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We use a Mann-type iteration scheme and the metric projection operator (the nearest-
point projection operator) to approximate the solutions of variational inequalities in uni-
formly convex and uniformly smooth Banach spaces.

1. Introduction

Let (B, ]| - II) be a Banach space with the topological dual space B*, and let )¢, x( denote
the duality pairing of B* and B, where ¢ € B* and x € B. Let f : B — B* be a mapping
and let K be a nonempty, closed, and convex subset of B. The (general) variational in-
equality defined by the mapping f and the set K is

VI(f,K) : find x, € K such that

(1.1)
(f(x),x —xx) = 0 for every x € K.

The nonlinear complementarily problem defined by f and K is by definition as follows:

NCP(f,K) : find x, € K such that (f(xyx),x) =0,
(1.2)
for every x € K and (f (x4 ),xx) = 0.

It is known (see [5, 6]) that when K is a closed convex cone, problems NCP( f,K) and
VI(f,K) are equivalent.

To study the existence of solutions of the NCP(f,K) and VI(f,K) problems, many
authors have used the techniques of KKM mappings, and the Fan-KKM theorem from
fixed point theory (see [1, 5, 6, 7, 8, 9, 10]). In case B is a Hilbert space, Isac and other
authors have used the notion of “exceptional family of elements” (EFE) and the Leray-
Schauder alternative theorem (see [5, 6]).

In [1, 2], Alber generalized the metric projection operator Pk to a generalized pro-
jection operator g : B¥ — K from Hilbert spaces to uniformly convex and uniformly
smooth Banach spaces and Alber used this operator to study VI(f,K) problems and to
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approximate the solutions by an iteration sequence. In [7], the author used the general-
ized projection operator and a Mann-type iteration sequence to approximate the solu-
tions of the VI( f,K) problems.

In case B is a uniformly convex and uniformly smooth Banach space, the continuity
property of the metric projection operator Px has been studied by Goebel, Reich, Roach,
and Xu (see [4, 12, 13]). In this paper, we use the operator Px and a Mann-type iteration
scheme to approximate the solutions of NCP( f,K) problems.

2. Preliminaries

Let (X, |l - II) be a normed linear space and let K be a nonempty subset of X. For every
x € X, the distance between a point x and the set K is denoted by d(x,K) and is defined
by the following minimum equation

d(x,K) =;1€11f<||x—y||. (2.1)

The metric projection operator (or the nearest-point projection operator) Px defined
on X is a mapping from X to 2K:

Px(x)={zeX:lx—zll =d(xK), Vx € X}. (2.2)

If Px(x) # @, for every x € X, then K is called proximal. If Pg(x) is a singleton for
every x € X, then K is said to be a Chebyshev set.

TaEOREM 2.1. Let (B, || - ||) be a reflexive Banach space. Then B is strictly convex if and only
if every nonempty closed convex subset K C B is a Chebyshev set.

Since uniformly convex and uniformly smooth Banach spaces are reflexive and strictly
convex, the above theorem implies that if (B, || - ||) is a uniformly convex and uniformly
smooth Banach space, then every nonempty closed convex subset K C B is a Chebyshev
set.

Let T be a uniformly convex Banach space. Its modulus of convexity is denoted by ¢
and is defined by

. 1
d(e) = lnf{l - E||x+y|| xll =1yl =1, Ix—yll = 6}- (2.3)

It follows that § is a strictly increasing, convex, and continuous function from (0,2] to
[0,1], and it is known that §(€)/€ is nondecreasing on (0,2].

If B is uniformly smooth, its modulus of smoothness is denoted by p(7) and is defined
by

o)=Y «Enan +%I|x—yll Ll =11yl < r}. (2.4)

It can be shown that p is a convex and continuous function from [0, o) to [0, co) with
the properties that p(7)/7 is nondecreasing, p(7) < 7 forall 7 > 0, and lim, ¢+ p(7)/7 = 0.
For the details of the properties of § and p, the reader is refereed to [10, 11].
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THEOREM 2.2 (Xu and Roach [13]). Let M be a convex Chebyshev set of a uniformly convex
and uniformly smooth Banach spaces X and let P;X — M be the metric projection. Then
(i) P is Lipschitz continuous mod M; namely, there exists a constant k > 0 such that

||[P(x) —z|| <kllx—zll, foranyx € X andz € M, (2.5)

(ii) P is uniformly continuous on every bounded subset of X and, furthermore, there exist
positive constants k, for every B, := {x € X : ||x|| < r} such that

[[P(x) = PWD|| < llx— yll + k6 (w(llx—yll)), foranyx,y€ B,, (2.6)

where v is defined by
t
_ (P
() = JO s 2.7)

TuEOREM 2.3 (Xuand Roach [13]). If X = L,,¢,, or wh (1< p < o) in Theorem 2.2, then
the metric projection P is Holder continuous on every bounded subset of X, and, moreover,
there exist positive k, for every B, such that

IP(x) = P(y)|| < kyllx — y||™inpVmax2p) - for any x, y € B,. (2.8)
The normalized duality mapping J : B — 28" is defined by

J(x) = {jx) € B* 2 (j),x) = [|jollllxl = =12 = [[j o]} (2.9)

Clearly, [lj(x)|l is the B*-norm of j(x) and [|x|| is its B-norm. It is known that if B is
uniformly convex and uniformly smooth, then ] is a single-valued, strictly monotone,
homogeneous, and uniformly continuous operator on each bounded set. Furthermore, ]
is the identity in Hilbert spaces; that is, J = Ip.

The following theorem provides a tool to solve a variational inequality by finding a
fixed point of a certain operator.

TaeoreM 2.4 (Li [8]). Let (B, - II) be a reflexive and smooth Banach space and K C B a
nonempty closed convex subset. For any given x € B, xy € Px(x) if and only if

(J(x=x0),x0—y)=0, VyeKk. (2.10)

Let F : K — B be a mapping. The locality variational inequality defined by the mapping
F and the set K is

LVI(F,K) : find x4« € K and j(F(x«)) € J(F(x«))
(2.11)
such that (j(F(x«)),y —xx) =0, for every y € K.
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The next theorem follows from Theorem 2.4.

TaeoreM 2.5 (Li [8]). Let (B, - II) be a reflexive and smooth Banach space and K C B a
nonempty closed convex subset. Let F : B — B be a mapping. Then an element x, € KE is a
solution of LIVI(F,K) if and only if x4 € Px(xsx — F(xx)).

3. The compact case

THEOREM 3.1. Let (B, || - II) be a uniformly convex and uniformly smooth Banach space and
K a nonempty compact convex subset of B. Let F : K — B be a continuous mapping. Suppose
that IVI(F,K) has a solution x4 € K and F satisfies the following condition:

[l = x4 = (F(X) = F ()| + k8™ (p (|3 = s = (F(X) = F () 1) o)
3.1
<|lx=x4||, foreveryx €K,

where k, is the positive constant given in Theorem 2.2 that depends on the bounded subset
K. For any xy € K, define the Mann iteration scheme as follows:

Xnr1 = (1 —an)xy — auPx (x, — F(x,)), n=12,3,..., (3.2)

where {a,} satisfies conditions (a) 0 < a, < 1 for all n, (b) > a,(1 — ay) = 00. Then there
exists a subsequence {n(i)} < {n} such that {x,} converges to a solution x" of LVI(F,K).

Proof. Since B is uniformly convex and uniformly smooth, there exists a continuous
strictly increasing and convex function g : R* — R* such that g(0) = 0 and, for all x, y €
B,(0):={x € E: ||lx|| = r} and for any « € [0, 1], we have

llax+(1—a)y|| < allxl>+ (1 — ) Iy — a(1 —a)g(Ilx — yll), (3.3)

where r is a positive number such that K < B,(0) (see [3]). Since x is a solution of
LVI(F,K), from Theorems 2.1 and 2.5, x4 = Px(xsx — F(x4)). Using Theorem 2.2,

tner = |1 = [1(1 = ) (on — )+t (Prc () = F(3n)) = 2)|°

< (1= ) || — 2 |* + @ [P () = F ) — x|
— 0t (1= an) g (I (20 = 25) = (P ((x4)) = F(x4)) — x)1])

= (1— )l — x| + @ (P () = F(3)) — x|

(3.4)

—Oln(l —(Xn)g(HPK(xn_F(xn)) _xn”)

< (1= )| — 2|2+ 0t (| [0 = F () — (35 = Fx))|
k8 (Y ([ = F () = (e = F(ei))|])

—a,(1 —ocn)g(||P1<(Xn —F(xy)) _xn”)'
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Since p(7)/7 is nondecreasing and lim,_o+ p(7)/7 = 0,

V/(”(xn_F(xn)) — (x5 = F(x))])

llGen=F () = (s =F(x:)l (g
= J Mds

s Pl e Fis 1] >
_ PUIGon = Fxa)) — (5 = Fxs B B B
= (o — F(xn)) — (xs — F(x0))]| I (xn = F () = (xs = F(x))
= p(|[(xn = F(x1)) = (s = F(2:)) |]).
Applying condition (3.1) and the above inequality, we obtain
e = sl = (1= @) [Jen = 2l [P 0t (1] (6 = F(0)) = (0 = F () |
ke p([[xen = F(x)) = (3 = F(x:)[])?
— 0ty (1= o) g ([P (0 = F(xn)) = )
(3.6)
5(1_“H)Hxn_x*HZ‘*'“n”xn_x*”z
— 0ty (1= o) g (|IPx (0 = F(xn)) = al])
= [l = |I” = et (1 = @n) g (||Pxc (6 = F (x0)) = ).
Therefore
“n(l_‘xn)g(HPK(xn_F(xn))_xn”)
(3.7)

< ||x,,—x*||2— (%1 —x*||2, n=12,....

For any positive integer m, taking the sum for n = 1,2,3,...,m, we have
m

‘Xn(l _“n)g(”PK(xn _F(xn)) _an)
b (3.8)

2 2 2
= [ler =2l | = e = 2] [” = [lar = e[|

which implies that

i“n(l — an) g ([P (xn = F () = xal]) < [|21 —x*||2. (3.9)

From the condition > a,(1 — ;) = oo, there exists a subsequence {n(i)} < {n} such
that g(IIPx (xnai) — F(Xn(i))) — %n)ll) — 0 as i — oo. Since g is continuous and strictly
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increasing such that g(0) = 0, we obtain
[Pk (xn(i) = F(%Xn(i)) = %] | — 0 asi — oo. (3.10)

From the compactness of K, there exists a subsequence of {x,;)} which, without loss
of generality, we may assume is the sequence {n(i)}, and an element x" € K such that
Xn(i) — X" and i — oo. From the continuity of Px and F, we have Pk (x,) — F(xu))) —
Pr(x" — F(x")) as i — oo. Statement (3.10) implies that Px(x" — F(x")) = x’. Applying
Theorem 2.5, x’ is a solution of the LVI(F,K) problem. O

CoROLLARY 3.2. Theorem 3.1 is still true if condition (3.1) is replaced by the following con-
dition:

[l = x4 = (F(x) = F(x)) | + k6 (|| = x5 = (F(x) = F(x4))[])

3.11
<|lx—x«||, foreveryxeK. (3.1D)

Proof. From the property p(7) < 7 for all 7 > 0, and the nondecreasing property of &
(and 671), condition (3.11) implies condition (3.1). The conclusion of the corollary then
follows immediately from Theorem 3.1. O

One of the most important types of variational inequalities and complementarily
problems deals with completely continuous field mappings. This type of variational in-
equality and complementarily problem has been studied by many authors in Hilbert
spaces (see, e.g., [5, 6]). Recently, the first author and Isac have studied the existence of
solutions of this type problem in uniformly convex and uniformly smooth Banach spaces.

Recall that a mapping T : B — B is completely continuous if T is continuous, and for
any bounded set D C B, we have that T(D) is relatively compact. A mapping F: B — B
has a completely continuous field if F has a representation F(x) = x — T(X) for all x € B,
where T : B — B is a completely continuous mapping.

As an application of Theorem 3.1 we have the following corollary.

CoROLLARY 3.3. Let (B, || - ||) be a uniformly convex and uniformly smooth Banach space,
K C B a closed convex cone, and F : B — B a completely continuous field with the represen-
tation F(x) = x — T(x). Suppose that IVI(F,K) has a solution x+« € K and that T satisfies
the condition

[|T(x) = T(x) ||+ k8 (|| T(x) — T(x)|]) < ||x —x4]| foreveryxe K, (3.12)

where k, is the positive constant given in Theorem 2.2 that depends on the bounded subset
K. Then there exists a subsequence {n(i)} of the sequence defined by (3.2) such that {x,:)}
converges to a solution of LVI(F,K).

Proof. Replacing F(x) by x — T'(x) in (3.1) of Theorem 3.1 yields the conclusion of the
corollary. O
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It is well known that L,, €,, and wh (1< p < oo) are special uniformly convex and
uniformly smooth Banach spaces. In [2], Alber and Notik provided formulas for the

calculation of the modulus of convexity § and the modulus of smoothness p for these
spaces:

%(p— 1e?+o(e?) = é(p— e, 1<p=<2,
()9 e

1
(1+Tp)l/p—ISETP, l1<p<2,

o(e) =

(3.13)

p(r) =

- -1
‘DTTZ+0(12) <P 72, 2<p<oco.

Applying the above formulas to Theorem 3.1, we can obtain more detailed applica-
tions and examples.

CoROLLARY 3.4. Let B = Ly,€, or Wh (1< p < ) and K a nonempty compact convex
subset of B. Let F : B — B be a completely continuous field with the representation F(x) =
x — T(x). Suppose that LVI(F,K) has a solution x« € K and, for every x € K, T satisfies the
following conditions:

ITCx) = T (x|
2/p -1 1/p
smin{%“x—x*ﬂ,(%kr) (P(Pz )> ||x—x*||2/p} ifl<p<2,

1T () = T (x|

(3.14)

.41 I 4 p/2 .
smm{iﬂx—x*ﬂ,(z—kr) WHX—X*H }’ lf2§p<oo,

where k, is the positive constant given in Theorem 2.2. Then there exists a subsequence {n(i)}
of the sequence defined by (3.2) such that {x,} converges to a solution x’ of LVI(F,K).

Proof. Assume that 1 < p < 2. From the inequality

(p—1e?, (3.15)

we obtain

» ( 8 >1/2
S e)= | ——¢€] . (3.16)
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Noting that both & and p are strictly increasing, and using the inequality p(7) < 7/p,
we have

1TG0) = T () [+ k0™ (p([| T () = T(x)[])

< Jb-ll+ko” (ST~ T
1 8 o (3.17)
< = _ 2 _ p
< Sl (g i - T
< lle -]

The last inequality follows from the condition of this corollary. Then this case can be
obtained by using Corollary 3.4. The case for 2 < p < oo can be proved similarly. O

THEOREM 3.5. Let B, K, F be as in Theorem 3.1. If inequality (3.1) holds for all solutions of
LVI(F,K), then the sequence {x,} defined by (3.2) converges to a solution x" of the LVI(F,K)
problem.

Proof. From Theorem 3.1, {x,} has a subsequence {x,;} that converges to a solution x’,
as i — 0. In the proof of Theorem 3.1, replacing x.. by x’, we obtain

||xn—x'||2 = ||xn_x,||2_0‘n(1 _“n)g(HPK(xn_F(xn)) _an)
) (3.18)
<|lx,=x'||, n=1,2,3,...,

which implies that {||x, — x'[|?} is a decreasing sequence. Since there exists a subsequence
{xn()} such that ||x,i — x"|l — 0asi — co, we obtain the fact that ||x, —x'[| = 0Oasn — .
|

CoROLLARY 3.6. Let B, K, F be as in Theorem 3.1. If inequality (3.1) holds for all y € K,
then the sequence defined by (3.2) converges to a solution x" of the LVI(F,K) problem.

Proof. This corollary follows immediately from Theorem 3.5. O

If we apply Theorem 2.3 to the special uniformly convex and uniformly smooth Ba-
nach spaces L, £, and Wi (1 < p < ©), and apply the techniques of the proof of Theorem
3.1, we obtain the following.

THEOREM 3.7. Let B = Ly, €,, or Wi (1< p < o) and K a nonempty compact convex subset
of B. Let F : K — B be a continuous mapping. Suppose that LVI(F,K) as a solution x,. € K
and F satisfies the following:

k|l (3 — x5 ) = (F(x) = F(ac)) || P ™3 _x —x, || foramyxeK,  (3.19)
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where k; is the positive constant given in Theorem 2.2 that depends on the bounded subset K.
Then there exists a subsequence {x,)} of the sequence {x,} defined by (3.2) that converges
to a solution x" of LVI(F, K).

Proof. Here we use Theorem 2.3 to obtain

[1Px (6 = F () = Pic (x4 = F (%))
. (3.20)
< Ryl (= F)) — (e — F(a))| [P0/ P00

The rest of the proof is similar to that of Theorem 3.1. O

CoroLLARY 3.8. Let B, K, F be as in Theorem 3.5. If inequality (3.19) holds for all solu-
tions of LVI(F,K), then the sequence {x,} defined by (3.2) converges to a solution x" of the
LVI(F,K) problem.

CoROLLARY 3.9. Let B, K, F be as in Theorem 3.1. If inequality (3.19) holds for all y € K,
then the sequence {x,} defined by (3.2) converges to a solution of the LVI(F,K) problem.

4. The unbounded case

If K is unbounded, for example, if K is a closed convex cone, the following theorems are
needed for estimation.

TrEOREM 4.1 (Xu and Roach [13]). Let M be a convex Chebyshev set of a uniformly convex
and uniformly smooth Banach space X and P : X — M be the metric projection. Then, for
every x,y € X,

[IP(x) = P(y)|

< b=t ol 1) - 06™ (e o))
(4.1)

where C is a fixed constant and v is as defined in Theorem 2.2.

TaeoreM 4.2. Let (B, - |I) be a uniformly convex and uniformly smooth Banach space
and K a nonempty closed convex subset of B. Let F : K — B be a continuous mapping such
that the LVI(F,K) problem has a solution x, € K. If there exist positive constants x and A
satisfying the following conditions:
(1) llx — x5 — (F(x) = F(x:)) | < llx — x4 || for every x € K;

(1) 71671 (t) <A VL

(iii) (k+4CixA) < 1, where C, is the constant given in Theorem 4.1,
then the sequence {x,} defined by (3.2) converges to the solution x4 of the LVI(F,K) problem.
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Proof. Using Theorem 4.1, similar to the proof of Theorem 3.1, we have

1 — x|

= [1(1 = o) (3 — ) + @ (P (0 — F () —26) ||

< (1= ) |n = x5 |I” + | Pic (%0 = F(3)) = P (34 = ()|}
— ot (1 — ) g (|| Pk (xn = F () ) — xal|)
(1= o) |w = 2 |I” + € ([|n = F(3)) = (o0 = F(x0))
+4(|[(ew = F (x)) = P (x5 = F () || V [|Px (tw = F (%)) = (35 = F () [])
% 8~ (Cry (|| (xn — F () — (e — F ()
1w = f () = Pic (s = F ()| V1P (30 = F (3)) = (3 = F(x))[]))

— 0 (1= o) g (|| Pk (%4 — F(x)) = x4]|).

IA

(4.2)

The property p(7) < 7 for all 7 = 0 implies that p(7)/r < 1 for all 7 = 0. From the
definition of y, we have y(t) <t for all £ > 0. Since 8! is a strictly increasing function,
from conditions (i) and (ii), we obtain

[E —x*||
5(1_0‘n)||xn_x*||2+0‘n |10 = F(x4)) — (x4 = F(x4))]|
+4(||xn — F(xn) — P (x4 = F(x4))|| V [|Px (%0 = F (%)) = (35 — F(x4))[])
2
X81<C1 I xn_F(xn)) (x5 — F(x4))]| )
(| Gen = F(xn)) = Pic (25 = F () ) || v | Prc (360 = F(3n)) = (05 = F (3) )|
—an(l _‘xn)g(HPK(xn F(xy)) xn”
< (1—an)||xn _x*”z'“xn |[xn = F(xn)) = (x5 = F(x4)) |
+4([[n = F(xn)) = (s = F ()|

[ = F (o)) — (o2 = F o)) o
XCI(C1||<xn—z~*<xn)> P (e — F(ea)) [V | [Pr (oo — F)) — (s — F(x2)) ||)

-1 || Xn — F(xn)) x* Fx* || ’
“0 (C‘H(xn—F(xn)) Prc (e — FGea )V [P Gon — F ) — G — F(52)) ||)

—“n(l_“n)g(HPK(xn F(xn)) x"”

<(1 _“n)”xn_x*||2+“n(’€||xn_x*||+4(K||xn_x*||C1A))2

— oty (1= @) g ([P (0 = F(x2)) = %] ]) (1 = ) 2 — x|
+ oty (1 + 4C A [ — 4| = @ (1 = ) g (|| (% — F (%)) = )

< |l — 24| [” = a0 (1 = @) g (|[Pxc (0 — F (%)) = %4]])-
(4.3)
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The last inequality is obtained by applying condition (iii) of this theorem. Thus we have

lotne1 = 2| < 120 — 241 = @ (1= ) g ([ |Pic (%0 = F(3a)) —xal]).  (4.4)

Similar to the proof of Theorem 3.1, we can show that there exists a subsequence
{n(i)} < {n} such that

||Pk (i) — F (xn(i))) — Xn(n|| — 0 asi— oo. (4.5)

For this subsequence, by applying Theorem 4.1 and using an argument similar to the
proof of the first part of this theorem, we have

xnciy = ]| = [ty = Prc (uiy = F (i) ) + Pr (xn(iy) = F (i) ) — x|
< [Jouiy = Prc (entiy = F Cenc) ) [ + [P (xniiy = F (xn(i)) ) — x|
= [ty — P (ntiy = F (n))) || + 1P (nciy = F (i) ) — Prc (305 = F(x4) )
< [ty = P (%ntiy = F (xn))) || + (1 + 4C1 M) | iiy — ],
(4.6)
which implies that
(1= (ke +4CixA) ) |[xn(i) — 2| = [ttty — Pr (xniiy = F (xn(i))) - (4.7)

Since (1 — (k+4CixA)) >0 (condition (iii) of this theorem), from (3.10) it follows that
[lxniiy = x4l — 0 asi— oo. (4.8)

From inequality (3.19), {llx, — x|} is a decreasing sequence. Thus

|[xn —xx|| — 0 asn— oo. (4.9)
(]
CoroLLARY 4.3. Let (B, || - |I) be a uniformly convex and uniformly smooth Banach space

and K a nonempty closed convex subset of B. Let F : K — B be a continuous mapping. If the
Banach space B and the mapping F satisfy conditions (3.2) and (3.10) in Theorem 3.7 and
F satisfies the condition

lx—y— (F(x)=F(y))|| <xllx—yll foreveryx,y €K, (4.10)

then the IVI(F,K) problem has at most one solution.

Proof. From Theorem 3.7, every solution of the LVI(FmK) problem must be the limit of
the sequence (3.2). O
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