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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that a mapping
T : C → C is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, (1.1)

for all x, y ∈ C. We use Fix(T) to denote the set of fixed points of T .
Construction of fixed points of nonlinear mappings is an important and active research

area. In particular, iterative algorithms for finding fixed points of nonexpansive mappings
have received vast investigation (cf. [1, 2]) since these algorithms find applications in a
variety of applied areas of inverse problem, partial differential equations, image recovery,
and signal processing see; [3–8]. Iterative methods for nonexpansive mappings have been
extensively investigated in the literature; see [1–7, 9–21].

It is our purpose in this paper to introduce two iterative algorithms for nonexpansive
mappings in Hilbert spaces. We prove that the proposed algorithms strongly converge to a
fixed point of nonexpansive mapping T .
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2. Preliminaries

Let C be a nonempty closed convex subset ofH. For every point x ∈ H, there exists a unique
nearest point in C, denoted by PCx such that

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.1)

The mapping PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping.

In order to prove our main results, we need the following well-known lemmas.

Lemma 2.1 (see [22], Demiclosed principle). Let C be a nonempty closed convex of a real Hilbert
space H. Let T : C → C be a nonexpansive mapping. Then I − T is demiclosed at 0, that is, if
xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.

Lemma 2.2 (see [20]). Let {xn}, {zn} be bounded sequences in a Banach space E, and let {βn} be a
sequence in [0, 1] which satisfies the following condition: 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose that xn+1 = (1−βn)xn +βnzn for all n ≥ 0 and lim supn→∞(‖zn+1 −zn‖−‖xn+1 −xn‖) ≤ 0,
then limn→∞‖zn − xn‖ = 0.

Lemma 2.3 (see [22]). Assume, that {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1 − γn)an + γnδn, n ≥ 0, where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞,

(ii) lim supn→∞δn ≤ 0 or
∑∞

n=0 |δnγn| < ∞,

then limn→∞ an = 0.

3. Main Results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C be a
nonexpansive mapping. For each t ∈ (0, 1), we consider the following mapping Tt given by

Ttx = TPC[(1 − t)x], ∀x ∈ C. (3.1)

It is easy to check that ‖Ttx−Tty‖ ≤ (1− t)‖x−y‖which implies that Tt is a contraction. Using
the Banach contraction principle, there exists a unique fixed point xt of Tt in C, that is,

xt = TPC[(1 − t)xt]. (3.2)

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a nonexpansive mapping with Fix(T)/= ∅. For each t ∈ (0, 1), let the net {xt} be generated by (3.2).
Then, as t → 0, the net {xt} converges strongly to a fixed point of T .

Proof. First, we prove that {xt} is bounded. Take u ∈ Fix(T). From (3.2), we have

‖xt − u‖ = ‖TPC[(1 − t)xt] − TPCu‖ ≤ (1 − t)‖xt − u‖ + t‖u‖, (3.3)



Fixed Point Theory and Applications 3

that is,

‖xt − u‖ ≤ ‖u‖. (3.4)

Hence, {xt} is bounded.
Again from (3.2), we obtain

‖xt − Txt‖ = ‖TPC[(1 − t)xt] − TPCxt‖ ≤ t‖xt‖ −→ 0, as t −→ 0. (3.5)

Next we show that {xt} is relatively norm compact as t → 0. Let {tn} ⊂ (0, 1) be a sequence
such that tn → 0 as n → ∞. Put xn := xtn . From (3.5), we have

‖xn − Txn‖ −→ 0. (3.6)

From (3.2), we get, for u ∈ Fix(T),

‖xt − u‖2 = ‖TPC[(1 − t)xt] − Tu‖2

≤ ‖xt − u − txt‖2

= ‖xt − u‖2 − 2t〈xt, xt − u〉 + t2‖xt‖2

= ‖xt − u‖2 − 2t〈xt − u, xt − u〉 − 2t〈u, xt − u〉 + t2‖xt‖2.

(3.7)

Hence,

‖xt − u‖2 ≤ 〈u, u − xt〉 + t

2
‖xt‖2 ≤ 〈u, u − xt〉 + t

2
M, (3.8)

where M > 0 is a constant such that supt{‖xt‖} ≤ M. In particular,

‖xn − u‖2 ≤ 〈u, u − xn〉 + tn
2
M, u ∈ Fix(T). (3.9)

Since {xn} is bounded, without loss of generality, wemay assume that {xn} converges weakly
to a point x∗ ∈ C. Noticing (3.6) we can use Lemma 2.1 to get x∗ ∈ Fix(T). Therefore we can
substitute x∗ for u in (3.9) to get

‖xn − x∗‖2 ≤ 〈x∗, x∗ − xn〉 + tn
2
M. (3.10)

Hence, the weak convergence of {xn} to x∗ actually implies that xn → x∗ strongly. This has
proved the relative norm compactness of the net {xt} as t → 0.

To show that the entire net {xt} converges to x∗, assume xtm → x̃ ∈ Fix(T), where
tm → 0. Put xm = xtm . Similarly we have

‖xm − x∗‖2 ≤ 〈x∗, x∗ − xm〉 + tm
2
M. (3.11)
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Therefore,

‖x̃ − x∗‖2 ≤ 〈x∗, x∗ − x̃〉. (3.12)

Interchange x∗ and x̃ to obtain

‖x∗ − x̃‖2 ≤ 〈x̃, x̃ − x∗〉. (3.13)

Adding up (3.12) and (3.13) yields

2‖x∗ − x̃‖2 ≤ ‖x∗ − x̃‖2, (3.14)

which implies that x̃ = x∗. This completes the proof.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a nonexpansive mapping such that Fix(T)/= ∅. Let {αn} and {βn} be two real sequences in (0, 1).
For given x0 ∈ C arbitrarily, let the sequence {xn}, n ≥ 0, be generated iteratively by

yn = PC[(1 − αn)xn], xn+1 =
(

1 − βn
)

xn + βnTyn. (3.15)

Suppose that the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞,

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn} generated by (3.15) strongly converges to a fixed point of T .

Proof. First, we prove that the sequence {xn} is bounded. Take u ∈ Fix(T). From (3.15), we
have

‖xn+1 − u‖ =
∥
∥
(

1 − βn
)

(xn − u) + βn
(

Tyn − u
)∥
∥

≤ (

1 − βn
)‖xn − u‖ + βn

∥
∥yn − u

∥
∥

≤ (

1 − βn
)‖xn − u‖ + βn[(1 − αn)‖xn − u‖ + αn‖u‖]

=
(

1 − αnβn
)‖xn − u‖ + αnβn‖u‖

≤ max{‖xn − u‖, ‖u‖}.

(3.16)

Hence, {xn} is bounded and so is {Txn}.
Set zn = Tyn, n ≥ 0. It follows that

‖zn+1 − zn‖ =
∥
∥Tyn+1 − Tyn

∥
∥

≤ ∥
∥yn+1 − yn

∥
∥

≤ ‖(1 − αn+1)xn+1 − (1 − αn)xn‖
≤ ‖xn+1 − xn‖ + αn+1‖xn+1‖ + αn‖xn‖.

(3.17)
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Hence,

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.18)

This together with Lemma 2.2 implies that

lim
n→∞

‖zn − xn‖ = 0. (3.19)

Therefore,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

βn‖xn − zn‖ = 0. (3.20)

We observe that

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖
≤ ‖xn − xn+1‖ +

(

1 − βn
)‖xn − Txn‖ + βn

∥
∥Tyn − Txn

∥
∥

≤ ‖xn − xn+1‖ +
(

1 − βn
)‖xn − Txn‖ + βn

∥
∥yn − xn

∥
∥

≤ ‖xn − xn+1‖ +
(

1 − βn
)‖xn − Txn‖ + αn‖xn‖,

(3.21)

that is,

‖xn − Txn‖ ≤ 1
βn

{‖xn+1 − xn‖ + αn‖xn‖} −→ 0. (3.22)

Let the net {xt} be defined by (3.2). By Theorem 3.1, we have xt → x∗ as t → 0. Next we
prove lim supn→∞〈x∗, x∗ − xn〉 ≤ 0. Indeed,

‖xt − xn‖2 = ‖xt − Txn + Txn − xn‖2

= ‖xt − Txn‖2 + 2〈xt − Txn, Txn − xn〉 + ‖Txn − xn‖2

≤ ‖xt − Txn‖2 +M‖xn − Txn‖

≤ ‖(1 − t)xt − xn‖2 +M‖xn − Txn‖

= ‖xt − xn‖2 − 2t〈xt, xt − xn〉 + t2‖xt‖2 +M‖xn − Txn‖

≤ ‖xt − xn‖2 − 2t〈xt, xt − xn〉 + t2M +M‖xn − Txn‖,

(3.23)

where M > 0 such that sup{‖xt‖2, 2‖xt − Txn‖, ‖xt − xn‖, t ∈ (0, 1), n ≥ 0} ≤ M. It follows that

〈xt, xt − xn〉 ≤ t

2
M +

M

2t
‖Txn − xn‖. (3.24)
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Therefore,

lim sup
t→ 0

lim sup
n→∞

〈xt, xt − xn〉 ≤ 0. (3.25)

We note that

〈x∗, x∗ − xn〉 = 〈x∗, x∗ − xt〉 + 〈x∗ − xt, xt − xn〉 + 〈xt, xt − xn〉
≤ 〈x∗, x∗ − xt〉 + ‖x∗ − xt‖‖xt − xn‖ + 〈xt, xt − xn〉
≤ 〈x∗, x∗ − xt〉 + ‖x∗ − xt‖M + 〈xt, xt − xn〉.

(3.26)

This together with xt → x∗ and (3.25) implies that

lim sup
n→∞

〈x∗, x∗ − xn〉 ≤ 0. (3.27)

Finally we show that xn → x∗. From (3.15), we have

‖xn+1 − x∗‖2 ≤ (

1 − βn
)‖xn − x∗‖2 + βn

∥
∥yn − x∗∥∥2

≤ (

1 − βn
)‖xn − x∗‖2 + βn‖(1 − αn)(xn − x∗) − αnx

∗‖2

≤(1 − βn
)‖xn − x∗‖2+βn

[

(1 − αn)‖xn − x∗‖2−2αn(1 − αn)〈x∗, xn − x∗〉+α2
n‖x∗‖2

]

≤ (

1 − αnβn
)‖xn − x∗‖2 + αnβn

[

2(1 − αn)〈x∗, x∗ − xn〉 + αn

βn
‖x∗‖2

]

.

(3.28)

We can check that all assumptions of Lemma 2.3 are satisfied. Therefore, xn → x∗. This
completes the proof.
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