆. Hence, (67) is satisfied for all 𝑡 ∈ 𝐽, and
therefore (65) as well.

Remark 21. If 𝑎 = 𝑎(𝑡), 𝑏 = 𝑏(𝑡), and 𝑐 = 𝑐(𝑡), appearing
in Lemma 20, are constant functions, then condition (66) is
equivalent to 𝑐/𝑏 = (𝑎/𝑐)1/(𝛾−1), that is, to (64).

Proof of Equivalence of (19) and (20). Wewill use Lemma 20.
Let us fix 𝐽

𝑖𝑗
, where 𝑖 ∈ {1, 2} and 𝑗 ∈ N. We see that that the

inequality appearing in the second line of condition (19) is of
the form (65), where

𝑐 (𝑡) :=
1

𝑐
𝑖𝑗

𝐶 (𝑡) , 𝑎 (𝑡) :=
1

𝜋
𝑟(𝑡)
1−𝛾
,

𝑏 (𝑡) :=
𝐾𝑞 (𝑡)

𝜋 (𝑀
0
+ 1)

.

(69)

Condition (66) is equivalent to

sup
𝑡∈𝐽𝑖𝑗

𝐶 (𝑡)

𝑞 (𝑡)
≤

𝐾𝑐
𝛾


𝑖𝑗

𝜋
𝛾


(𝑀
0
+ 1)

inf
𝑡∈𝐽𝑖𝑗

1

𝑟 (𝑡) 𝐶(𝑡)
𝛾−1

=

𝐾𝑐
𝛾


𝑖𝑗

(𝑀
0
+ 1) sup

𝑡∈𝐽𝑖𝑗
𝑟 (𝑡) 𝐶(𝑡)

𝛾−1
(

𝑐
𝑖𝑗

𝜋
)

𝛾


.

(70)

This inequality is equivalent to the corresponding one in (19),
and the claim follows from Lemma 19.

Proof of Corollary 6. Substituting inf
𝑡∈𝐽𝑖𝑗

𝑞(𝑡) instead of 𝑞(𝑡),
and sup

𝑡∈𝐽𝑖𝑗
𝑟(𝑡) instead of 𝑟(𝑡) in the inequality appearing in

the second line of (20), after a short computation we obtain a
stronger inequality than (20) as

1

𝑐
𝑖𝑗

sup
𝑡∈𝐽𝑖𝑗

𝐶 (𝑡)

≤
1

𝜋
(

𝐾inf
𝑡∈𝐽𝑖𝑗

𝑞 (𝑡)

(𝑀
0
+ 1) sup

𝑡∈𝐽𝑖𝑗
𝑟 (𝑡)

)

(𝛾−1)/𝛾

∀𝑖 ∈ {1, 2} , 𝑗 ∈ N.

(71)

Substituting𝐶(𝑡) ≡ 1we obtain that the left-hand side of (71)
is equal to |𝐽

𝑖𝑗
|
−1, and the resulting inequality is equivalent to

(21). Since (21) implies (20), the claim is proved.

Remark 22. Here we show that the choice of 𝐶(𝑡) ≡ 1 in
the proof of Corollary 6 is the best possible. To prove this,
note that on the left-hand side of (71) we have the expression
depending on an auxiliary function 𝐶(𝑡), and this function
is absent on the right-hand side. Therefore, it has sense to
try to find a function 𝐶(𝑡), 𝑡 ∈ 𝐽

𝑖𝑗
, such that the value of

𝑄(𝐶) := (1/𝑐
𝑖𝑗
)sup
𝑡∈𝐽𝑖𝑗

𝐶(𝑡) is minimal (note that 𝑐
𝑖𝑗
depends

on the function 𝐶 = 𝐶(𝑡) as well). It is easy to see that the
minimum is achieved for 𝐶(𝑡) ≡ 1 (or any positive constant).
Indeed, since 𝑄(𝐶) = 𝑄(𝜇𝑐) for any 𝜇 > 0, by taking 𝜇 =

(sup
𝑡∈𝐽𝑖𝑗

𝐶(𝑡))
−1 it suffices to assume that sup

𝑡∈𝐽𝑖𝑗
𝐶(𝑡) = 1.

The value of 𝑄(𝐶) is minimal if 𝑐
𝑖𝑗
= ∫
𝐽𝑖𝑗

𝐶(𝜏) 𝑑𝜏 is maximal
possible, and since 0 ≤ 𝐶(𝑡) ≤ 1, it is clear that the maximum
of 𝑐
𝑖𝑗
= 𝑐
𝑖𝑗
(𝐶) is achieved when 𝐶(𝑡) ≡ 1.



International Journal of Differential Equations 9

Proof of Corollary 7. It is clear that the condition (23) implies
(21). Furthermore, since the lengths |𝐽

𝑖𝑗
| are uniformly

bounded from below by a positive constant, see (23), then
obviously 𝑎

1𝑗
→ ∞ as 𝑗 → ∞. Thus, the claim follows

immediately from Corollary 6.

Proof of Corollary 10. Let 𝐶(𝑡) := 𝑞(𝑡). Then the required
condition (19) is clearly satisfied because of assumption
(30). Hence, this corollary immediately follows from Theo-
rem 3.

4. An Extension of Condition (12) to
the Case of 𝛾 > 1

In this section, we consider the oscillation of (1) in the case
when 𝛾 ∈ (1, 2) is allowed in the assumption (12). In this way,
the assumption (11) is slightly modified by a real number 𝑝 >
1 such that

|𝑢|
(𝑝−1)𝛾−𝑝

VΦ (𝑢, V) ≥ 𝑔 (|Φ (𝑢, V)|) , (72)

where (12) is supposed, that is, 𝑔(𝑐𝑠) ≥ 𝑐𝛾𝑔
0
(𝑠) for every 𝑐, 𝑠 >

0 and for a locally Lipschitz function 𝑔
0
: [0,∞) → [0,∞)

for which there exists a constant𝑀
0
such that 𝑔

0
(𝑠)+𝑀

0
≥ 𝑠
𝑝

for all 𝑠 ∈ [0,∞).
For the function 𝑓, we assume that there exists a constant

𝐾 > 0 such that

𝑓 (𝑢) sign (𝑢) ≥ 𝐾|𝑢|𝑝−1 for every 𝑢 ∈ R. (73)

We will need the following two lemmas.

Lemma 23. Let 𝑎 < 𝑏, and let 𝑓 : [𝑎, 𝑏] → [0,∞) be a meas-
urable function. Then,

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 ≥ 1 (74)

if and only if there exists a function 𝑔 ∈ 𝐿
1
([𝑎, 𝑏], [0,∞)),

‖𝑔‖
1
= 1, such that

𝑓 (𝑡) ≥ 𝑔 (𝑡) , ∀𝑡 ∈ [𝑎, 𝑏] . (75)

Proof. We assume (74). If ∫𝑏
𝑎
𝑓(𝑡)𝑑𝑡 is finite, we may choose

𝑔(𝑥) := 𝑓(𝑥)/‖𝑓‖
1
.

For ∫𝑏
𝑎
𝑓(𝑡)𝑑𝑡 = ∞, we may define for every natural

number 𝑛 a function

𝑓
𝑛
(𝑡) = {

𝑓 (𝑡) , 𝑓 (𝑡) ≤ 𝑛,

𝑛, 𝑓 (𝑡) > 𝑛.
(76)

Since 𝑓
𝑛
(𝑡) ≤ 𝑛, we have 𝑓

𝑛
∈ 𝐿
1
([𝑎, 𝑏],R). Obviously,

lim
𝑛
∫
𝑏

𝑎
𝑓
𝑛
(𝑡)𝑑𝑡 is also infinite.This implies that there exists an

𝑛
0
such that ∫𝑏

𝑎
𝑓
𝑛0
(𝑡)𝑑𝑡 ≥ 1. We define 𝑔(𝑡) := 𝑓

𝑛0
(𝑡)/‖𝑓

𝑛0
‖
1
.

Now, we assume (75). Integrating over the whole interval,
we get

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 ≥ ∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡 = 1. (77)

Lemma 24. Let𝑝 > 1.There exists a unique function 𝑦 = 𝑦(𝑠)
that satisfies the following Cauchy problem:

𝑦

(𝑠) = 1 +


𝑦 (𝑠)



𝑝
, 𝑠 ∈ R, (78)

𝑦 (0) = 0. (79)

Furthermore, there exists a finite real number 𝑆∗ such that

lim
𝑠→±𝑆

∗
𝑦 (𝑠) = ±∞, (80)

and 𝑦 ∈ 𝐶
1
((−𝑆
∗
, 𝑆
∗
),R) is injective and monotonous. We

have 𝑆∗ = (𝜋/𝑝)(1/(sin(𝜋/𝑝))) and 𝑦 is odd.

We will denote by tan
𝑝
the solution of (78)-(79).

Proof. Obviously every solution to (78) is injective and
monotonous on a connected set, since 𝑦 = 1 + |𝑦|𝑝 ≥ 1 > 0.

Let 𝑓(𝑥) = 1/(1 + |𝑥|
𝑝
). Obviously 1 ≥ 𝑓(𝑥) > 0 for all

𝑥 ∈ R and 𝐶
𝑝
> |𝑓

(𝑥)| > 0 for some constants 𝐶

𝑝
∈ R.

We may assume 𝐶
𝑝
> 1. Hence, 𝑧 = 𝑓(𝑡), 𝑧(0) = 0 has (by

[17,Theorem 3.1]) a locally unique solution on (−1/𝐶
𝑝
, 1/𝐶
𝑝
).

By the same argument 𝑧 can be extended to the whole of R,
interval by interval of type ((𝑛 − 1)/𝐶

𝑝
, (𝑛 + 1)/𝐶

𝑝
) for all

𝑛 ∈ Z.
We know from [18] that the for the integral of the left-

hand side we have

∫

∞

0

𝑓 (𝑥) 𝑑𝑥 = ∫

∞

0

𝑑𝑥

1 + 𝑥
𝑝
=
𝜋

𝑝

1

sin (𝜋/𝑝)
= 𝑆
∗
, (81)

so lim
𝑡→±∞

𝑧(𝑡) = ±𝑆
∗.

Since 𝑧(𝑡) ̸= 0, 𝑧 is injective, monotonous, and of class
𝐶
1
(R, (−𝑆∗, 𝑆∗)) and so we define 𝑦(𝑠) = 𝑧

−1
(𝑠). It imme-

diately follows that 𝑦 ∈ 𝐶
1
((−𝑆
∗
, 𝑆
∗
),R) and that 𝑦 is

injective and monotonous. Also, by continuity of 𝑧, we have
lim
𝑠→±𝑆

∗𝑦(𝑠) = lim
𝑤→±∞

𝑦(𝑧(𝑤)) = lim
𝑤→±∞

𝑤 = ±∞.
Differentiating, it also follows that 𝑦 = 1 + |𝑦|

𝑝 and by
definition of 𝑦, 𝑦(0) = 𝑧−1(0) = 0. So, 𝑦 is a solution of (78)-
(79). Since any other such solution must have 𝑧 as its inverse,
𝑦 is unique on its domain.

Proposition 25. Let 𝑎 < 𝑏 and 𝛾 > 𝑝 > 1. Assume (72) and
(73) and let 𝑞(𝑡) ≥ 0 and 𝑒(𝑡) ≤ 0 (or 𝑒(𝑡) ≥ 0 ) for all 𝑡 ∈ [𝑎, 𝑏].
If there exists a constant 𝜆 > 0 such that

𝑝

2𝜋
sin(𝜋

𝑝
)∫

𝑏

𝑎

min{
𝑝 − 1

𝑟
𝛾−1

(𝑡) 𝜆
𝛾−1

,
𝐾𝜆𝑞 (𝑡)

1 +𝑀
0

}𝑑𝑡 ≥ 1, (82)

then for any solution 𝑥(𝑡) of (1) with 𝑥(𝑎) ≥ 0 (or 𝑥(𝑎) ≤ 0)
there exists a number 𝑡∗ ∈ [𝑎, 𝑏] such that 𝑥(𝑡∗) = 0.

Proof. We assume that 𝑥(𝑡) ̸= 0 for all 𝑡 ∈ [𝑎, 𝑏]. Then we may
define the function

𝜔 (𝑡) := −

𝜆𝑟 (𝑡) Φ (𝑥 (𝑡) , 𝑥

(𝑡))

sign (𝑥 (𝑡)) |𝑥 (𝑡)|𝑝−1
. (83)
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This function is well defined on [𝑎, 𝑏] and its derivative is

𝑤

(𝑡) = −

𝜆(𝑟 (𝑡) Φ (𝑥 (𝑡) , 𝑥

(𝑡)))


sign (𝑥 (𝑡)) |𝑥 (𝑡)|𝑝−1

+

(𝑝 − 1) 𝜆𝑟 (𝑡) Φ (𝑥 (𝑡) , 𝑥

(𝑡))

|𝑥 (𝑡)|
𝑝

𝑥

(𝑡) .

(84)

Using the fact that 𝑥(𝑡) is a solution of (1) and omitting 𝑡 from
𝑥 and 𝑥 for clarity, we get

𝑤

(𝑡) =

𝜆 (𝑞 (𝑡) 𝑓 (𝑥) − 𝑒 (𝑡))

sign (𝑥) |𝑥|𝑝−1
+

(𝑝 − 1) 𝜆𝑟 (𝑡) Φ (𝑥, 𝑥

)

𝑥
𝑝

𝑥


=

(𝑝 − 1) 𝜆𝑟 (𝑡) Φ (𝑥, 𝑥

)

|𝑥|
𝑝

𝑥

+ 𝜆𝑞 (𝑡)

𝑓 (𝑥)

sign (𝑥) |𝑥|𝑝−1

− 𝜆
𝑒 (𝑡)

sign (𝑥) |𝑥|𝑝−1

=
(𝑝 − 1) 𝜆𝑟 (𝑡)

|𝑥|
𝛾(𝑝−1)

Φ(𝑥, 𝑥

) 𝑥

|𝑥|
(𝑝−1)𝛾−𝑝

+ 𝜆𝑞 (𝑡)
𝑓 (𝑥)

sign (𝑥) |𝑥|𝑝−1
− 𝜆

𝑒 (𝑡)

sign (𝑥) |𝑥|𝑝−1

(72)

≥
(𝑝 − 1) 𝜆𝑟 (𝑡)

|𝑥|
𝛾(𝑝−1)

𝑔 (

Φ (𝑥, 𝑥


)

)

+ 𝜆𝑞 (𝑡)
𝑓 (𝑥)

sign (𝑥) |𝑥|𝑝−1

− 𝜆
𝑒 (𝑡)

sign (𝑥) |𝑥|𝑝−1

=
(𝑝 − 1) 𝜆𝑟 (𝑡)

|𝑥|
𝛾(𝑝−1)

𝑔(
|𝑥|
𝑝−1

𝜆𝑟 (𝑡)
|𝜔 (𝑡)|)

+ 𝜆𝑞 (𝑡)
𝑓 (𝑥)

sign (𝑥) |𝑥|𝑝−1
− 𝜆

𝑒 (𝑡)

sign (𝑥) |𝑥|𝑝−1

(12)

≥
(𝑝 − 1) 𝜆𝑟 (𝑡)

|𝑥|
𝛾(𝑝−1)

(
|𝑥|
𝑝−1

𝜆𝑟 (𝑡)
)

𝛾

𝑔
0 (|𝜔 (𝑡)|)

+ 𝜆𝑞 (𝑡)
𝑓 (𝑥)

sign (𝑥) |𝑥|𝑝−1
− 𝜆

𝑒 (𝑡)

sign (𝑥) |𝑥|𝑝−1

=
𝑝 − 1

(𝜆𝑟 (𝑡))
𝛾−1

𝑔
0 (|𝜔 (𝑡)|)+𝜆𝑞 (𝑡)

𝑓 (𝑥)

sign (𝑥) |𝑥|𝑝−1

− 𝜆
𝑒 (𝑡)

sign (𝑥) |𝑥|𝑝−1

(73)

≥
𝑝 − 1

(𝜆𝑟 (𝑡))
𝛾−1

𝑔
0 (|𝜔 (𝑡)|) + 𝜆𝑞 (𝑡) 𝐾

− 𝜆
𝑒 (𝑡)

sign (𝑥) |𝑥|𝑝−1
.

(85)

Since 𝑒(𝑡)/(sign(𝑥)|𝑥|𝑝−1) ≤ 0, we have

𝑤

(𝑡) ≥

𝑝 − 1

(𝜆𝑟 (𝑡))
𝛾−1

𝑔
0
(|𝜔 (𝑡)|) + 𝜆𝐾𝑞 (𝑡) . (86)

We apply Lemma 23 to (82) to obtain a function𝐶(𝑡) such
that

∫

𝑏

𝑎

𝐶 (𝑡) 𝑑𝑡 = 1, (87)

and by (75)

0 ≤ 𝐶 (𝑡) ≤
𝑝

2𝜋
sin(𝜋

𝑝
)min{

𝑝 − 1

𝑟
𝛾−1

(𝑡) 𝜆
𝛾−1

,
𝐾𝜆𝑞 (𝑡)

1 +𝑀
0

} .

(88)

Let 𝑠
0
∈ (−(𝜋/𝑝)(1/ sin(𝜋/𝑝)), (𝜋/𝑝)(1/ sin(𝜋/𝑝))) be such

that tan
𝑝
(𝑠
0
) ≤ 𝜔(𝑎). We define the function

𝑉 (𝑡) = 𝑠
0
+
2𝜋

𝑝

1

sin (𝜋/𝑝)
∫

𝑡

𝑎

𝐶 (𝜏) 𝑑𝜏. (89)

Note that (−(𝜋/𝑝)(1/ sin(𝜋/𝑝))) < 𝑠
0

= 𝑉(𝑎) <

(𝜋/𝑝)(1/ sin(𝜋/𝑝)) and 𝑉(𝑏) = 𝑠
0
+ (2𝜋/𝑝)(1/ sin(𝜋/𝑝)) >

(𝜋/𝑝)(1/ sin(𝜋/𝑝)). Since𝑉 is continuous, there exists a 𝑇∗ ∈
(𝑎, 𝑏) such that 𝑉(𝑡) < (𝜋/𝑝)(1/ sin(𝜋/𝑝)) for 𝑡 ∈ [𝑎, 𝑇∗) and
𝑉(𝑇
∗
) = (𝜋/𝑝)(1/ sin(𝜋/𝑝)).

We define

𝜔 (𝑡) := tan
𝑝
(𝑉 (𝑡)) , 𝑡 ∈ [𝑎, 𝑇

∗
) , (90)

and note that by Lemma 24, lim
𝑡→𝑇

∗𝜔(𝑡) = +∞, where
tan
𝑝
(𝑠) = 𝑦(𝑠) and 𝑦(𝑠) is determined by Lemma 24.
The derivative of 𝜔 then satisfies

𝜔

(𝑡) = tan

𝑝
(𝑉 (𝑡)) 𝑉


(𝑡)

= (1 + tan𝑝
𝑝
(𝑉 (𝑡))) 𝑉


(𝑡)

=
2𝜋

𝑝

1

sin (𝜋/𝑝)
(1 + 𝜔

𝑝
(𝑡)) 𝐶 (𝑡)

≤ (1 +𝑀
0
+ 𝑔
0
(

𝜔 (𝑡)


))min{

𝑝 − 1

𝑟
𝛾−1

(𝑡) 𝜆
𝛾−1

,
𝐾𝜆𝑞 (𝑡)

1 +𝑀
0

}

≤
𝑝 − 1

𝑟
𝛾−1

(𝑡) 𝜆
𝛾−1

𝑔
0
(

𝜔 (𝑡)


) + 𝐾𝜆𝑞 (𝑡) .

(91)

Thus, we may apply the comparison principle of
Lemma 15 to 𝜔(𝑎) ≤ 𝜔(𝑎) and their respective differential
inequalities to conclude that 𝜔(𝑡) ≤ 𝜔(𝑡) for all 𝑡 ∈ [𝑎, 𝑏].
But, since 𝜔 → +∞ as 𝑡 → 𝑇

∗
< 𝑏 and 𝜔(𝑡) is well defined

on the whole segment [𝑎, 𝑏], we arrive at a contradiction.
Hence, 𝑥(𝑡) > 0 cannot hold for all 𝑡 ∈ [𝑎, 𝑏], and since 𝑥(𝑡) is
continuous, there exists a 𝑡∗ ∈ [𝑎, 𝑏] such that 𝑥(𝑡∗) = 0.

Theorem 26. Let 𝛾 > 𝑝 > 1. Assume (72) and (73) and let for
any 𝑇 > 𝑡

0
there exist 𝑇 ≤ 𝑎

1
< 𝑏
1
≤ 𝑎
2
< 𝑏
2
such that 𝑔(𝑡) ≥ 0

on [𝑎
1
, 𝑏
1
] ∪ [𝑎

2
, 𝑏
2
] and 𝑒(𝑡) ≤ 0 on [𝑎

1
, 𝑏
1
] and 𝑒(𝑡) ≥ 0 on
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[𝑎
2
, 𝑏
2
]. If for both 𝑖 ∈ {1, 2} there exist constants 𝜆

𝑖
> 0 such

that

𝑝

2𝜋
sin (𝜋/𝑝)∫

𝑏𝑖

𝑎𝑖

min{
𝑝 − 1

𝑟
𝛾−1

(𝑡) 𝜆
𝛾−1

𝑖

,
𝐾𝜆
𝑖
𝑞 (𝑡)

1 +𝑀
0

}𝑑𝑡 ≥ 1,

(92)

then (1) is oscillatory.

Proof. For (1) to be oscillatory it is sufficient that for every
𝑛 ∈ N there exists a 𝑡

𝑛
> 𝑛 such that 𝑥(𝑡

𝑛
) = 0.

Let 𝑛 ∈ N and let 𝑛 < 𝑎
1
< 𝑏
1
≤ 𝑎
2
< 𝑏
2
as assumed in the

theorem. It is enough to show that every solution 𝑥(𝑡) of (1)
has a zero on [𝑎

1
, 𝑏
2
]. If 𝑥(𝑎

1
) ≥ 0, we apply Proposition 25 to

the segment [𝑎
1
, 𝑏
1
] to obtain the sought zero. If 𝑥(𝑎

2
) ≤ 0 we

again apply Proposition 25 to the segment [𝑎
2
, 𝑏
2
]. Suppose

𝑥(𝑎
1
) < 0 and 𝑥(𝑎

2
) > 0. Then, since 𝑥 is continuous, there

exists a number 𝑡
1
∈ [𝑎
1
, 𝑎
2
] such that 𝑥(𝑡

1
) = 0.
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