
POSITIVE SOLUTIONS OF SOME THREE-POINT BOUNDARY
VALUE PROBLEMS VIA FIXED POINT INDEX
FOR WEAKLY INWARD A-PROPER MAPS

GENNARO INFANTE

Received 23 November 2003 and in revised form 2 November 2004

We use the theory of fixed point index for weakly inward A-proper maps to establish the
existence of positive solutions of some second-order three-point boundary value prob-
lems in which the highest-order derivative occurs nonlinearly.

1. Introduction

In the present paper, we discuss the existence of positive solutions of the nonlinear three-
point boundary value problem (BVP)

−u′′(t)= f (t,u,u′,u′′), t ∈ (0,1), (1.1)

with the nonlocal boundary conditions (BCs)

u(0)= 0, αu(η)= u(1), 0 < η < 1, αη < 1, (1.2)

in which the second derivative may occur nonlinearly.
Positive solutions for the case f (t,u,u′,u′′) = g(t)h(u) have been studied by Ma [15]

and Webb [20, 21], when f (t,u,u′,u′′)= h(t,u) by He and Ge [5] and also by Lan [11].
The case f (t,u,u′,u′′)= g(t)h(u,u′) has been studied by Feng [4]. The results in [4, 15]
are obtained by means of Krasnosel’skiı̆’s theorem [8], the ones in [5] use Leggett and
Williams’ theorem [14] and the results in [11, 20, 21] are achieved via the classical fixed
point index for compact maps, see for example [1].

Lafferriere and Petryshyn [9] and Cremins [2] studied existence of positive solutions
of the so-called Picard boundary value problem

−u′′(t)= f (t,u,u′,u′′), (1.3)

with BCs

u(0)= u(1)= 0, (1.4)
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by means of fixed point index theory for A-proper maps. A key restriction in [2, 9] is that
f must take positive values. Lan and Webb [13] improved the results of [2, 9] by allowing
f to possibly take some negative values.

Here we will exploit Lan and Webb’s theory [12] of fixed point index for weakly inward
A-proper maps, to prove new results on the existence of positive solutions of the BVP
(1.1)-(1.2).

We mention that with very little change, this technique may be applied to a variety of
BCs, (e.g., other three-point BCs [6, 7], or m-point BCs [16]), but for brevity, we refrain
from discussing other cases.

2. Preliminaries

Let X denote an infinite-dimensional Banach space endowed with a fixed projection
scheme Γ= {Xn,Pn}, where {Xn} is a sequence of finite-dimensional subspaces of X and
Pn : X → Xn is a linear projection with Pnx → x for every x ∈ X . We recall below the
concept of A-proper mapping, introduced by Petryshyn, and we refer to his book [18]
for further information on projection schemes, properties, and applications of A-proper
maps.

Definition 2.1. Given a map T : D ⊂ X → X , T is said to be A-proper at a point y ∈ X
relative to Γ if

Tn := PnT : D∩Xn −→ Xn (2.1)

is continuous for each n∈N and if {xnj |xnj ∈ Xnj} is a bounded sequence such that

∥∥PnT(xnj

)− y
∥∥−→ 0 as j −→∞, (2.2)

there exists a subsequence {xnj(k)} of {xnj} and x ∈ X such that xnj(k) → x and T(x)= y. T
is A-proper on a set K if it is A-proper at all points of K . A-proper alone means A-proper
on X .

In a similar way, for a fixed γ ≥ 0, T is said to be Pγ-compact at a point y ∈ X with
respect to Γ if λI −T is A-proper at y for each λ dominating γ (i.e., λ ≥ γ if γ > 0 and
λ > 0 if γ = 0). T is said to be Pγ-compact on a set K if it is Pγ-compact at all points of K .

We recall the definitions of weakly inward set and map, see for example [3].

Definition 2.2. Let K be a closed convex set in X . For x ∈ K the set

IK (x)= {x+ c(z− x) : z ∈ K , c ≥ 0
}

(2.3)

is called the inward set of x relative to K . The closure of IK (x), IK (x) is said to be the
weakly inward set of x relative to K .
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Geometrically, the inward set IK (x) is the union of all rays beginning at x and passing
through some other point of K .

Recall that K is called a wedge if λx ∈ K for x ∈ K and λ ≥ 0. If, furthermore, K ∩
(−K)= {0}, we say that K is a cone.

Definition 2.3. Given a map T : Ω⊂ K → K , T is said to be inward on Ω relative to K if
Tx ∈ IK (x) for x ∈Ω. If Tx ∈ IK (x) for x ∈Ω, T is said to be weakly inward.

We recall the definition of k-semicontractive map.

Definition 2.4. Let D be a nonempty subset of X . A map A : D → X is said to be k-
semicontractive map with constant k ≥ 0 if there exists a map V : D×D→ X such that
the following conditions hold.

(S1) For each fixed x ∈D, V(x,·) : D→ X is compact.
(S2) For each y ∈D, the map V(·, y) : D→ X is a Lipschitz map with Lipschitz con-

stant k.
(S3) A(x)=V(x,x) for x ∈D.

Lan and Webb [12] defined a fixed point index for weakly inward A-proper maps,
which has the usual properties of the classical fixed point index, that is, existence, nor-
malization, additivity, and homotopy invariance.

In this paper, we focus on some applications of this theory. Throughout the following,
K is a cone. We set Kr = {x ∈ K : ‖x‖ < r} and Kr = {x ∈ K : ‖x‖ ≤ r}.

First we state a lemma which implies that the fixed point index, iK (T ,Kr), is 1. This
uses the well-known Leray-Schauder condition.

Lemma 2.5 (see [12]). Assume that T : Kr → X is weakly inward, P1-compact on K , and
satisfies

(LS) x 
= tT(x) for ‖x‖ = r and t ∈ [0,1).
Then T has a fixed point in Kr . Furthermore, if x 
= T(x) for ‖x‖ = r, then iK (T ,Kr)= {1}.

Now we give a condition which ensures that the fixed point index is 0.

Lemma 2.6 (see [12]). Assume that T : Kr → X is weakly inward, P1-compact on K , and
T(Kr) is bounded. Suppose that x 
= Tx for ‖x‖ = r, and

(E) there exists e ∈ K \ {0} such that x 
= Tx+ λe for ‖x‖ = r and λ > 0.
Then iK (T ,Kr)= {0}.

These conditions imply the following theorem.

Theorem 2.7 (see [12]). Let T : Kr → X be weakly inward, P1-compact on K , with T(Kr)
bounded. Suppose the following conditions are satisfied:

(LS) there exists ρ ∈ (0,r) such that x 
= tTx for ‖x‖ = ρ and 0≤ t < 1,
(E) there exists e ∈ K \ {0} such that x 
= Tx+ λe for ‖x‖ = r and λ > 0.

Then T has a fixed point in Kr \Kρ. The same conclusion remains valid if (LS) holds for
‖x‖ = r and (E) holds for ‖x‖ = ρ.

One benefit of such type or result, as compared with the well-known Krasnosel’skiı̆
theorem, is that we do not require the cone to be sent into itself, but into a larger set.
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3. Applications to three-point BVPs

In this section, we consider the existence of positive solutions of BVP

−u′′(t)= f (t,u,u′,u′′), t ∈ (0,1), (3.1)

with boundary conditions

u(0)= 0, αu(η)= u(1), 0 < η < 1, αη < 1. (3.2)

We restrict our attention to the case 1 +αη2 ≥ 2αη.
In order to apply the results of Section 2, we set

c1 = 1
8

(
1−αη2

1−αη

)2

, c2 = 1
2

(
1− 2αη+αη2

1−αη

)
, c3 = 1

2

(
1−αη2

1−αη

)
, (3.3)

see (3.9) and (3.10) for the interpretation of these constants.
We make the following assumptions on f :
(C1) there exists r > 0 such that f : [0,1]× [0,c1r]× [−c2r,c3r]× [−r,0]→R is a con-

tinuous function,
(C2) there exists k ∈ (0,1) such that | f (t,u,v,−s1)− f (t,u,v,−s2)| ≤ k|s1− s2| for t ∈

[0,1], u∈ [0,c1r], v ∈ [−c2r, c3r], and s1,s2 ∈ [0,r],
(C3) f (t,u,v,0)≥ 0 for t ∈ [0,1], u∈ [0,c1r], and v ∈ [−c2r,c3r],
(C4) f (t,u,v,−r)≤ r for t ∈ [0,1], u∈ [0,c1r], and v ∈ [−c2r,c3r],
(C5) there exists ρ ∈ (0,r) such that f (t,u,v,−ρ) ≥ ρ for t ∈ [0,1], u ∈ [0,c1r] and

v ∈ [−c2r,c3r].

Remark 3.1. As in [13], we point out that condition (C3) is weaker than the usual posi-
tivity requirement for f (t,u,v,s). If f is not positive, the standard theory of fixed point
index cannot be applied since it needs the cone to be sent back into itself (see, e.g., [18]).

Furthermore, we stress that weakly inward fixed point index only exists in nonreflexive
spaces using A-proper theory, even for compact maps.

With respect to the alternative method of “solving” (1.1) for the highest-order de-
rivative by means of the contractive hypothesis (C2), the reader might find interesting
comments in [19, 22].

For these reasons, we employ Lan and Webb’s theory for weakly inward A-proper maps
[12].

We work in X = C[0,1], the space of continuous functions on [0,1] with the usual
maximum norm and use the projection scheme Γ= {Xn,Pn} associated with the standard
Schauder basis [17]. We use the cone of positive functions

K = {u∈ C[0,1] : u(t)≥ 0 for t ∈ [0,1]
}
. (3.4)

It is known that PnK ⊂ K .
We recall the following result which is a consequence of [3, Lemma 18.2].
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Lemma 3.2 (see [10]). Let X = C[0,1] and K as above. Take u∈ K and define

E(u)= {t ∈ [0,1] : u(t)= 0
}
. (3.5)

Then,
(1) if E(u)=∅, that is, u(t) > 0 for every t ∈ [0,1], or equivalently, u is an interior point

of K , then IK (u)= X ,
(2) if E(u) 
= ∅, that is, u∈ ∂K , then the set {v ∈ X : v(t)≥ 0 for t ∈ E(u)} is a subset of

IK (u), that is, if the values of v are nonnegative at all points at which the values of u
are zero, then v belongs to the weakly inward set IK (u) of u.

We can now state a theorem for the positive solutions of (3.1)-(3.2).

Theorem 3.3. Assume that the conditions (C1)–(C5) hold. Then (3.1)-(3.2) has a positive
solution v with ρ≤ ‖v‖ ≤ r.

Proof. Let U = {u∈ C2[0,1] : u(0)= 0, αu(η)= u(1)}. Define a map L : U → X by Lu=
−u′′. Then L is a linear isomorphism and

L−1v(t)=
∫ 1

0
k(t,s)v(s)ds, (3.6)

where

k(t,s)= 1
1−αη

t(1− s)−



αt

1−αη
(η− s), s≤ η

0, s > η
−

t− s, s≤ t,

0, s > t.
(3.7)

We define a continuous map T : Kr → X by

Tv(t)= f
(
t,L−1v,

d

dt
L−1v,−v

)
, (3.8)

where Kr = {u∈ K : ‖u‖ < r}. By direct calculation, it may be shown that

max
t∈[0,1]

∫ 1

0
k(t,s)ds= c1. (3.9)

So if v ∈ Kr , then 0≤ L−1v(t)≤ c1r. Also by routine calculations, it may be shown that if
v ∈ Kr , then

−c2r ≤ d

dt
L−1v(t)≤ c3r. (3.10)

Therefore, T is well defined and (C1) implies that T is continuous.
To show that T is P1-compact, one studies the map V : Kr ×Kr → X defined by

V(u,v)= f
(
t,L−1v,

d

dt
L−1v,−u

)
. (3.11)
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Then by (C2), V(u,·) is Lipschitz with constant k and, since L−1 and (d/dt)L−1 are com-
pact, V(·,v) is compact. These conditions imply that V is a k-semicontraction with k < 1,
and hence Tu=V(u,u) is Pγ-compact for every γ ∈ (k,1). For the proof of this assertion,
we refer to [18], see also [13].

To prove that T is weakly inward relative to K , let v ∈ ∂K , that is,

E(v)= {t ∈ [0,1] : v(t)= 0
} 
= ∅. (3.12)

Then (Tv)(t)= f (t,L−1v, (d/dt)L−1v,0) for every t ∈ E(v). It follows from (C3) that

(Tv)(t)≥ 0 for every t ∈ E(v). (3.13)

Using Lemma 3.2, we see that Tv ∈ IK (v) and so T is weakly inward.
We show thatT satisfies the condition (LS) in Theorem 2.7, that is, v 
= λTv for v ∈ ∂Kr

and λ∈ (0,1). In fact, if not, there exist v0 ∈ ∂Kr and λ0 ∈ (0,1) such that v0 = λTv0. Let
t0 ∈ [0,1] be such that v0(t0)= r. Then by (C4), we have

r = v0
(
t0
)= λ0 f

(
t0,L−1v

(
t0
)
,
d

dt
L−1v

(
t0
)
,−r

)
≤ λ0r < r, (3.14)

a contradiction.
Finally, we prove that T satisfies the condition (E) in Theorem 2.7 with e(t) ≡ 1 for

t ∈ [0,1], that is, v 
= Ty + βe for v ∈ ∂Kρ and β > 0. In fact, if not, there exist v0 ∈ ∂Kρ

and β0 > 0 such that v0 = Tv0 +β0e. Let t0 ∈ [0,1] be such that v0(s)= ‖v0‖ = ρ. Then we
have

ρ= f
(
t0,L−1v

(
t0
)
,
d

dt
L−1v

(
t0
)
,ρ
)

+β0e ≥ ρ+β0e > ρ, (3.15)

a contradiction.
It follows from Theorem 2.7 that T has a fixed point v ∈ K satisfying ρ≤ ‖v‖ ≤ r.
Take u= L−1v, then u is a positive solution of (3.1)-(3.2). �

Example 3.4. The function f (t,u,u′,u′′)≡ 3/4cos(u′′) with r = π and ρ= π/6 shows that
the class of maps that satisfies the conditions (C1)–(C5) is nonempty.

Remark 3.5. In order to show the existence of two solutions via Theorem 2.7, one would
be tempted to require the following (this is a standard argument in fixed point index
theory):

(C6) there exists ρ̃ ∈ (0,ρ) such that f (t,u,v,−ρ̃)≤ ρ̃ for t ∈ [0,1], u∈ [0,c1r] and v ∈
[0,r].

This would provide the existence of ṽ ∈ K satisfying ρ̃ ≤ ‖ṽ‖ ≤ ρ. However, as noted in
[13, Remark 4.3], it is impossible to simultaneously satisfy (C2), (C5), and (C6).

This error occurred in [2, 9], when the authors discussed the existence of one positive
solution of the Picard BVP.
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Remark 3.6. For the case 1 + αη2 < 2αη, which occurs only when α > 1, the value of the
constant c1 given in (3.9) has to be replaced by

max
t∈[0,1]

∫ 1

0
k(t,s)ds= 1

2

(
αη(1−η)

1−αη

)
. (3.16)

This is because the constant m on [21, page 914] should read

m=




8(1−αη)2(
1−αη2

)2 if 1 +αη2 ≥ 2αη,

2(1−αη)
αη(1−η)

if 1 +αη2 < 2αη.

(3.17)

A similar result to Theorem 3.3 holds in this case for (the new) c1.
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