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We consider quasicontraction nonself-mappings on Takahashi convex metric spaces and
common fixed point theorems for a pair of maps. Results generalizing and unifying fixed
point theorems of Ivanov, Jungck, Das and Naik, and Ciri¢ are established.

1. Introduction and preliminaries

Let X be a complete metric space. A map T : X — X such that for some constant A € (0,1)
and for every x,y € X

d(Tx,Ty) < A-max{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y, Tx)} (1.1)

is called quasicontraction. Let us remark that Ciri¢ [1] introduced and studied quasicon-
traction as one of the most general contractive type map. The well known Ciri¢’s result
(see, e.g., [1, 6, 11]) is that quasicontraction T possesses a unique fixed point.

For the convenience of the reader we recall the following recent Ciri¢’s result.

THEOREM 1.1 [2, Theorem 2.1]. Let X be a Banach space, C a nonempty closed subset of X,
and 0C the boundary of C. Let T : C — X be a nonself mapping such that for some constant
A € (0,1) and for every x,y € C

d(Tx,Ty) <A-max{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}. (1.2)
Suppose that
T(0C) c C. (1.3)

Then T has a unique fixed point in C.

Following Ciri¢ [3], let us remark that problem to extend the known fixed point theorem
for self mappings T : C — C, defined by (1.1), to corresponding nonself mappings T : C — X,
C + X, was open more than 20 years.

In 1970, Takahashi [15] introduced the definition of convexity in metric space and
generalized same important fixed point theorems previously proved for Banach spaces. In
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this paper we consider quasicontraction nonself-mappings on Takahashi convex metric
spaces and common fixed point theorems for a pair of maps. Results generalizing and
unifying fixed point theorems of Ivanov [7], Jungck [8], Das and Naik [3], Ciri¢ [2],
Gaji¢ [5] and Rakocevi¢ [12] are established.

Let us recall that (see Jungck [9]) the self maps f and g on a metric space (X, d) are
said to be a compatible pair if

lim d(g fxn, fgxn) =0 (1.4)

n— oo

whenever {x,} is a sequence in X such that
lim gx,, = lim fx, =x (1.5)
n—oo n— oo

for some x in X.
Following Sessa [14] we will say that f,g: X — X are weakly commuting if

d(fgx,gfx) <d(fx,gx) foreveryxeX. (1.6)

Clearly weak commutativity of f and g is a generalization of the conventional commu-
tativity of f and g, and the concept of compatibility of two mappings includes weakly
commuting mappings as a proper subclass.

We recall the following definition of a convex metric space (see [15]).

Definition 1.2. Let X be a metric space and I = [0, 1] the closed unit interval. A Takahashi
convex structure on X is a function W : X X X X I — X which has the property that for
everyx,y€ Xandi el

d(z, W(x,y,1)) < Ad(z,x)+ (1 —N)d(z,y) (1.7)

for every z € X. If (X,d) is equipped with a Takahashi convex structure, then X is called
a Takahashi convex metric space.

If (X,d) is a Takahashi convex metric space, then for x, y € X we set
seglx, y] = {W(x,y,1): 1 € [0,1]}. (1.8)

Let us remark that any convex subset of normed space is a convex metric space with
W(x, y,A) =Ax+ (1 = L)y.



L. Gaji¢ and V. Rakocevi¢ 367

2. Main results
The next theorem is our main result.

THEOREM 2.1. Let (X,d) be a complete Takahashi convex metric space with convex struc-
ture W which is continuous in the third variable, C a nonempty closed subset of X and 0C
the boundary of C. Let g: C— X, f:X — X and f : C — C. Suppose that 9C + &, f is
continuous, and let us assume that f and g satisfy the following conditions.

(i) For every x,y € C

d(gx,gy) < My(x,y), (2.1)
where
Mo (x,y) = max{w[d(fx, fy)],0[d(fx,gx)],w[d(fy.gy)],
wld(fx.gy)]wld(fy.g0)]},

(2.2)

w:[0,400) = [0,+00) is a nondecreasing semicontinuous function from the right, such that
w(r) <r, forr >0, andlim, .. [r — w(r)] = +oo.
(ii) f and g are a compatible pair on C, that is,

liglod(gfxn,fgxn) =0 (2.3)

whenever {x,} is a sequence in C such that

Aiﬂrggxn = ,11}1010 fx,=x (2.4)
for some x in X.

(iil)
g(O)\Cc f(). (2.5)

(iv)
gdC)ccC (2.6)

W)
f(0C) > aC. (2.7)

Then f and g have a unique common fixed point z in C.

Proof. Starting with an arbitrary xy € dC, we construct a sequence {x,} of points in
C as follows. By (2.6) g(xo) € C. Hence, (2.5) implies that there is x; € C such that
f(x1) = g(xo). Let us consider g(x). If g(x;) € C, again by (2.5) there is x, € C such
that f(x;) = g(x1). Suppose that g(x;) ¢ C. Now, because W is continuous in the third
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variable, there exists A1; € [0,1] such that

W(f(x1),g(x1),A11) € acﬂ seg|f(x1),g(x1)].

By (2.7) there is x, € dC such that f(x;) = W(f(x1),g(x1),A11).
Hence, by induction we construct a sequence {x,} of points in C as follows. If g(x,) €
C, than by (2.5) f(x4+1) = g(x) for some x,.1 € C; if g(x,,) ¢ C, then there exists A, €

[0,1] such that

W(f(xn)>g(xn))lnn) €dC m seg [f(xn))g(xn)]-

Now, by (2.7) pick x,+1 € dC such that

Let us remark (see [6]) that for every x, y € X and every A € [0,1]

f(xrl+1) = W(f(xn)>g(xn))lnn)-

d(x,y) = d(x, W(x, y,1)) +d(W(x,y,1), ).

Furthermore, if u € X and z = W(x, y,A) € seg[x, y] then

d(u,z) = d(u, W(x, y,A)) < max{d(u,x),d(u,y)}.

First let us prove that

foxnn) # g(xn) = f(x0) = g(xn-1).

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Suppose the contrary that f(x,) # g(x4-1). Then x,, € dC. Now, by (2.5) g(x,) € C, hence
f(xps1) = g(x4), a contradiction. Thus we prove (2.13).

We will prove that g(x,,) and f(x,) are Cauchy sequences. First we will prove that these
sequences are bounded, that is that the set

is bounded.
For each n > 1 set

We will prove that

A= (O{f(x,-)}) U (O {g(xi)}>

i=0

a, = diam (A,).

a, = max{d(f(x0),g(x:)):0<i<n-—1}.

(2.14)

(2.15)

(2.16)
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If a, = 0, then f(x0) = g(xo). We will prove that g(x) is a common fixed point for f and
g. By (2.3) it follows that

fg(xo) = gf (x0) = gg(xo). (2.17)

Now we obtain

d(gg(x0),8(x0)) = Mo (gx0,%0) = w(d(gg(x0),g(x0)))s (2.18)
and hence gg(xo) = g(xp). From (2.17), we conclude that g(xy) = z is also a fixed point of

f. To prove the uniqueness of the common fixed point, let us suppose that fu = gu = u
for some u € C. Now, by (2.1) we have

d(z,u) = d(gz,gu) < My(z,u) = w(d(z,1)), (2.19)
and so, z = u.
Suppose that a, > 0. To prove (2.16) we have to consider three cases.
Case 1. Suppose that a, = d(fx;,gx;) forsome 0 <i, j<n-—1.
(1i) Now, if i = 1 and fx; = gx;_1, we have

ap = d(fxi,gx;) = d(gxi-1,8%j) < My (xi-1,xj) < w(ay) < ay. (2.20)

and we get a contradiction. Hence i = 0.
(1ii) If i = 1 and fx; # gx;—1, we have i > 2, and fx;_; = gx;_,. Hence

fxi € seglg(xi2),g(xi-1)], (2.21)
we have

an = d(fxi,gx;) < max{d(gxi_»,gx;),d(gxi-1,gx;)}

(2.22)
< max { My (xi-2,%j), My (xi-1,%j) } < w(a,) < an
and we get a contradiction.
Case 2. Suppose that a, = d(fx;, fx;) forsome0 <i, j <n—1.
(2i) If fx; = gx;_1, then Case (2i) reduces to Case (1i).
(2ii) If fxj # gx;j_1, then as in the Case (1ii) we have j > 2, fx; | = gxj_, and
fxjeoC m seg[gxj—2,8xj-1]. (2.23)
Hence
an = d(fxi, fx;) < max {d(fxi,gxj—2),d(fxigxj—1)} (2.24)

and Case (2ii) reduces to Case (11i).
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Case 3. The remaining case a, = d(gx;,gx;) for some 0 < i, j < n — 1, is not possible (see
Case (11)). Hence we proved (2.16).
Now

an = d(fxo,gx:) < d(fxo0,8x0) +d(gx0,gxi) < d(fx0,g%0) + w(ay), (2.25)
an — w(an) < d(fxo,gx0). (2.26)

By (i) there is 1y € [0,+0) such that

r—w(r) >d(fxo.gyo), forr>r. (2.27)
Thus, by (2.26)
a,<ry, n=12,..., (2.28)
and clearly
a= iLngo a, = diam(A) < ro. (2.29)

Hence we proved that gx, and fx, are bounded sequences.
To prove that gx, and fx, are Cauchy sequences, let us consider the set

B, = (g{fxi}>U(g{gxi}), n=2,3,.... (2.30)

By (2.16) we have

b, = diam (B,) = supd(fx,,gx;j), n=12,.... (2.31)

jzn
If fx, = gxy—1, then as in Case (1i) for each j = n
by = d(fxn,gxj) = d(gxn-1,8xj) < w(by_1), n=12,... (2.32)
If fx, # gxn—1, then as in Case (1ii) foreachn = 1land j = n
by = d(fxngxj) < max{d(gx—2,8%;),d(gxn-1,8%j)} < w(by-2). (2.33)
By (2.32) and (2.33) we get
b, <w(b,y), n=273,.... (2.34)

Clearly, b, = b, for each n, and set lim, b, = b. We will prove that b = 0. If b > 0, then
(2.34) and (i) imply b < w(b) < b, and we get a contradiction. It follows that both fx, and
gx, are Cauchy sequences. Since fx, € C and C is a closed subset of a complete metric
space X we conclude that lim, fx, = y € C. Furthermore,

d(f(xa),g(x4)) — 0, n— oo, (2.35)
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implies limg(x,) = y. Hence,
limg(x,) =lim f (x,) =y € C. (2.36)
By continuity of f
lim f(g(x,)) =lim f (f (xa)) = f(y) € C. (2.37)
Now, by (2.3), we have

d(gf (xn)s f(y)) = d(gf (xu), fg(xn)) +d(fg(xa), f(y)) — 0, n— oo,  (2.38)

that is

lim(g f)(x4) = f(y). (2.39)
Now,
Mw(fxmy)_'w(d(fyagy)) n— o,
(2.40)
d(gfxngy) < Mo(fxny) n— e,

implies
d(fy.gy) = w(d(fy.8y). (2.41)
Hence, f(y) = g(y), and gy is a common fixed point of f and g (see (2.17)). O

In the special case, when w(r) = A - r where 0 < A < 1, we obtain the following result.

TaEOREM 2.2. Let (X,d) be a complete Takahashi convex metric space with convex struc-
ture W which is continuous in the third variable, C a nonempty closed subset of X and 0C
the boundary of C. Let g: C— X, f: X — X and f : C — C. Suppose that 9C + &, f is
continuous, and let us assume that f and g satisfy the following conditions.

(i) There exists a constant A € (0, 1) such that for every x,y € C

d(gx,gy) <A-M(x,y), (2.42)
where
M(x,y) = max{d(fx, fy),d(fx,gx),d(fy,gy),d(fx.gy),d(fy.gx)}. (2.43)

Suppose that the conditions (ii)—(v) in Theorem 2.1 are satisfied. Then f and g have a unique
common fixed point z in C and g is continuous at z. Moreover, ifz, € C, n = 1,2,..., then

limd(fzu,g2,) =0 iff limz, = z. (2.44)

Proof. By Theorem 2.1 we know that f and g have a unique common fixed point z in C.
Now, we show that g is continuous at z. Let {y,} be a sequence in C such that y, — z.
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Now we have
d(gyngz) <A-M(yn2)
=A-max{d(fyn f2),d(fyn.gyn),d(f2.8yn) }

(2.45)
=A-max{d(fyn f2),d(fyngyn)}
<A (d(fymf2) +d(fz.gyn)),
that is
d(gymgz) < (1-1)""A-d(fym f2). (2.46)

Therefore, we have gy, — gz and so g is continuous at z. To prove (2.44), let us suppose
that w € C. Now, since fz = gz = z, we have

d(fw,gw) <d(fw, fz)+d(gw,gz) < d(fw, fz) + A - M(w,z)
<d(fw, fz)+A-max {d(fw, fz),d(fw,gw),d(fz,gw)} (2.47)
<d(fw,f2)+A- (d(fw,fz) +d(fw,gw)),
that is
(1=Vd(fw,gw) < (1+)d(fw, fz). (2.48)
Let us remark that
d(fw,fz) <d(fw.gw)+d(gw.gz) <d(fw,gw)+1-M(w,z)
<d(fw,gw)+A- max{d(fw, fz),d(fw,gw),d(fz,gw)} (2.49)
<d(fw.gw)+A- (d(fw, fz)+d(fw.gw)),
that is
(1-N)d(fw, fz) < (A+N)d(fw,gw). (2.50)
By (2.48) and (2.50) we obtain
(1=Md(fw,gw) < (1+)d(fw, fz)
<(1=-N)(1+1)%d(fw,gw). 2oy

Clearly (2.51) implies (2.44). O

Remark 2.3. Let (K,p) be a bounded metric space. It is said that the fixed point prob-
lem for a mapping A : K — K is well posed if there exists a unique x4 € K such that
Axs = x4 and the following property holds: If {x,} € K and p(x,,Ax,) — 0 as n — co,
then p(x,,x4) — 0 as n — co. Let us remark that condition (2.44) is related to the notion
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of well posed fixed point problem, and the notion of well-posedness is of central impor-
tance in many areas of Mathematics and its applications ([4, 10, 13]).

Remark 2.4. If in Theorem 2.1 we let f be the identity map on X and w(r) = A - r where
0<A<1, weget Ciri¢’s Theorem 1.1 (Gaji¢’s theorem [5]) stated for a Banach (convex
complete metric) space X.

Remark 2.5. 1f in Theorem 2.1 we let f be the identity map on X and C = X, we get
Ivanov’s result [6, 7] stated for a Banach space X.

Remark 2.6. Let us recall that the first part of Theorem 2.2, that is the existence of the
unique common fixed point of f and g was proved by Rakocevi¢ [12].

By the proof of Theorem 2.1 we can recover some results of Das and Naik [3] and
Jungck [8].

CoROLLARY 2.7 [3, Theorem 2.1]. Let X be a complete metric space. Let f be a continuous
self-map on X and g be any self-map on X that commutes with f. Further let f and g satisfy

gX) c f(X) (2.52)
and there exists a constant A € (0,1) such that for every x,y € X
d(gx,gy) <A-M(x,y), (2.53)
where
M(x,y) = max {d(fx, fy),d(fx.gx),d(fy.gy)d(fx.gy),d(f y,gx)}. (2.54)

Then f and g have a unique fixed point.

Proof. We follow the proof of Theorem 2.1. Let us remark that the condition (2.52) im-
plies that starting with an arbitrary xy € X, we construct a sequence {x,} of points in
X such that f(x,11) = g(x,), n=0,1,2,.... The rest of the proof follows by the proof of
Theorem 2.1. O

COROLLARY 2.8 [3, Theorem 3.1]. Let X be a complete metric space. Let f? be a continuous
self-map on X and g be any self-map on X that commutes with f. Further let f and g satisfy

gf(X) c f2(X) (2.55)

and f(g(x)) = g(f(x)) whenever both sides are defined. Further, let there exist a constant
A € (0,1) such that for every x,y € f(X)

d(gx,gy) <A -M(x,y), (2.56)
where
M(x,y) = max{d(fx, fy),d(fx,gx),d(fy.gy),d(fx,gy),d(fy.gx)}. (2.57)

Then f and g have a unique common fixed point.
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Proof. Again, we follow the proof of Theorem 2.1. By (2.55) starting with an arbitrary
xo € f(X), we construct a sequence {x,} of points in f(X) such that f(x,1) = g(x,) =
Yo =0,1,2,....Now f(y,) = f(g(x)) = g(f(x)) = g(¥n-1) = zp,n = 1,2,...,and from
the proof of Theorem 2.1 we conclude that {z,} is a Cauchy sequence in X and hence
convergent to some z € X. Now, for eachn > 1

d(fg(xn).gf(2)
= d(gf2 (xn),gf(z)) <A M(fz (xn))f(z))

(2.58)
= A -max {d(f2f (xa), f2(2)),d(f2f (x), g (x)),
d(f2(2),8f(@),d(f2f (x),8f(2),d(f2(2), fg (x)) }.
Now, by continuity of f?
d(f*(2),8f(2)) <A-d(f*(2),8f(2)). (2.59)
Whence, f(z) = gf(2), and g fz is a unique common fixed of f and g. 0

Let us remark that from Theorem 2.1 and the proof of Corollary 2.7, we get the fol-
lowing.

CoROLLARY 2.9. Let X be a complete metric space. Let f be a continuous self-map on X and
g be any self-map on X that weakly commutes with f. Further let f and g satisfy (2.52) and
(2.53). Then f and g have a unique common fixed point.

Now as a corollary we get the following result of Jungck [8].

CoRrOLLARY 2.10. Let X be a complete metric space. Let f be a continuous self-map on X
and g be any self-map on X that commutes with f. Further let f and g satisfy (2.52) and
there exists a constant A € (0,1) such that for every x,y € X

d(gx,gy) <A-d(fx, fy). (2.60)
Then f and g have a unique common fixed point.

CoRroOLLARY 2.11. Let X be a convex complete metric space, C a nonempty compact subset of
X, and oC the boundary of C. Letg: C— X, f: X —» X and f : C — C. Suppose that g and
[ are continuous, [ and g satisfy the conditions (ii)—(v) in Theorem 2.1, and for all x,y € C,
x#y

d(gx,gy) < M(x,y), (2.61)
where
M(x,y) = max{d(fx, fy),d(fx,gx),d(fy.gy),d(fx,gy),d(fy,gx)}. (2.62)
Then f and g have a unique common fixed point in C.

Proof. By Theorem 2.2 and the proof of [12, Theorem 4]. O
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