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An explicit algorithmic scheme for constructing the unique sunny nonexpansive retrac-
tion onto the common fixed point set of a nonlinear semigroup of nonexpansive map-
pings in a Banach space is analyzed and a proof of convergence is given.

1. Introduction

Throughout this paper all vector spaces are real and we denote by N and R+ the set
of nonnegative integers and nonnegative real numbers, respectively. Let (X ,‖ · ‖) be a
Banach space and let X∗ be its dual. The value of y ∈ X∗ at x ∈ X will be denoted by
〈x, y〉. We also denote by J : X → 2X

∗
the normalized duality map from X into the family

of nonempty (by the Hahn-Banach theorem) weak-star compact convex subsets of X∗,
which is defined by Jx = {x∗ ∈ X∗ : 〈x,x∗〉 = ‖x‖2 = ‖x∗‖2} for all x ∈ X . The Banach
space X is said to be smooth or to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(1.1)

exists for each x, y ∈ X with ‖x‖ = ‖y‖ = 1. The space X is said to have a uniformly
Gâteaux differentiable norm if, for each y ∈ X with ‖y‖ = 1, the limit (1.1) is attained
uniformly in x ∈ X with ‖x‖ = 1. It is known [12, Lemma 2.2] that if the norm of X
is uniformly Gâteaux differentiable, then the duality map is single-valued and norm to
weak star uniformly continuous on each bounded subset of X . Let C be a nonempty,
closed and convex subset of X and E be a nonempty subset of C. A mapping Q : C→ X
is nonexpansive if ‖Qx−Qy‖ ≤ ‖x− y‖ for all x, y ∈ C. A mapping Q : C→ E is called a
retraction from C onto E if Qx = x for all x ∈ E. A retraction Q from C onto E is called
sunny if Q has the following property: Q(Qx + t(x−Qx)) = Qx for all x ∈ C and t ≥ 0
with Qx+ t(x−Qx)∈ C. It is known [6, Lemma 13.1] that in a smooth Banach space X ,
a retraction Q from C onto E is both sunny and nonexpansive if and only if

〈
x−Qx, J(y−Qx)

〉≤ 0 (1.2)

for all x ∈ C and y ∈ E. Hence, there is at most one sunny nonexpansive retraction from
C onto E. For example, if E is a nonempty, closed and convex subset of a Hilbert space
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H , then the nearest point projection PE from H onto E is the unique sunny nonexpan-
sive retraction of H onto E. This is not true for all Banach spaces, since outside Hilbert
space, nearest point projections, although sunny, are no longer nonexpansive. On the
other hand, sunny nonexpansive retractions do sometimes play a similar role in Banach
spaces to that of nearest point projections in a Hilbert space. So an interesting problem
arises: for which subsets of a Banach space does a sunny nonexpansive retraction exist?
If it does exist, how can one find it? It is known [6, Theorem 13.2] that if C is a closed
convex subset of a uniformly smooth Banach space and T : C→ C is nonexpansive, then
the fixed point set of T is a sunny nonexpansive retract of C. More generally, Bruck [3,
Theorem 2] proves that if C is a closed convex subset of a reflexive Banach space every
bounded, closed and convex subset of which has the fixed point property for nonexpan-
sive mappings and T : C→ C is nonexpansive, then its fixed point set is a nonexpansive
retract of C. (It is still an open question whether all bounded, closed and convex subsets
of reflexive Banach spaces have this fixed point property.) For a weak sufficient condi-
tion on the underlying space which guarantees that nonexpansive retracts are, in fact,
sunny nonexpansive retracts see [10, Theorem 4.1]. In the present paper we show that if
F is the nonempty common fixed point set of a commuting family of nonexpansive self-
mappings of closed convex subsets C of certain Banach spaces X , satisfying an asymptotic
regularity condition, then it is possible to construct the sunny nonexpansive retraction Q
of C onto F in an explicit iterative way. The origin of our work lies in a recent publication
by Domı́nguez Benavides, López Acedo and Xu [5] who attempted to construct sunny
nonexpansive retractions using both implicit and explicit iterative schemes (cf. the dis-
cussion in [1]). Our work improves, corrects and generalizes some of the results obtained
in the above paper. It is also related to a result of Reich [11], where the case of a single
mapping is dealt with. In this connection we would also like to refer the interested reader
to the results obtained by Suzuki [14] who deals with an implicit scheme for construct-
ing the sunny nonexpansive retraction onto the common fixed point set of some one-
parameter semigroups of nonexpansive mappings. For related results in Hilbert space see
Aleyner and Censor [1], Bauschke [2], Deutsch and Yamada [4], Halpern [7], Lions [8],
and Wittmann [15].

2. Preliminaries and notations

Let l∞ denote the real Banach space of all bounded sequences a = (a1,a2, . . .) with the
norm defined by ‖a‖ = supn |an|. A continuous linear functional LIM on l∞ is called a
Banach limit when LIM satisfies LIM(a) ≥ 0 if an ≥ 0, n = 1,2, . . . , LIM({an}) =
LIM({an+1}) and ‖LIM‖ = LIM(1) = 1. To prove our theorem, we need the following
two propositions [13, Propositions 1 and 2], which can be deduced from the arguments
in the proof of [9, Theorem 1]. We sketch their proofs for the sake of completeness.

Proposition 2.1. Let α be a real number and let a = (a1,a2, . . .) ∈ l∞. Then LIM(a) ≤ α
for all Banach limits LIM if and only if for each ε > 0, there exists n0 ∈N such that

ak + ak+1 + ···+ ak+n−1

n
< α+ ε (2.1)

for all n≥ n0 and k ∈N.
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Proof. First we prove the necessity of (2.1). Assume LIM(a)≤ α for all Banach limits LIM.
Define a sublinear functional β from l∞ into the real line R by

β
((
b1,b2, . . .

))= limsup
n→∞

sup
k∈N

1
n

k+n−1∑
i=k

bi, (2.2)

where (b1,b2, . . .) ∈ l∞. By the Hahn-Banach theorem, there exists a linear functional µ
from l∞ into R such that µ≤ β and µ(a)= β(a). It is not difficult to see that µ is a Banach
limit. Since µ(a)≤ α, there exists, for each ε > 0, a natural number n0 ∈N which satisfies
(2.1). Next we prove that (2.1) is sufficient. Let µ be a Banach limit and let ε > 0. By the
hypothesis, there exists n0 such that (2.1) is satisfied. Hence we have

µ(a)= µ
(
ak + ak+1 + ···+ak+n0−1

n0

)
≤ α+ ε. (2.3)

Since ε is an arbitrary positive number, we see that µ(a)≤ α. �

Proposition 2.2. Let α be a real number and let a= (a1,a2, . . .)∈ l∞ be such that

LIM(a)≤ α (2.4)

for all Banach limits LIM, and

limsup
n→∞

(an+1− an)≤ 0. (2.5)

Then

limsup
n→∞

an ≤ α. (2.6)

Proof. Let ε > 0. By Proposition 2.1, there exists n≥ 2 such that

ak + ak+1 + ···+ ak+n−1

n
< α+

ε

2
(2.7)

for all k ∈N. Choose k0 ∈N such that ak+1− ak < ε/(n− 1) for all k ≥ k0. Let k ≥ k0 +n.
Then we have

ak = ak−i +
(
ak−i+1− ak−i

)
+
(
ak−i+2− ak−i+1

)
+ ···+

(
ak − ak−1

)≤ ak−i +
iε

n− 1
(2.8)

for each i= 0,1,2, . . . ,n− 1. So we obtain

ak ≤ ak + ak−1 + ···+ ak−n+1

n
+

1
n
· n(n− 1)

2
· ε

n− 1
≤ α+ ε. (2.9)

Hence we have

limsup
k→∞

ak ≤ α+ ε. (2.10)

Since ε is an arbitrary positive number, the proposition is proved. �
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3. Convergence theorem

Let X be a Banach space, C a nonempty, closed and convex subset of X , G an unbounded
subset of R+ such that

t+h∈G ∀t,h∈G,

t−h∈G ∀t,h∈G with t ≥ h,
(3.1)

and Γ = {Tt : t ∈ G} a family of nonexpansive self-mappings of C such that the set F of
the common fixed points of Γ is nonempty. We make the following assumptions.

Assumptions on the space. X is a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm such that each nonempty, bounded, closed and convex subset K of X
has the common fixed point property for nonexpansive mappings; that is, any family of
commuting nonexpansive self-mappings of K has a common fixed point. Note that all
these assumptions are fulfilled whenever X is uniformly smooth.

Assumptions on the mappings. Γ is a uniformly asymptotically regular semigroup on
bounded subsets of C, that is,

Ts+tx = TsTtx (3.2)

for all t,s∈G, x ∈ C, and for all bounded subsets K of C there holds

lim
r→∞sup

K

∥∥TsTrx−Trx
∥∥= 0, (3.3)

uniformly for all s ∈ G. Note that both these assumptions hold when the trajectories of
the semigroup Γ converge uniformly on bounded subsets of X .

Assumptions on the parameters. {λn} is a sequence of numbers in [0,1) with the following
properties:

λn −→ 0, (3.4)
∞∏
n=0

(
1− λn

)= 0; equivalently,
∞∑
n=0

λn =∞, (3.5)

∞∑
n=0

∣∣λn+1− λn
∣∣ <∞. (3.6)

Observe that given points f ∈ F, u,x0 ∈ C, and the bounded subset D = {x ∈ C : ‖x−
f ‖ ≤max(‖x0− f ‖,‖u− f ‖)}, there exists a sequence {rn} ⊆G such that

r0 < r1 < r2 < ··· < rn < ··· , lim
n→∞rn =∞, (3.7)

∞∑
n=0

sup
D

∥∥TsTrnx−Trnx
∥∥ <∞, (3.8)

uniformly for all s∈G. We now define the sequence {xn} by

xn+1 = λnu+
(
1− λn

)
Trnxn, (3.9)

where n≥ 0; we say that {xn} has anchor u and initial point x0.
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Theorem 3.1. If the above assumptions on the space, mappings and parameters hold, then
the sequence generated by (3.9) converges in norm to Qu, where Q is the unique sunny non-
expansive retraction from C onto F.

Proof. We first prove the result for the special case x0 = u and then extend it to the general
case. We divide our proof into a sequence of separate claims.

Claim 3.2. For all n≥ 0 and every f ∈ F,

∥∥xn− f
∥∥≤ ‖u− f ‖. (3.10)

We proceed by induction on n. Fix f ∈ F. Clearly, (3.10) holds for n = 0. If ‖xn − f ‖ ≤
‖u− f ‖, then

∥∥xn+1− f
∥∥≤ λn‖u− f ‖+

(
1− λn

)∥∥Trnxn− f
∥∥

≤ λn‖u− f ‖+
(
1− λn

)∥∥xn− f
∥∥

≤ ‖u− f ‖,

(3.11)

as required.

Claim 3.3. The following strong convergence holds:

xn+1−Trnxn −→ 0. (3.12)

This is true because (3.10) guarantees that {xn} is bounded, which, in turn, implies that
{Trnxn} is also bounded. The boundedness of {Trnxn} together with (3.4) imply, in view
of (3.9), our assertion.

Claim 3.4. The differences of consecutive iterates strongly converge to zero, namely,

xn+1− xn −→ 0. (3.13)

Indeed, it follows from (3.10) that xn ∈D for all n≥ 0. By the boundedness of {xn} and
{Trnxn} there exists some constant L≥ 0 such that ‖xn+1− xn‖ ≤ L and ‖u−Trnxn‖ ≤ L
for all n≥ 0. Therefore, for all n≥ 1 we get

∥∥xn+1− xn
∥∥= ∥∥(λn− λn−1

)(
u−Trn−1xn−1

)
+
(
1− λn

)(
Trnxn−Trn−1xn−1

)∥∥
≤ ∥∥(λn− λn−1

)(
u−Trn−1xn−1

)∥∥+
∥∥(1− λn

)(
Trnxn−Trnxn−1

)∥∥
+
∥∥(1− λn

)(
Trnxn−1−Trn−1xn−1

)∥∥
≤ ∣∣λn− λn−1

∣∣∥∥u−Trn−1xn−1
∥∥+

(
1− λn

)∥∥xn− xn−1
∥∥

+
∥∥Trnxn−1−Trn−1xn−1

∥∥
≤ ∣∣λn− λn−1

∣∣L+
(
1− λn

)∥∥xn− xn−1
∥∥

+
∥∥Trnxn−1−Trn−1xn−1

∥∥.

(3.14)
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Since Γ is a semigroup, we are able to rewrite the last term as follows:∥∥Trnxn−1−Trn−1xn−1
∥∥= ∥∥Trn−rn−1Trn−1xn−1−Trn−1xn−1

∥∥. (3.15)

Thus ∥∥xn+1− xn
∥∥≤ ∣∣λn− λn−1

∣∣L+
(
1− λn

)∥∥xn− xn−1
∥∥

+
∥∥Trn−rn−1Trn−1xn−1−Trn−1xn−1

∥∥ (3.16)

for all n≥ 1. Hence, inductively,

∥∥xn+1− xn
∥∥≤ L

n∑
k=m

∣∣λk − λk−1
∣∣+

∥∥xm− xm−1
∥∥ n∏
k=m

(
1− λk

)

+
n∑

k=m

∥∥Trk−rk−1Trk−1xk−1−Trk−1xk−1
∥∥,

(3.17)

for all n≥m≥ 1. Taking now the limit as n tends to +∞, we obtain

limsup
n→∞

∥∥xn+1− xn
∥∥

≤ L
∞∑

k=m

∣∣λk − λk−1
∣∣+L

∞∏
k=m

(
1− λk

)
+

∞∑
k=m

sup
D

∥∥Trk−rk−1Trk−1x−Trk−1x
∥∥

= L
∞∑

k=m

∣∣λk − λk−1
∣∣+

∞∑
k=m

sup
D

∥∥Trk−rk−1Trk−1x−Trk−1x
∥∥

(3.18)

by (3.5). On the other hand, conditions (3.6) and (3.8) imply that

lim
m→∞

∞∑
k=m

∣∣λk − λk−1
∣∣= 0,

lim
m→∞

∞∑
k=m

sup
D

∥∥Trk−rk−1Trk−1x−Trk−1x
∥∥= 0.

(3.19)

Altogether, by letting m tend to∞, we conclude that xn+1− xn→ 0, as claimed.

Claim 3.5. For each fixed s∈G,

Tsxn− xn −→ 0. (3.20)

Indeed, let s∈G. Then∥∥Tsxn− xn
∥∥≤ ∥∥Tsxn−TsTrnxn

∥∥+
∥∥TsTrnxn−Trnxn

∥∥+
∥∥Trnxn− xn

∥∥
≤ 2

∥∥xn−Trnxn
∥∥+ sup

D

∥∥TsTrnx−Trnx
∥∥

≤ 2
(∥∥xn− xn+1

∥∥+
∥∥xn+1−Trnxn

∥∥)+ sup
D

∥∥TsTrnx−Trnx
∥∥.

(3.21)

Combining (3.12), (3.13), and (3.8), we see that Tsxn− xn→ 0, as asserted.
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Let LIM be a Banach limit and let {αs}s∈G be a net in the interval (0,1) such that
lims→∞αs = 0. By Banach’s fixed point theorem, for each s∈G, there exists a unique point
zs ∈ C satisfying the equation zs = αsu+ (1− αs)Tszs. Since the following claim is essen-
tially proved in [5], we include only a sketch of its proof.

Claim 3.6.

zs −→Qu, (3.22)

where Q : C→ F is the unique sunny nonexpansive retraction from C onto F.
Indeed, let {sn} be a subsequence of G such that limn→∞ sn =∞. Since {zsn} is bounded,

we can define a functional g on C by

g(x)= LIM
({∥∥zsn − x

∥∥2
})

. (3.23)

We have for each r ∈G,

g
(
Trx

)= LIM
({∥∥zsn −Trx

∥∥2
})
= LIM

({∥∥TrTsnzsn −Trx
∥∥2
})

≤ LIM
({∥∥Tsnzsn − x

∥∥2
})

= LIM
({∥∥zsn − x

∥∥2
})

,

(3.24)

by (3.3). In other words,

g
(
Trx

)≤ g(x) (3.25)

for all r ∈ G and x ∈ C. Let K = {x ∈ C : g(x)=minC g}. Since g is convex and continu-
ous, lim‖x‖→∞ g(x)=∞ and X is reflexive, K is a nonempty, closed, bounded and convex
subset of C. From (3.25) we see that K is invariant under each Tr ; that is, Tr(K) ⊂ K ,
r ∈ G. Hence K contains a common fixed point of Γ. Let q ∈ K

⋂
F be such a common

fixed point. Since q is a minimizer of g over C, it follows that for each x ∈ C,

0≤ lim
λ→0+

1
λ

(
g
(
q+ λ(x− q)

)− g(q)
)

= LIM
({

lim
λ→0+

1
λ

(∥∥(zsn − q
)

+ λ(q− x)
∥∥2−∥∥zsn − q

∥∥2
)})

= LIM
({

2
〈
q− x, J

(
zsn − q

)〉})
.

(3.26)

Thus,

LIM
({〈

x− q, J
(
zsn − q

)〉})≤ 0 (3.27)

for all x ∈ C. On the other hand, for any f ∈ F,

zsn − f = (1−αsn
)(
Tsnzsn − f

)
+αsn(u− f ). (3.28)
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It follows that

∥∥zsn − f
∥∥2 = (1−αsn

)〈
Tsnzsn − f , J

(
zsn − f

)〉
+αsn

〈
u− f , J

(
zsn − f

)〉
≤ (1−αsn

)∥∥zsn − f
∥∥2

+αsn
〈
u− f , J

(
zsn − f

)〉
.

(3.29)

Hence

∥∥zsn − f
∥∥2 ≤ 〈u− f , J

(
zsn − f

)〉
. (3.30)

Combining (3.27) and (3.30), we get

LIM
({∥∥zsn − q

∥∥2
})
≤ 0. (3.31)

Hence there is a subsequence {zrj} of {zsn} such that lim j→∞‖zrj − q‖ = 0. Assume that
there exists another subsequence {zpk} of {zsn} such that limk→∞‖zpk − q̃‖ = 0, where
q̃ ∈ K

⋂
F. Then (3.30) implies that

∥∥q− q̃
∥∥2 ≤ 〈u− q̃, J

(
q− q̃

)〉
. (3.32)

Similarly we have

∥∥q̃− q
∥∥2 ≤ 〈u− q, J

(
q̃− q

)〉
. (3.33)

Adding up (3.32) and (3.33) we obtain q = q̃. Therefore {zs} converges in norm to a point
in F. Now we define Q : C→ F by Qu= lims→∞ zs. Then Q is a retraction from C onto F.
Moreover, by (3.30) we get for all f ∈ F,

∥∥Qu− f
∥∥2 ≤ 〈u− f , J(Qu− f )

〉
. (3.34)

That is,

〈
u−Qu, J( f −Qu)

〉≤ 0 (3.35)

for all f ∈ F. Therefore Q is the unique sunny nonexpansive retraction from C onto F
(see (1.2)).

Claim 3.7.

limsup
n→∞

〈
u−Qu, J

(
xn−Qu

)〉≤ 0. (3.36)

Since Ts is nonexpansive, (3.20) implies that

LIM
({∥∥xn−Tszs

∥∥2
})
= LIM

({∥∥Tsxn−Tszs
∥∥2
})
≤ LIM

({∥∥xn− zs
∥∥2
})

. (3.37)
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Since (1−αs)(xn−Tszs)= (xn− zs)−αs(xn−u), we have

(
1−αs

)2∥∥xn−Tszs
∥∥2 ≥ ∥∥xn− zs

∥∥2− 2αs
〈
xn−u, J

(
xn− zs

)〉
= ∥∥xn− zs

∥∥2− 2αs
〈
xn− zs + zs−u, J

(
xn− zs

)〉
= ∥∥xn− zs

∥∥2− 2αs
〈
xn− zs, J

(
xn− zs

)〉− 2αs
〈
zs−u, J

(
xn− zs

)〉
= (1− 2αs

)∥∥xn− zs
∥∥2

+ 2αs
〈
u− zs, J

(
xn− zs

)〉
.

(3.38)
Therefore

(
1−αs

)2
LIM

({∥∥xn− zs
∥∥2
})

≥ (1− 2αs
)

LIM
({∥∥xn− zs

∥∥2
})

+ 2αs LIM
({〈

u− zs, J
(
xn− zs

)〉}) (3.39)

for each n≥ 0. These inequalities yield

αs
2

LIM
({∥∥xn− zs

∥∥2
})
≥ LIM

({〈
u− zs, J

(
xn− zs

)〉})
. (3.40)

Since〈
u− zs, J

(
xn− zs

)〉− 〈u−Qu, J
(
xn−Qu

)〉
= 〈u− zs− (u−Qu), J

(
xn− zs

)〉
+
〈
u−Qu, J

(
xn− zs

)− J
(
xn−Qu

)〉
,

(3.41)

we obtain by letting s tend to∞ that

0≥ LIM
({〈

u−Qu, J
(
xn−Qu

)〉})
(3.42)

because X has a uniformly Gâteaux differentiable norm and (3.22) holds. On the other
hand, we have

lim
n→∞

∣∣〈u−Qu, J
(
xn+1−Qu

)〉− 〈u−Qu, J
(
xn−Qu

)〉∣∣= 0 (3.43)

by (3.13). Hence we obtain by Proposition 2.2,

limsup
n→∞

〈
u−Qu, J

(
xn−Qu

)〉≤ 0, (3.44)

as claimed.
Now we can conclude the proof for the special case x0 = u.

Claim 3.8.

xn −→Qu. (3.45)

Indeed, since

(
1− λn

)(
Trnxn−Qu

)= (xn+1−Qu
)− λn(u−Qu), (3.46)
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we have

∥∥(1− λn
)(
Trnxn−Qu

)∥∥2 ≥ ∥∥xn+1−Qu
∥∥2− 2λn

〈
u−Qu, J

(
xn+1−Qu

)〉
. (3.47)

Hence

∥∥xn+1−Qu
∥∥2 ≤ (1− λn

)∥∥xn−Qu
∥∥2

+ 2
(
1− (1− λn

))〈
u−Qu, J

(
xn+1−Qu

)〉
(3.48)

for each n≥ 0. Let ε > 0 be given. By (3.36), there exists m≥ 0 such that

〈
u−Qu, J

(
xn−Qu

)〉≤ ε

2
(3.49)

for all n≥m. Therefore

∥∥xn+m−Qu
∥∥2 ≤

(n+m−1∏
k=m

(
1− λk

))∥∥xm−Qu
∥∥2

+

(
1−

n+m−1∏
k=m

(
1− λk

))
ε (3.50)

for all n≥ 1. Hence by (3.5) we get

limsup
n→∞

∥∥xn−Qu
∥∥2 = limsup

n→∞

∥∥xn+m−Qu
∥∥2 ≤ ε. (3.51)

Since ε is an arbitrary positive real number, we conclude that {xn} converges strongly to
Qu; that is, the special case is verified.

Finally, we extend the proof to the general case. Let {xn} be the sequence generated by
(3.9) with an initial point x0 (possibly different from u) and let {yn} be another sequence
generated by (3.9) with an initial point y0 = u. On the one hand, by the special case,

yn −→Qu. (3.52)

On the other hand, it is easily checked that

∥∥xn− yn
∥∥≤ ∥∥x0− y0

∥∥n−1∏
k=0

(
1− λk

)
(3.53)

for all n≥ 1. Thus, xn− yn→ 0 and, altogether, xn→Qu. �

Note added in proof. We are now able to prove Theorem 3.1 under much weaker assump-
tions on the mappings and the parameters. We expect the details to be part of a forthcom-
ing paper.
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