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We use the theory of fixed point index for weakly inward A-proper maps to establish the
existence of positive solutions of some second-order three-point boundary value prob-
lems in which the highest-order derivative occurs nonlinearly.

1. Introduction

In the present paper, we discuss the existence of positive solutions of the nonlinear three-
point boundary value problem (BVP)

—u'(t) = f(tu,u',u”), te(0,1), (1.1)
with the nonlocal boundary conditions (BCs)
u(0) =0, au(n) =u(l), 0<y<l,ayn<l, (1.2)

in which the second derivative may occur nonlinearly.

Positive solutions for the case f(t,u,u’,u’") = g(t)h(u) have been studied by Ma [15]
and Webb [20, 21], when f(t,u,u’,u”) = h(t,u) by He and Ge [5] and also by Lan [11].
The case f(t,u,u’,u’") = g(t)h(u,u’) has been studied by Feng [4]. The results in [4, 15]
are obtained by means of Krasnosel’skii’s theorem [8], the ones in [5] use Leggett and
Williams’ theorem [14] and the results in [11, 20, 21] are achieved via the classical fixed
point index for compact maps, see for example [1].

Lafferriere and Petryshyn [9] and Cremins [2] studied existence of positive solutions
of the so-called Picard boundary value problem

-u''(t) = f(t,u,u',u""), (1.3)
with BCs

u(0) =u(1) =0, (1.4)
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by means of fixed point index theory for A-proper maps. A key restriction in [2, 9] is that
f must take positive values. Lan and Webb [13] improved the results of [2, 9] by allowing
f to possibly take some negative values.

Here we will exploit Lan and Webb’s theory [12] of fixed point index for weakly inward
A-proper maps, to prove new results on the existence of positive solutions of the BVP
(1.1)-(1.2).

We mention that with very little change, this technique may be applied to a variety of
BCs, (e.g., other three-point BCs [6, 7], or m-point BCs [16]), but for brevity, we refrain
from discussing other cases.

2. Preliminaries

Let X denote an infinite-dimensional Banach space endowed with a fixed projection
scheme I' = {X,,, P, }, where {X,} is a sequence of finite-dimensional subspaces of X and
P,:X — X, is a linear projection with P,x — x for every x € X. We recall below the
concept of A-proper mapping, introduced by Petryshyn, and we refer to his book [18]
for further information on projection schemes, properties, and applications of A-proper
maps.

Definition 2.1. Given a map T:D C X — X, T is said to be A-proper at a point y € X
relative to T' if

T,:=P,T:DnX, — X, (2.1)
is continuous for each n € N and if {x, ; B ; € Xa j} is a bounded sequence such that
[[PaT (xn;) = y|l — 0 s j— oo, (2.2)

there exists a subsequence {xnj(k)} of {xnj} and x € X such that Xnjgy = X and T(x)=y. T
is A-proper on a set K if it is A-proper at all points of K. A-proper alone means A-proper
on X.

In a similar way, for a fixed y > 0, T is said to be P,-compact at a point y € X with
respect to I if Al — T is A-proper at y for each A dominating y (i.e., A >y if y >0 and
A>0if y =0). T is said to be Py-compact on a set K if it is P,-compact at all points of K.

We recall the definitions of weakly inward set and map, see for example [3].

Definition 2.2. Let K be a closed convex set in X. For x € K the set
Ix(x) = {x+c(z—x):z€K, c=>0} (2.3)

is called the inward set of x relative to K. The closure of Ix(x), Ix(x) is said to be the
weakly inward set of x relative to K.
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Geometrically, the inward set Ix (x) is the union of all rays beginning at x and passing
through some other point of K.

Recall that K is called a wedge if Ax € K for x € K and A = 0. If, furthermore, K N
(—K) = {0}, we say that K is a cone.

Definition 2.3. Givenamap T:Q C K — K, T is said to be inward on Q relative to K if
Tx € Ix(x) for x € Q. If Tx € Ix(x) for x € Q, T is said to be weakly inward.

We recall the definition of k-semicontractive map.

Definition 2.4. Let D be a nonempty subset of X. A map A: D — X is said to be k-
semicontractive map with constant k > 0 if there exists a map V : D x D — X such that
the following conditions hold.
(S1) For each fixed x € D, V(x,-) : D — X is compact.
(Sz) For each y € D, the map V(-,y) : D — X is a Lipschitz map with Lipschitz con-
stant k.
(S3) A(x) = V(x,x) for x € D.

Lan and Webb [12] defined a fixed point index for weakly inward A-proper maps,
which has the usual properties of the classical fixed point index, that is, existence, nor-
malization, additivity, and homotopy invariance.

In this paper, we focus on some applications of this theory. Throughout the following,
Kisacone. WesetK, = {x e K:||x|| <r}and K, = {x € K : ||x|| < r}.

First we state a lemma which implies that the fixed point index, ix(T,K;), is 1. This
uses the well-known Leray-Schauder condition.

LEmMA 2.5 (see [12]). Assume that T : K, — X is weakly inward, Py-compact on K, and
satisfies

(LS) x # tT(x) for ||x|| = r and t € [0,1).
Then T has a fixed point in K,. Furthermore, if x #+ T(x) for ||x|| = r, then ix(T,K,) = {1}.

Now we give a condition which ensures that the fixed point index is 0.

LEMMA 2.6 (see [12]). Assume that T : K, — X is weakly inward, Py-compact on K, and
T(K,) is bounded. Suppose that x + Tx for || x|l = r, and

(E) there exists e € K \ {0} such that x + Tx+ Ae for ||x|| = r and A > 0.
Then ix(T,K,) = {0}.

These conditions imply the following theorem.

THEOREM 2.7 (see [12]). Let T : K, — X be weakly inward, P,-compact on K, with T(K,)
bounded. Suppose the following conditions are satisfied:
(LS) there exists p € (0,7) such that x # tTx for x|l = pand 0 <t < 1,
(E) there exists e € K \ {0} such that x # Tx + e for ||x|| = r and A > 0.
Then T has a fixed point in K, \ K,. The same conclusion remains valid if (LS) holds for
lx|l = r and (E) holds for ||x|| = p.

One benefit of such type or result, as compared with the well-known Krasnosel’skii
theorem, is that we do not require the cone to be sent into itself, but into a larger set.



180  Positive solutions of some BVPs

3. Applications to three-point BVPs

In this section, we consider the existence of positive solutions of BVP
-u"'(t) = f(t,u,u',u”), te€(0,1), (3.1)
with boundary conditions
u(0) =0, au(n) =u(l), 0<y<l,an<l. (3.2)

We restrict our attention to the case 1+ an? = 2ax.
In order to apply the results of Section 2, we set

1 1—0c112>2 _1(1—20a7+0n72) _1(1—&712)
CliS(l—cxn ’ 273 1—any ’ 573 l—an /)’ (3:3)

see (3.9) and (3.10) for the interpretation of these constants.

We make the following assumptions on f:

(Cy) there exists r > 0 such that f: [0,1] X [0,¢17] X [—¢c27,¢37] X [-7,0] — R is a con-
tinuous function,

(C,) there exists k € (0,1) such that | f(t,u,v,—s1) — f(t,u,v,—s2)| < k|s; —s,| fort €
[0,1], u € [0,c17], v € [—car, c37], and 51,5, € [0,7],

(Cs) f(t,u,v,0) =0fort € [0,1], u € [0,c;7], and v € [—car,c37],

(Cy) f(t,u,v,—r) <rforte[0,1], u € [0,cir],and v € [—co1,c37],

(Cs) there exists p € (0,7) such that f(t,u,v,—p) = p for t € [0,1], u € [0,¢;7] and
v € [—cr,car].

Remark 3.1. As in [13], we point out that condition (Cs) is weaker than the usual posi-
tivity requirement for f(t,u,v,s). If f is not positive, the standard theory of fixed point
index cannot be applied since it needs the cone to be sent back into itself (see, e.g., [18]).

Furthermore, we stress that weakly inward fixed point index only exists in nonreflexive
spaces using A-proper theory, even for compact maps.

With respect to the alternative method of “solving” (1.1) for the highest-order de-
rivative by means of the contractive hypothesis (C;), the reader might find interesting
comments in [19, 22].

For these reasons, we employ Lan and Webb’s theory for weakly inward A-proper maps
[12].

We work in X = C[0,1], the space of continuous functions on [0,1] with the usual
maximum norm and use the projection scheme I' = {X,,, P, } associated with the standard
Schauder basis [17]. We use the cone of positive functions

K ={ueC[0,1]:u(t) = 0fort € [0,1]}. (3.4)

It is known that P,K C K.
We recall the following result which is a consequence of [3, Lemma 18.2].
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LemMa 3.2 (see [10]). Let X = C[0,1] and K as above. Take u € K and define
E(u) = {t € [0,1] : u(t) = 0}. (3.5)

Then,
(1) if E(u) = @, that is, u(t) > 0 for every t € [0, 1], or equivalently, u is an interior point
of K, then Ix(u) = X,
(2) if E(u) + @, that is, u € JK, then the set {v € X : v(¢) > 0 for t € E(u)} is a subset of
Ik (u), that is, if the values of v are nonnegative at all points at which the values of u
are zero, then v belongs to the weakly inward set I (u) of u.

We can now state a theorem for the positive solutions of (3.1)-(3.2).

THEOREM 3.3. Assume that the conditions (Cy)—(Cs) hold. Then (3.1)-(3.2) has a positive
solution v with p < ||lv|| < r.

Proof. Let U = {u € C?[0,1]: u(0) =0, au(y) = u(1)}. Defineamap L: U — X by Lu =
—u”. Then L is a linear isomorphism and

L(t) = Jl k(t:5)v(s)ds, (3.6)
0

where

k(t,s) =

o (n—s), s< t t
o) = - S, <1,
t(ls)<|1_0”1’1 ’1{ S8 (3.7)
1—-an

0, s>1 0, s>t

We define a continuous map T : K, — X by

Tv(r) = f(t,L*lv,%L*v,—v), (3.8)

where K, = {u € K : ||ul| < r}. By direct calculation, it may be shown that

1
maXJ k(ts)ds = 1. (3.9)
0

te[0,1]

Soifv € K,, then 0 < L~ 1v(t) < ¢;r. Also by routine calculations, it may be shown that if
v € K,, then

d
—or < ELflv(t) < 31 (3.10)

Therefore, T is well defined and (C, ) implies that T is continuous.
To show that T is P;-compact, one studies the map V : K, xK, — X defined by

V(u,v)=f<t,L_1v,%L_1v,—u). (3.11)
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Then by (Cy), V(u,-) is Lipschitz with constant k and, since L™! and (d/dt)L~! are com-
pact, V(-,v) is compact. These conditions imply that V is a k-semicontraction with k < 1,
and hence Tu = V(u,u) is Py-compact for every y € (k,1). For the proof of this assertion,
we refer to [18], see also [13].

To prove that T is weakly inward relative to K, let v € 0K, that is,

EWw) = {re[0,1]:v(t) = 0} £ ©. (3.12)
Then (Tv)(t) = f(t,L"'v,(d/dt)L"1v,0) for every t € E(v). It follows from (Cs) that
(Tv)(t) =0 foreveryte E(v). (3.13)

Using Lemma 3.2, we see that Tv € Ix(v) and so T is weakly inward.

We show that T satisfies the condition (LS) in Theorem 2.7, thatis, v # ATv for v € oK,
and A € (0,1). In fact, if not, there exist vy € dK, and Aq € (0,1) such that vy = ATvg. Let
to € [0,1] be such that vy(ty) = r. Then by (C,), we have

r= Vo(to) . Aof(to,L_IV(t()), %L_1V(t0),—r> < /\QT <r, (314)

a contradiction.

Finally, we prove that T satisfies the condition (E) in Theorem 2.7 with e(¢) = 1 for
t € [0,1], thatis, v # Ty + fe for v € 0K, and 8 > 0. In fact, if not, there exist vy € 0K,
and fp > 0 such that vy = Tvy + foe. Let ty € [0,1] be such that vo(s) = [[voll = p. Then we
have

d
p= f(to,Lflv(to), ﬁlflv(to),p> +Boe = p+ Poe > p, (3.15)

a contradiction.
It follows from Theorem 2.7 that T has a fixed point v € K satisfying p < ||v|| <.
Take u = L™'v, then u is a positive solution of (3.1)-(3.2). O

Example 3.4. The function f(t,u,u’,u"") = 3/4cos(u’") with r = m and p = 7/6 shows that
the class of maps that satisfies the conditions (C;)—(Cs) is nonempty.

Remark 3.5. In order to show the existence of two solutions via Theorem 2.7, one would
be tempted to require the following (this is a standard argument in fixed point index
theory):

(Ce) there exists p € (0,p) such that f(t,u,v,—p) <pforte[0,1],uc[0,c;r] and v €

[0,r].
This would provide the existence of ¥ € K satistying p < [|7]| < p. However, as noted in
[13, Remark 4.3], it is impossible to simultaneously satisfy (C,), (Cs), and (Cs).
This error occurred in [2, 9], when the authors discussed the existence of one positive

solution of the Picard BVP.
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Remark 3.6. For the case 1+ an? < 2an, which occurs only when a > 1, the value of the
constant ¢; given in (3.9) has to be replaced by

maxJ k(t,s)d (001(1—11)). (3.16)

te[0,1 1—-an

This is because the constant m on [21, page 914] should read

1— 2
8(70“27)2 if 1+an? > 2an,
m= illf ) (3.17)
“57(1__0(2; if 1+ an? < 2a1.

A similar result to Theorem 3.3 holds in this case for (the new) c;.

Acknowledgments

The author thanks Professor J. R. L. Webb for valuable discussions and suggestions, in
particular, for pointing out the misprint in [21]. The author would also like to thank
both referees for their helpful and constructive comments.

References
[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Rev. 18 (1976), no. 4, 620-709.
[2] C.T. Cremins, Existence theorems for semilinear equations in cones, J. Math. Anal. Appl. 265
(2002), no. 2, 447-457.
[3] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[4] W. Feng, Solutions and positive solutions for some three-point boundary value problems, Discrete
Contin. Dyn. Syst. 2003 (2003), suppl., 263-272.
[5] X.Heand W. Ge, Triple solutions for second-order three-point boundary value problems, J. Math.
Anal. Appl. 268 (2002), no. 1, 256-265.
[6] G.Infante, Eigenvalues of some non-local boundary-value problems, Proc. Edinburgh Math. Soc.
(2) 46 (2003), no. 1, 75-86.
[7] G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation, to appear in
Nonlinear Differential Equations Appl.
[8] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, 1964.
[9] B.Lafferriere and W. V. Petryshyn, New positive fixed point and eigenvalue results for P,-compact
maps and some applications, Nonlinear Anal. 13 (1989), no. 12, 1427-1440.
[10] K. Q. Lan, Theories of fixed point index and applications, Ph.D. thesis, Unversity of Glasgow,
Glasgow, 1998.
[11] , Multiple positive solutions of three point boundary value problems with singularities, to
appear in J. Dynam. Differential Equations.
[12] K. Q.Lan and J. R. L. Webb, A fixed point index for weakly inward A-proper maps, Nonlinear
Anal. 28 (1997), no. 2, 315-325.
[13] A-properness of contractive and condensing maps, Nonlinear Anal. Ser. A: Theory
Methods 49 (2002), no. 7, 885-895.
[14] R.W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered

Banach spaces, Indiana Univ. Math. J. 28 (1979), no. 4, 673—-688.



184  Positive solutions of some BVPs

[15] R. Ma, Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. Differ-
ential Equations 1999 (1999), no. 34, 1-8.

, Positive solutions of a nonlinear m-point boundary value problem, Comput. Math. Appl.
42 (2001), no. 6-7, 755-765.

[17] J. T. Marti, Introduction to the Theory of Bases, Springer Tracts in Natural Philosophy, vol. 18,
Springer, New York, 1969.

[18]  W. V. Petryshyn, Approximation-Solvability of Nonlinear Functional and Differential Equations,
Monographs and Textbooks in Pure and Applied Mathematics, vol. 171, Marcel Dekker,
New York, 1993.

[19] J.R. L. Webb, Topological degree and A-proper operators, Linear Algebra Appl. 84 (1986), 227—

[16]

242.

[20] , Positive solutions of some three point boundary value problems via fixed point index
theory, Nonlinear Anal. 47 (2001), no. 7, 4319-4332.

[21] , Remarks on positive solutions of some three point boundary value problems, Discrete

Contin. Dyn. Syst. 2003 (2003), suppl., 905-915.
[22] J. R. L. Webb and S. C. Welsh, Existence and uniqueness of initial value problems for a class of
second-order differential equations, J. Differential Equations 82 (1989), no. 2, 314-321.

Gennaro Infante: Dipartimento di Matematica, Universita della Calabria, 87036 Arcavacata di
Rende, Cosenza, Italy
E-mail address: g.infante@unical.it


mailto:g.infante@unical.it

