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We use a Mann-type iteration scheme and the metric projection operator (the nearest-
point projection operator) to approximate the solutions of variational inequalities in uni-
formly convex and uniformly smooth Banach spaces.

1. Introduction

Let (B,‖ · ‖) be a Banach space with the topological dual space B∗, and let 〉ϕ,x〈 denote
the duality pairing of B∗ and B, where ϕ ∈ B∗ and x ∈ B. Let f : B→ B∗ be a mapping
and let K be a nonempty, closed, and convex subset of B. The (general) variational in-
equality defined by the mapping f and the set K is

VI( f ,K) : find x∗ ∈ K such that

〈
f (x∗),x− x∗

〉≥ 0 for every x ∈ K.
(1.1)

The nonlinear complementarily problem defined by f and K is by definition as follows:

NCP( f ,K) : find x∗ ∈ K such that
〈
f (x∗),x

〉≥ 0,

for every x ∈ K and
〈
f (x∗),x∗

〉= 0.
(1.2)

It is known (see [5, 6]) that when K is a closed convex cone, problems NCP( f ,K) and
VI( f ,K) are equivalent.

To study the existence of solutions of the NCP( f ,K) and VI( f ,K) problems, many
authors have used the techniques of KKM mappings, and the Fan-KKM theorem from
fixed point theory (see [1, 5, 6, 7, 8, 9, 10]). In case B is a Hilbert space, Isac and other
authors have used the notion of “exceptional family of elements” (EFE) and the Leray-
Schauder alternative theorem (see [5, 6]).

In [1, 2], Alber generalized the metric projection operator PK to a generalized pro-
jection operator πK : B∗ → K from Hilbert spaces to uniformly convex and uniformly
smooth Banach spaces and Alber used this operator to study VI( f ,K) problems and to
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approximate the solutions by an iteration sequence. In [7], the author used the general-
ized projection operator and a Mann-type iteration sequence to approximate the solu-
tions of the VI( f ,K) problems.

In case B is a uniformly convex and uniformly smooth Banach space, the continuity
property of the metric projection operator PK has been studied by Goebel, Reich, Roach,
and Xu (see [4, 12, 13]). In this paper, we use the operator PK and a Mann-type iteration
scheme to approximate the solutions of NCP( f ,K) problems.

2. Preliminaries

Let (X ,‖ · ‖) be a normed linear space and let K be a nonempty subset of X . For every
x ∈ X , the distance between a point x and the set K is denoted by d(x,K) and is defined
by the following minimum equation

d(x,K)= inf
y∈K

‖x− y‖. (2.1)

The metric projection operator (or the nearest-point projection operator) PK defined
on X is a mapping from X to 2K :

PK (x)= {z ∈ X : ‖x− z‖ = d(x,K), ∀x ∈ X}. (2.2)

If PK (x) 	= ∅, for every x ∈ X , then K is called proximal. If PK (x) is a singleton for
every x ∈ X , then K is said to be a Chebyshev set.

Theorem 2.1. Let (B,‖ · ‖) be a reflexive Banach space. Then B is strictly convex if and only
if every nonempty closed convex subset K ⊂ B is a Chebyshev set.

Since uniformly convex and uniformly smooth Banach spaces are reflexive and strictly
convex, the above theorem implies that if (B,‖ · ‖) is a uniformly convex and uniformly
smooth Banach space, then every nonempty closed convex subset K ⊂ B is a Chebyshev
set.

Let T be a uniformly convex Banach space. Its modulus of convexity is denoted by δ
and is defined by

δ(ε)= inf
{

1− 1
2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
. (2.3)

It follows that δ is a strictly increasing, convex, and continuous function from (0,2] to
[0,1], and it is known that δ(ε)/ε is nondecreasing on (0,2].

If B is uniformly smooth, its modulus of smoothness is denoted by ρ(τ) and is defined
by

ρ(τ)=
∑{

1
2
‖x+ y‖+

1
2
‖x− y‖− 1 : ‖x‖ = 1 · ‖y‖ ≤ τ

}
. (2.4)

It can be shown that ρ is a convex and continuous function from [0,∞) to [0,∞) with
the properties that ρ(τ)/τ is nondecreasing, ρ(τ)≤ τ for all τ ≥ 0, and limτ→0+ ρ(τ)/τ = 0.
For the details of the properties of δ and ρ, the reader is refereed to [10, 11].
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Theorem 2.2 (Xu and Roach [13]). LetM be a convex Chebyshev set of a uniformly convex
and uniformly smooth Banach spaces X and let P;X →M be the metric projection. Then

(i) P is Lipschitz continuous mod M; namely, there exists a constant k > 0 such that

∥∥P(x)− z∥∥≤ k‖x− z‖, for any x ∈ X and z ∈M, (2.5)

(ii) P is uniformly continuous on every bounded subset of X and, furthermore, there exist
positive constants kr for every Br := {x ∈ X : ‖x‖ ≤ r} such that

∥∥P(x)−P(y)
∥∥≤ ‖x− y‖+ kδ−1(ψ(‖x− y‖)), for any x, y ∈ Br , (2.6)

where ψ is defined by

ψ(t)=
∫ t

0

ρ(s)
s
ds. (2.7)

Theorem 2.3 (Xu and Roach [13]). If X = Lp,�p, orW
p
m (1 < p <∞) in Theorem 2.2, then

the metric projection P is Hölder continuous on every bounded subset of X , and, moreover,
there exist positive kr for every Br such that

∥∥P(x)−P(y)
∥∥≤ kr‖x− y‖min(2,p)/max(2,p), for any x, y ∈ Br. (2.8)

The normalized duality mapping J : B→ 2B
∗

is defined by

J(x)= { j(x)∈ B∗ :
〈
j(x),x

〉= ∥∥ j(x)
∥∥‖x‖ = ‖x‖2 = ∥∥ j(x)

∥∥2}
. (2.9)

Clearly, ‖ j(x)‖ is the B∗-norm of j(x) and ‖x‖ is its B-norm. It is known that if B is
uniformly convex and uniformly smooth, then J is a single-valued, strictly monotone,
homogeneous, and uniformly continuous operator on each bounded set. Furthermore, J
is the identity in Hilbert spaces; that is, J = IH .

The following theorem provides a tool to solve a variational inequality by finding a
fixed point of a certain operator.

Theorem 2.4 (Li [8]). Let (B,‖ · ‖) be a reflexive and smooth Banach space and K ⊂ B a
nonempty closed convex subset. For any given x ∈ B, x0 ∈ PK (x) if and only if

〈
J
(
x− x0

)
,x0− y

〉≥ 0, ∀y ∈ K. (2.10)

Let F : K → B be a mapping. The locality variational inequality defined by the mapping
F and the set K is

LVI(F,K) : find x∗ ∈ K and j
(
F
(
x∗
))∈ J(F(x∗))

such that
〈
j
(
F
(
x∗
))

, y− x∗
〉≥ 0, for every y ∈ K.

(2.11)
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The next theorem follows from Theorem 2.4.

Theorem 2.5 (Li [8]). Let (B,‖ · ‖) be a reflexive and smooth Banach space and K ⊂ B a
nonempty closed convex subset. Let F : B→ B be a mapping. Then an element x∗ ∈ KE is a
solution of LVI(F,K) if and only if x∗ ∈ PK (x∗ −F(x∗)).

3. The compact case

Theorem 3.1. Let (B,‖ · ‖) be a uniformly convex and uniformly smooth Banach space and
K a nonempty compact convex subset of B. Let F : K → B be a continuous mapping. Suppose
that LVI(F,K) has a solution x∗ ∈ K and F satisfies the following condition:

∥∥x− x∗ − (F(X)−F(x∗))∥∥+ krδ−1(ρ(∥∥x− x∗ − (F(X)−F(x∗)∥∥))
≤ ∥∥x− x∗∥∥, for every x ∈ K ,

(3.1)

where kr is the positive constant given in Theorem 2.2 that depends on the bounded subset
K . For any x0 ∈ K , define the Mann iteration scheme as follows:

xn+1 =
(
1−αn

)
xn−αnPK

(
xn−F

(
xn
))

, n= 1,2,3, . . . , (3.2)

where {αn} satisfies conditions (a) 0 ≤ αn ≤ 1 for all n, (b)
∑
αn(1− αn) =∞. Then there

exists a subsequence {n(i)} ⊆ {n} such that {xn(i)} converges to a solution x′ of LVI(F,K).

Proof. Since B is uniformly convex and uniformly smooth, there exists a continuous
strictly increasing and convex function g :R+ →R+ such that g(0)= 0 and, for all x, y ∈
Br(0) := {x ∈ E : ‖x‖ ≤ r} and for any α∈ [0,1], we have

∥∥αx+ (1−α)y
∥∥2 ≤ α‖x‖2 + (1−α)‖y‖2−α(1−α)g

(‖x− y‖), (3.3)

where r is a positive number such that K ⊆ Br(0) (see [3]). Since x∗ is a solution of
LVI(F,K), from Theorems 2.1 and 2.5, x∗ = PK (x∗ −F(x∗)). Using Theorem 2.2,

∥∥xn+1− x∗
∥∥2 = ∥∥(1−αn)(xn− x∗)+αn

(
PK
((
xn
)−F(xn))− x∗)∥∥2

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

∥∥PK((xn)−F(xn))− x∗∥∥2

−αn
(
1−αn

)
g
(∥∥(xn− x∗)− (PK((xn))−F(xn))− x∗)∥∥)

= (1−αn)∥∥xn− x∗∥∥2
+αn

(
PK
((
xn
)−F(xn))− x∗)∥∥2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

(∥∥xn−F(xn))− (x∗ −F(x∗)
)∥∥

+ krδ−1(ψ((∥∥xn−F(xn))− (x∗ −F(x∗))∥∥)2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥).

(3.4)
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Since ρ(τ)/τ is nondecreasing and limτ→0+ ρ(τ)/τ = 0,

ψ
(∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥)

=
∫ ‖(xn−F(xn))−(x∗−F(x∗))‖

0

ρ(s)
s
ds

≤ ρ
(∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥)∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥

∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥
= ρ(∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥).

(3.5)

Applying condition (3.1) and the above inequality, we obtain

∥∥xn+1− x∗
∥∥2 ≤ (1−αn)∥∥xn− x∗∥∥2

+αn
(∥∥(xn−F(xn))− (xn−F(x∗))∥∥

+ krδ−1ρ
(∥∥xn−F(xn))− (x∗ −F(x∗))∥∥)2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

∥∥xn− x∗∥∥2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

= ∥∥xn− x∗∥∥2−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥).

(3.6)

Therefore

αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ ∥∥xn− x∗∥∥2−∥∥xn+1− x∗
∥∥2

, n= 1,2, . . . .
(3.7)

For any positive integer m, taking the sum for n= 1,2,3, . . . ,m, we have

m∑
n=1

αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ ∥∥x1− x∗
∥∥2−∥∥xn+1− x∗

∥∥2 ≤ ∥∥x1− x∗
∥∥2

,

(3.8)

which implies that

∞∑
n=1

αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)≤ ∥∥x1− x∗

∥∥2
. (3.9)

From the condition
∑
αn(1− αn) =∞, there exists a subsequence {n(i)} ⊆ {n} such

that g(‖PK (xn(i) − F(xn(i))) − xn(i)‖) → 0 as i → ∞. Since g is continuous and strictly
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increasing such that g(0)= 0, we obtain

∥∥PK(xn(i)−F
(
xn(i)

))− xn(i)
∥∥−→ 0 as i−→∞. (3.10)

From the compactness of K , there exists a subsequence of {xn(i)} which, without loss
of generality, we may assume is the sequence {n(i)}, and an element x′ ∈ K such that
xn(i) → x′ and i→∞. From the continuity of PK and F, we have PK (xn(i) − F(xn(i))) →
PK (x′ − F(x′)) as i → ∞. Statement (3.10) implies that PK (x′ − F(x′)) = x′. Applying
Theorem 2.5, x′ is a solution of the LVI(F,K) problem. �

Corollary 3.2. Theorem 3.1 is still true if condition (3.1) is replaced by the following con-
dition:

∥∥x− x∗ − (F(x)−F(x∗))∥∥+ kδ−1(∥∥x− x∗ − (F(x)−F(x∗))∥∥)
≤ ∥∥x− x∗∥∥, for every x ∈ K. (3.11)

Proof. From the property ρ(τ) ≤ τ for all τ ≥ 0, and the nondecreasing property of δ
(and δ−1), condition (3.11) implies condition (3.1). The conclusion of the corollary then
follows immediately from Theorem 3.1. �

One of the most important types of variational inequalities and complementarily
problems deals with completely continuous field mappings. This type of variational in-
equality and complementarily problem has been studied by many authors in Hilbert
spaces (see, e.g., [5, 6]). Recently, the first author and Isac have studied the existence of
solutions of this type problem in uniformly convex and uniformly smooth Banach spaces.

Recall that a mapping T : B→ B is completely continuous if T is continuous, and for
any bounded set D ⊂ B, we have that T(D) is relatively compact. A mapping F : B → B
has a completely continuous field if F has a representation F(x)= x−T(X) for all x ∈ B,
where T : B→ B is a completely continuous mapping.

As an application of Theorem 3.1 we have the following corollary.

Corollary 3.3. Let (B,‖ · ‖) be a uniformly convex and uniformly smooth Banach space,
K ⊂ B a closed convex cone, and F : B→ B a completely continuous field with the represen-
tation F(x) = x−T(x). Suppose that LVI(F,K) has a solution x∗ ∈ K and that T satisfies
the condition

∥∥T(x)−T(x∗)∥∥+ kδ−1(ρ(∥∥T(x)−T(x∗)∥∥))≤ ∥∥x− x∗∥∥ for every x ∈ K , (3.12)

where kr is the positive constant given in Theorem 2.2 that depends on the bounded subset
K . Then there exists a subsequence {n(i)} of the sequence defined by (3.2) such that {xn(i)}
converges to a solution of LVI(F,K).

Proof. Replacing F(x) by x−T(x) in (3.1) of Theorem 3.1 yields the conclusion of the
corollary. �
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It is well known that Lp, �p, and W
p
m (1 < p <∞) are special uniformly convex and

uniformly smooth Banach spaces. In [2], Alber and Notik provided formulas for the
calculation of the modulus of convexity δ and the modulus of smoothness ρ for these
spaces:

δ(ε)=




1
8

(p− 1)ε2 + o
(
ε2
)≥ 1

8
(p− 1)ε2, 1 < p ≤ 2,

1−
(

1−
(
ε
2

)p)1/p

≥ 1
p

(
ε
2

)p
, 2≤ p <∞,

ρ(τ)=




(
1 + τ p

)1/p− 1≤ 1
p
τp, 1 < p ≤ 2,

p− 1
2

τ2 + o
(
τ2
)≤ p− 1

2
τ2, 2≤ p <∞.

(3.13)

Applying the above formulas to Theorem 3.1, we can obtain more detailed applica-
tions and examples.

Corollary 3.4. Let B = Lp,�p or W
p
m (1 < p <∞) and K a nonempty compact convex

subset of B. Let F : B → B be a completely continuous field with the representation F(x) =
x−T(x). Suppose that LVI(F,K) has a solution x∗ ∈ K and, for every x ∈ K ,T satisfies the
following conditions:

∥∥T(x)−T(x∗)∥∥
≤min

{
1
2

∥∥x− x∗∥∥,
(

1
4kr

)2/p( p(p− 1)
2

)1/p∥∥x− x∗∥∥2/p
}

if 1 < p ≤ 2,

∥∥T(x)−T(x∗)∥∥
≤min

{
1
2

∥∥x− x∗∥∥,
(

1
2kr

)p 4(
p(p− 1)

)2

∥∥x− x∗∥∥p/2
}

if 2≤ p <∞,

(3.14)

where kr is the positive constant given in Theorem 2.2. Then there exists a subsequence {n(i)}
of the sequence defined by (3.2) such that {xn(i)} converges to a solution x′ of LVI(F,K).

Proof. Assume that 1 < p ≤ 2. From the inequality

δ(ε)≥ 1
8

(p− 1)ε2, (3.15)

we obtain

δ−1(ε)≤
(

8
p− 1

ε
)1/2

. (3.16)
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Noting that both δ and ρ are strictly increasing, and using the inequality ρ(τ)≤ τ p/p,
we have

∥∥T(x)−T(x∗)∥∥+ krδ−1(ρ(∥∥T(x)−T(x∗)∥∥))

≤ 1
2

∥∥x− x∗∥∥+ krδ−1

(
1
p

∥∥T(x)−T(x∗)∥∥p
)

≤ 1
2

∥∥x− x∗∥∥+ kr

(
8

p(p− 1)

∥∥T(x)−T(x∗)∥∥p
)1/2

≤ ∥∥x− x∗∥∥.

(3.17)

The last inequality follows from the condition of this corollary. Then this case can be
obtained by using Corollary 3.4. The case for 2≤ p <∞ can be proved similarly. �

Theorem 3.5. Let B, K , F be as in Theorem 3.1. If inequality (3.1) holds for all solutions of
LVI(F,K), then the sequence {xn} defined by (3.2) converges to a solution x′ of the LVI(F,K)
problem.

Proof. From Theorem 3.1, {xn} has a subsequence {xn(i)} that converges to a solution x′,
as i→∞. In the proof of Theorem 3.1, replacing x∗ by x′, we obtain

∥∥xn− x′∥∥2 ≤ ∥∥xn− x′∥∥2−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ ∥∥xn− x′∥∥2
, n= 1,2,3, . . . ,

(3.18)

which implies that {‖xn− x′‖2} is a decreasing sequence. Since there exists a subsequence
{xn(i)} such that ‖xn(i)− x′‖ → 0 as i→∞, we obtain the fact that ‖xn− x′‖ → 0 as n→∞.

�

Corollary 3.6. Let B, K , F be as in Theorem 3.1. If inequality (3.1) holds for all y ∈ K ,
then the sequence defined by (3.2) converges to a solution x′ of the LVI(F,K) problem.

Proof. This corollary follows immediately from Theorem 3.5. �

If we apply Theorem 2.3 to the special uniformly convex and uniformly smooth Ba-
nach spaces Lp, �p, andW

p
m (1 < p <∞), and apply the techniques of the proof of Theorem

3.1, we obtain the following.

Theorem 3.7. Let B = Lp,�p, orW
p
m (1 < p <∞) andK a nonempty compact convex subset

of B. Let F : K → B be a continuous mapping. Suppose that LVI(F,K) as a solution x∗ ∈ K
and F satisfies the following:

kr
∥∥(x− x∗)− (F(x)−F(x∗))∥∥min(2,p)/max(2,p) ≤ ∥∥x− x∗∥∥ for any x ∈ K , (3.19)
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where kr is the positive constant given in Theorem 2.2 that depends on the bounded subset K .
Then there exists a subsequence {xn(i)} of the sequence {xn} defined by (3.2) that converges
to a solution x′ of LVI(F,K).

Proof. Here we use Theorem 2.3 to obtain

∥∥PK(xn−F(xn))−PK(x∗ −F(x∗))∥∥
≤ kr

∥∥(x−F(x)
)− (x∗ −F(x∗))∥∥min(2,p)/max(2,p)

.
(3.20)

The rest of the proof is similar to that of Theorem 3.1. �

Corollary 3.8. Let B, K , F be as in Theorem 3.5. If inequality (3.19) holds for all solu-
tions of LVI(F,K), then the sequence {xn} defined by (3.2) converges to a solution x′ of the
LVI(F,K) problem.

Corollary 3.9. Let B, K , F be as in Theorem 3.1. If inequality (3.19) holds for all y ∈ K ,
then the sequence {xn} defined by (3.2) converges to a solution of the LVI(F,K) problem.

4. The unbounded case

If K is unbounded, for example, if K is a closed convex cone, the following theorems are
needed for estimation.

Theorem 4.1 (Xu and Roach [13]). LetM be a convex Chebyshev set of a uniformly convex
and uniformly smooth Banach space X and P : X →M be the metric projection. Then, for
every x, y ∈ X ,

∥∥P(x)−P(y)
∥∥

≤ ‖x− y‖+ 4
(∥∥x−P(x)

∥∥∨∥∥P(x)− y
∥∥)δ−1

(
C1ψ

( ‖x− y‖∥∥x−P(y)
∥∥∨∥∥y−P(x)

∥∥
))

,

(4.1)

where C1 is a fixed constant and ψ is as defined in Theorem 2.2.

Theorem 4.2. Let (B,‖ · ‖) be a uniformly convex and uniformly smooth Banach space
and K a nonempty closed convex subset of B. Let F : K → B be a continuous mapping such
that the LVI(F,K) problem has a solution x∗ ∈ K . If there exist positive constants κ and λ
satisfying the following conditions:

(i) ‖x− x∗ − (F(x)−F(x∗))‖ ≤ ‖x− x∗‖ for every x ∈ K ;
(ii) t−1δ−1(t)≤ λ∀t;

(iii) (κ+ 4C1κλ) < 1, where C1 is the constant given in Theorem 4.1,
then the sequence {xn} defined by (3.2) converges to the solution x∗ of the LVI(F,K) problem.
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Proof. Using Theorem 4.1, similar to the proof of Theorem 3.1, we have

∥∥xn+1− x∗
∥∥2

= ∥∥(1−αn)(xn− x∗)+αn
(
PK
(
xn−F

(
xn
))− xn)∥∥2

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

∥∥PK(xn−F(xn))−PK(x∗ −F(x∗))∥∥2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

(∥∥xn−F(xn))− (x∗ −F(x∗))∥∥
+ 4
(∥∥(xn−F(xn))−PK(x∗ −F(x∗))∥∥∨∥∥PK(xn−F(xn))− (x∗ −F(x∗))∥∥)

× δ−1(C1ψ
(∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥

÷∥∥(xn− f
(
xn
))−PK(x∗ −F(x∗))∥∥∨∥∥PK(xn−F(xn))− (x∗ −F(x∗))∥∥))2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥).

(4.2)

The property ρ(τ) ≤ τ for all τ ≥ 0 implies that ρ(τ)/τ ≤ 1 for all τ ≥ 0. From the
definition of ψ, we have ψ(t) ≤ t for all t ≥ 0. Since δ−1 is a strictly increasing function,
from conditions (i) and (ii), we obtain

∥∥xn+1− x∗
∥∥2

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

(∥∥xn−F(xn))− (x∗ −F(x∗))∥∥
+ 4
(∥∥xn−F(xn)−PK(x∗ −F(x∗))∥∥∨∥∥PK(xn−F(xn))− (x∗ −F(x∗))∥∥)

× δ−1

(
C1

∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥∥∥(xn−F(xn))−PK(x∗ −F(x∗))∥∥∨∥∥PK(xn−F(xn))− (x∗ −F(x∗))∥∥
)2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

(∥∥xn−F(xn))− (x∗ −F(x∗))∥∥
+ 4
(∥∥xn−F(xn))− (x∗ −F(x∗))∥∥

×C1

(
C1

∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥∥∥(xn−F(xn))−PK(x∗ −F(x∗))∥∥∨∥∥PK(xn−F(xn))− (x∗ −F(x∗))∥∥
)−1

× δ−1

(
C1

∥∥(xn−F(xn))− (x∗ −F(x∗))∥∥∥∥(xn−F(xn))−PK(x∗ −F(x∗))∥∥∨∥∥PK(xn−F(xn))− (x∗ −F(x∗))∥∥
)2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ (1−αn)∥∥xn− x∗∥∥2
+αn

(
κ
∥∥xn− x∗∥∥+ 4

(
κ
∥∥xn− x∗∥∥C1λ

))2

−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)(1−αn)∥∥xn− x∗∥∥2

+αn
(
κ+ 4C1κλ

)2∥∥xn− x∗∥∥2−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥)

≤ ∥∥xn− x∗∥∥2−αn
(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥).

(4.3)
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The last inequality is obtained by applying condition (iii) of this theorem. Thus we have

∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn− x∗∥∥2−αn

(
1−αn

)
g
(∥∥PK(xn−F(xn))− xn∥∥). (4.4)

Similar to the proof of Theorem 3.1, we can show that there exists a subsequence
{n(i)} ⊆ {n} such that

∥∥PK(xn(i)−F
(
xn(i)

))− xn(i)
∥∥−→ 0 as i−→∞. (4.5)

For this subsequence, by applying Theorem 4.1 and using an argument similar to the
proof of the first part of this theorem, we have

∥∥xn(i)− x∗
∥∥= ∥∥xn(i)−PK

(
xn(i)−F

(
xn(i)

))
+PK

(
xn(i)−F

(
xn(i)

)
)− x∗

∥∥
≤ ∥∥xn(i)−PK

(
xn(i)−F

(
xn(i)

))∥∥+
∥∥PK(xn(i)−F

(
xn(i)

))− x∗∥∥
= ∥∥xn(i)−PK

(
xn(i)−F

(
xn(i)

))∥∥+
∥∥PK(xn(i)−F

(
xn(i)

))−PK(x∗ −F(x∗))∥∥
≤ ∥∥xn(i)−PK

(
xn(i)−F

(
xn(i)

))∥∥+
(
κ+ 4C1κλ

)∥∥xn(i)− x∗
∥∥,

(4.6)

which implies that

(
1− (κ+ 4C1κλ

))∥∥xn(i)− x∗
∥∥≤ ∥∥xn(i)−PK

(
xn(i)−F

(
xn(i)

))∥∥. (4.7)

Since (1− (κ+ 4C1κλ)) > 0 (condition (iii) of this theorem), from (3.10) it follows that

∥∥xn(i)− x∗
∥∥−→ 0 as i−→∞. (4.8)

From inequality (3.19), {‖xn− x∗‖} is a decreasing sequence. Thus

∥∥xn− x∗∥∥−→ 0 as n−→∞. (4.9)
�

Corollary 4.3. Let (B,‖ · ‖) be a uniformly convex and uniformly smooth Banach space
and K a nonempty closed convex subset of B. Let F : K → B be a continuous mapping. If the
Banach space B and the mapping F satisfy conditions (3.2) and (3.10) in Theorem 3.7 and
F satisfies the condition

∥∥x− y− (F(x)−F(y)
)∥∥≤ κ‖x− y‖ for every x, y ∈ K , (4.10)

then the LVI(F,K) problem has at most one solution.

Proof. From Theorem 3.7, every solution of the LVI(FmK) problem must be the limit of
the sequence (3.2). �
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