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1. Introduction and Preliminaries

Let E be a real Banach space, and let E* be its dual space. Denote by | the normalized duality
mapping from E into 2F" defined by

J) = {peE : (x,9) = Il = lgl*}, VxeE, (11)

where (-, -) is the generalized duality pairing between E and E*. If E is smooth, then ] is single
valued and continuous from the norm topology of E to the weak® topology of E*.

A mapping T with domain D(T) and range R(T) in E is called A-strictly pseudocon-
tractive in the terminology of Browder and Petryshyn [1], if there exists a constant A > 0 such
that

(Tx-Ty,j(x-y)) <llx -yl - Mx -y - (Tx - Ty)|* (1.2)
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forall x,y € D(T) and all j(x —y) € J(x — y). Without loss of generality, we may assume
A € (0,1). If I denotes the identity operator, then (1.2) can be written in the form

(I-T)x-(I-T)y,j(x-y)) > A|(I -T)x - I -T)yl|? (1.3)

forall x,y € D(T) and all j(x —y) € J(x —y).In (1.2) and (1.3), the positive number A > 0 is
said to be a strictly pseudocontractive constant.

The class of strictly pseudocontractive mappings has been studied by several authors
(see, e.g., [1-10]). It is shown in [4] that a strictly pseudocontractive map is L-Lipschitzian
(ie, ||Tx-Ty| < L||x-y||, Yx,y € D(T) for some L > 0). Indeed, it follows immediately from
(1.3) that

lx = yll = M -T)x = (I =Tyl > A(ITx - Tyl - llx - yll), (1.4)

and hence ||[Tx - Ty|| < L|lx — y||, Vx,y € D(T) where L = 1+ 1/A. It is clear that in Hilbert
spaces the important class of nonexpansive mappings (mappings T for which [|Tx - Ty|| <
llx = yll, Yx,y € D(T)) is a subclass of the class of strictly pseudocontractive maps.

Let K be a nonempty convex subset of E, and let {T;}, be a finite family of
nonexpansive self-maps of K. In [11], Xu and Ori introduced the following implicit iteration
process; for any initial xo € K and {a,};2; C (0,1), the sequence {x,},.; is generated as
follows:

x1 = a1xo+ (1 -a)Thxy,

X2 = ax1 + (1 — ) Tox,

(1.5)
xN = anxn-1+ (1 —an)TnxN,
XN+ = anaxXN + (1 —an)Tixna,
The scheme is expressed in a compact form as
Xp = ApXp-1 + (1 - an)Tnxnr n>1, (16)

where T,, = T, mod N- Moreover, they proved the following convergence theorem in a Hilbert
space.

Theorem 1.1 (see [11]). Let H be a Hilbert space, and let K be a nonempty closed convex subset of
H. Let {T;}Y, be N nonexpansive self-maps of K such that C = N\Y,F(T;) # @ where F(T;) = {x €
K : Tix = x}. Let xo € K, and let {a, },1 be a sequence in (0,1), such that lim, _, ,at, = 0. Then the
sequeNnce {xn} defined implicitly by (1.6) converges weakly to a common fixed point of the mappings
(T,
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Subsequently, Osilike [12] extended their results from nonexpansive mappings to
strictly pseudocontractive mappings and derived the following convergence theorems in
Hilbert and Banach spaces.

Theorem 1.2 (see [12]). Let H be a real Hilbert space, and let K be a nonempty closed convex
subset of H. Let {T;} Y, be N strictly pseudocontractive self-maps of K such that C = "N, F(T;) # &,
where F(T;) = {x € K : Tjx = x}. Let xg € K, and let {a,};., be a sequence in (0,1) such that
lim,, _, oty = 0. Then the sequence {x, },., defined by (1.6) converges weakly to a common fixed point
of the mappings {T;} Y.

Theorem 1.3 (see [12]). Let E be a real Banach space, and let K be a nonempty closed convex subset
of E. Let {T;}Y, be N strictly pseudocontractive self-maps of K such that C = X, F(T;) # @, where
F(T;) = {x € K : Tjx = x}, and let {a, },; be a real sequence satisfying the conditions:
i)0<a,<1;
(il) X021 (1 — ay) = +oo;
(iii) 3%, (1 - a,)? < +o0.

Let x € K, and let {x, };, be defined by (1.6). Then

(i) limy, o || xn — p|| exists for all p € F;
(ii) iminf, _ .||, — Tyxn|| = 0.
Let K be a nonempty closed convex subset of a real Banach space E. Very recently,

Su and Li [13] introduced a new implicit iteration process for N strictly pseudocontractive
self-maps {T;} Y, of K:

Xp = ApXpq + (1 - an)Tnyn/

(1.7)
Yn =Pnxna+ (1= Pu)Tuxy, n=12,...,

that is,

X = 0pXn-1 + (1= )Ty (Brxna + (1= ) Tuxn), n>1, (1.8)

where T), = Ty mod N and {ay,}, {B.} C [0,1]. First, they established the following convergence
theorem.

Theorem 1.4 ([13, Theorem 2.1]). Let E be a real Banach space, and let K be a nonempty
closed convex subset of E. Let {T;)Y, be N strictly pseudocontractive self-maps of K such that
C = NY,F(T)) #, where F(T;) = {x € K : Tix = x}, and let {a,}%,, {2, C [0,1] be two
real sequences satisfying the conditions:

(i) S (1 - ay) = +oo;
(il) 321 (1 - ay)* < +oo;
(iii) Z;‘f:l(l — Pn) < +o0;
)

(iv) (1 —an)(1 = B,)L? < 1,VYn > 1, where L > 1 is common Lipschitz constant of {T; }f\ll.
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For xo € K, let {x,};2, be defined by (1.8). Then

n=1

(1) imy, -, || — p|| exists for all p € C;

(ii) iminf, _, »||x, — Thxy|| = 0.
Second, they derived the following result by using Theorem 1.4.

Theorem 1.5 ([13, Theorem 2.2]). Let K be a nonempty closed convex subset of a real Banach
space E, let T be a semicompact strictly pseudocontractive self-map of K such that F(T) # &, where
F(T)={x e K:Tx = x}, and let {a,} C [0,1] be a real sequence satisfying the conditions:

(i) 2oz (1 - an) = +oo;

(i) oy (1-an)® < +oo.

Then for xq € K, the sequence {x,} defined by Mann iterative process,
Xp=opxp1+ (1—a,)Tx,.1, n>1, (1.9)

converges strongly to a fixed point of T.

On the other hand, Zeng and Yao [14] introduced a new implicit iteration scheme
with perturbed mapping for approximation of common fixed points of a finite family
of nonexpansive self-maps of a real Hilbert space H and established some convergence
theorems for this implicit iteration scheme. To be more specific, let {T;} Y, be a finite family of
nonexpansive self-maps of H, and let F : H — H be a mapping such that for some constants
x,1 > 0; F is a x-Lipschitz and 7-strongly monotone mapping. Let {a,};-; C (0,1) and
{Au}ieq € [0,1) and take a fixed number p € (0,27/x?). The authors proposed the following
implicit iteration process with perturbed mapping F.

For an arbitrary initial point xy € H, the sequence {x,};-; is generated as follows:

x1 = arxo + (1 - ay) [Tixy — MpF (Tixn)],
xy = apxy + (1 - a) [Toxa — AgpuF (Thxz)],

(1.10)
xn = anxn-1+ (1 - an) [Tnxn — AnpF (Tnxn)],
xn+ = anaxn + (1 - ans1) [Tixne — AnapF (Tixna)),
The scheme is expressed in a compact form as
Xn = ApXno1 + (1= an) [Tuxy — AnptF (Tnxn)], n>1. (1.11)

It is clear that if A, = 0, then the implicit iteration scheme (1.11) with perturbed mapping
reduces to the implicit iteration process (1.6).
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Theorem 1.6 ([14, Theorem 2.1]). Let H be a real Hilbert space, and let F : H — H be a mapping
such that for some constants x,1 > 0; F is x-Lipschitz and n-strongly monotone. Let {T;}%; be N
nonexpansive self-maps of H such that C = (N, F(T;) # @. Let p € (0,21/%2), let xo € H, {1}, C
[0,1), and let {a,};., C (0,1) satisfying the conditions: >, 1Ay < c0oand a < a, < B, n > 1, for
some a, 3 € (0,1). Then the sequence {x,},., defined by (1.11) converges weakly to a common fixed
point of the mappings {T;}N,.

The above Theorem 1.6 extends Theorem 1.1 from the implicit iteration process (1.6)
to the implicit iteration scheme (1.11) with perturbed mapping.

Let E be a real Banach space, and let K be a nonempty convex subset of E. Recall that
amapping F : K — K is said to be 6-strongly accretive if there exists a constant 6 € (0, 1)
such that

(Fx—-Fy,j(x-y))>6lx -yl (1.12)

forallx,y € Kandall j(x -y) € J(x - y).

Proposition 1.7. Let X be a real Banach space, and let F : K — K be a mapping:

(i) if F is A-strictly pseudocontractive, then F is a Lipschitz mapping with constant L = 1 +
1/A.

(ii) if F is both A-strictly pseudocontractive and 6-strongly accretive with A+ 6 > 1, then I — F
is nonexpansive.

Proof. It is easy to see that statement (i) immediately follows from the definition of strict
pseudocontraction. Now utilizing the definitions of strict pseudocontraction and strong
accretivity, we obtain

MI=F)x-I-Fyl*<llx-yl>-(Fx-Fy,j(x-y)) <1-6)|x -yl (1.13)

-6
0= Fyx = (= Byl s A F o=yl < =l (114

and hence I — F is nonexpansive. O

Since A +6 > 1,

Let E be a real Banach space, and let K be a nonempty convex subset of E such that
K - K C K. Let {T;}Y, be N strictly pseudocontractive self-maps of K, and let F : K — K
be a perturbed mapping which is both 6-strongly accretive and A-strictly pseudocontractive
with 6 + A > 1. In this paper we introduce a general implicit iteration process as follows:

Xp = ApXp-1 + (1 - an) [Tnyn - )LnF(Tn]/n)]r
yn = ﬂnxn—l + (1 - ﬂn)Tnxn/ n= 1/2/- b4

(1.15)

where T), = Ty mod N, and {a,,}, {Bn}, {Xn} C [0,1]. In particular, whenever A, = 0, it is easy to
see that (1.15) reduces to (1.8).
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Let L > 1 denote common Lipschitz constant of N strictly pseudocontractive self-maps
{Ti}f\zjl of K. Since K is a nonempty convex subset of E such that K — K ¢ K, foreachn > 1,
the operator

Snx = apxy-1 + (1= an){Tp [Buxn-1 + (1= Bn) Tux| = M FT [Brxn-a + (1= Bu) Tx] }
= apXp 1 + (1= an) (I = L F) Ty [Brxn1 + (1= ) Tux] (1.16)
= axn1 + (1= @) [(1 = A)] + Ay (T = F)] Ty [Bun- + (1= Bo) Tux]
maps K into itself.
Utilizing Proposition 1.7, we have
(Snx =Sy, j(x-y))
= (1= @) {[(1 = )T + (I = F)| Ty [Butncs + (1 - ) Tux]
—[(1 = AT+ X (T = F)IT, [Buxn1 + (1= Bu) Tuy], j(x - y))
< (1= an) Il = 1) + (I = F)ITy [Buxnos + (1= Pu) Tux]
= [ =)+ X (I = F)] T [Buxn-1 + (1 = Bu) Tuy] llllx = vl
< (1= an){@ = M) T [Buxn-1 + (1 = Bu) Tux] = T [Brxn-1 + (1 = ) Tuy]
+ X l|(I = F)To [Bpxn-1 + (1 = ) Tux] = (I = F)Ty [Buxtn-1 + (1 = B) Tuy]Il}
x Jlx =yl
< (A= an)ITu[Bnxna + (1= Pu) Tux] = T [Brxn-1 + (1= Bn) Tuy] lllx = v
< (1= an)Ll|fnxn1 + (1= Pu)Tux = [Buxna + (1= Pu) Tuy]llllx -yl
= (1= an) (1 = ) LITnx = Tuyllllx - vl
<(1-an) (1= ) Lx -yl
(1.17)

forall x,y € K. Thus, S, is strongly pseudocontractive, if (1-a,)(1- ﬁn)Lz < 1foreachn>1.
Since S, is also Lipschitz mapping, it follows from [12, 15, 16] that S, has a unique fixed point
x, € K, that is, foreachn > 1

X = 0 Xpo1 + (1= o) [(1 = M) + Xy (I = F)] Ty [Buxn-1 + (1 = ) Tuxa]. (1.18)

Therefore, if (1-a,)(1-p,)L* <1, Vn > 1, then the composite implicit iteration process (1.15)
with perturbed mapping can be employed for the approximation of common fixed points of
N strictly pseudocontractive self-maps of K.

The purpose of this paper is to investigate the problem of approximating common
fixed points of strictly pseudocontractive mappings of Browder-Petryshyn in an arbitrary
real Banach space by this general implicit iteration process (1.15). To this end, we need the
following lemma and definition.
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Lemma 1.8 (see [8]). Let {an},eq, {bn}oeq, and {€n} ey be sequences of nonnegative real numbers
satisfying the inequality

an1 < (1+ey)a,+b,, n>1 (1.19)
I‘]( oo} (o)

Den<+oo, > by<+w, (1.20)

n=1 n=1

then lim,, _, ., a,, exists.
The following definition can be found, for example, in [13].

Definition 1.9. Let D be a closed subset of a real Banach space E, and let T : D — D be
a mapping. T is said to be semicompact if, for any bounded sequence {x,} in D such that
llxn = Txy|| — 0(n — o0), there must exist a subsequence {x,,} C {x,} such that x,, — x* €
D.

2. Main Results
We are now in a position to prove our main results in this paper.

Theorem 2.1. Let E be a real Banach space, and let K be a nonempty closed convex subset of E such
that K — K Cc K. Let F : K — K be a perturbed mapping which is both 6-strongly accretive and
A-strictly pseudocontractive with & + A > 1. Let {T;}~, be N strictly pseudocontractive self-maps of
K such that C = Y, F(T;) # @, where F(T;) = {x € K : Tix = x}, and let {a,,}%,, {Bn)2,, and
{Au )z e three real sequences in [0, 1] satisfying the conditions:
(i) 355 (1 - an) = +o0;
(i) o2y (1= ara)” < +00;
(i) 3,21 (1= fn) < +00;
(iv) Zpidn(1—ay,) < +oo;
(v) (1 -a,)(1-pn)L? <1,V¥n > 1, where L > 1 is the common Lipschitz constant of {Ti}ﬁl.
For xg € K, let {x,},-q be defined by

Xp = ApXp-1 + (1 - “n) [Tnyn - )tnF(Tnyn)]/
Yn = ﬁnxn—l + (1 - ﬁn)Tnxn/ n=12...,

(2.1)

where Ty, = Ty, mod N, then
(1) limy, -, ||, — p|| exists for all p € C;
(ii) liminf, ., ,||x, — Tyxy|| = 0.

Proof. First, since each strictly pseudocontractive mapping is a Lipschitz mapping, there
exists a constant L > 1 such that

ITix -Tiyl| <Lllx-yl, Vx,yeK,Vi=1,2,...,N. (2.2)
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It is now well known (see, e.g., [15]) that
e + 17 < D%l +2{y, j (x + ) (2.3)

forall x,y € Eand all j(x + y) € J(x + y). Take p € C arbitrarily. Then it follows from (2.1)
that

XpXp-1 + (1 - (Xn) [Tn]/n - A”F(T”y")] -p
an(xn1=p) + (1= an){ [Ty — M F (Tuyn)] - p}

an(xn1 = p) + (1= an) {[(1 = L) + A (I = F)]Tuyn — p}

{
{
{
{

Xn—p

an (xn-1=p) + (1= ) {(1 = 1) (Tuyn = p) + Au[(I = F)Tuyn - p] }

tn (xn1 = p) + (1= @) {(1 = 1) (Tuyn = Tup) + 4 [(I = F)Tayn = (I = F)Tp]
+An[(I = F)Tup - p] }

= an(Xn-1=p) + (1= an) { (1 = 1) (Tuyn = Tup) + n [(I = F)Tuyyn — (I = F)Tup] }

- (1= an)A.F(p).

(2.4)
Utilizing (2.3), we obtain
”xn - P”z < a121”xn—1 - PHZ + 2(1 - “n)(l - )Ln)<Tnyn - Tnp/j(xn - P>>
+2(1- “n))tn<(I -F)Ty, -~ F)Tnp/j(xn - P)>
=2(1 - an) \u(F (p). j(xn = P))
< a1 = plI® +2(1 = @) (1= An)
2.5)

X [(Tuyn = Tun, j (X0 = P)) + (TuXn = Tup, j (xn = P))]
+2(1 - ap) Ay [((I - F)Thyn— (I~ F)Tnxnrj(xn - P)>
+((I = F)Tuxtn = (I = F)Tup, j (xu = p) )]

=2(1 = an)An(F (p), j(xn = p))-
Since each T;, i = 1,2,..., N, is strictly pseudocontractive, there exists A € (0, 1) such that

(Tx-Tiy, j(x-y)) < lx-yP-Mx-Tx - (y-T)I’, VxyeK.  (26)
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Thus, utilizing Proposition 1.7(ii) we know from (2.5) that

1% = pIP < 11 = pI* +2(1 = ) (1 = Ay)

x [Lllyn = xalllxn = pl + 110 = pI” = Mt = Toxal?]

+2(1 = ) A [Lllyn = xallllxn = pll + Ll = plP]

—2(1 = a)u(F(p), j(xn = p))
< apllxn1 = pl* +2(1 - @)

x [Lllyn = xalllln = pll + Il = pIP = My = Tyl

+2(1 = ) b Lllx = pl* +2(1 = ) Au[F (p) 1 = | (27)
< & lxn - pl +2(1 - )

% [Lllyn = alllxn = pll + 0 = pI> = Mlxs = ol

+2(1 =) AuLllxy = pIP + (1= &) b (IF ()1 + 1 - pII)
< apllxn1 = pl* +2(1 - @)

x [Lllyn = xalllln = pll + Il = pIP = Acw = Tyl

+3L(L = an)Aalln = pIF + (1= ) Al F () I
From (2.1), we also have that

lyn = xull
< Bullxn = xp-all + (1= Bu) ll2cn = T
< Bn(1 = an) ITutn = M F (Tuyn) — Xl + (1= Bu) 10 — Tl
1Toyn = AuF (Tuyn) = Xuall
SN Tayn = AaF (Tayn) = pll + 101 = p
= 11 = 4a) (Tuyyn = p) + X (I = F)Tuygn = p) | + X021 = pl (2.8)
= 11 = 4a) (Tuyyn = p) + X ((I = F)Tuyyn = (I = F)p) = MuF (p) | + [l260-1 = p|
< (=) Tayn = pll + XallTuyn = pll + Ll E ()| + 101 = pI
= [ Tuyn = pll + XallF ()1 + ll2tn-1 = p|
< Lllyn = pll + AallF ()| + llxn1 = pll
< (LB + 1) 1xn1 —pll + L2(1 = o) lxn — pll + Lul F (p) |-
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Since T; is a Lipschitz mapping with constant L, we have
%0 = TuXull < |l = pll + I Toxn = pll < (L +1)]Jxn = pll- (2.9)
Substituting (2.8) and (2.9) into (2.7), we deduce that

26 = pI* < a2lln1 = pII* +2(1 = a)*LBu (L + 1) %01 — pllllxcu -
+2(1 = )’ LB (1 = ) lxn — pII>
+2(1 = ) (1 = Bu) L(L + 1) |15 - p?
+2(1 = an) s = plI* = 21 = @) Ml — Txa|?
+2L(1 = &) Al F (p) | = p
+3L(1 = ay) dullxn = pl* + (1 = ) Aal F (p) I (2.10)
< a2||xtu1 = plI* +2(1 = ) LBu (L + 1) |21 — pllllxca — pll
+2(1 = )’ LB (1 = )l - pII>
+2(1 = ) (1 = Bu) L(L + 1) |15 - p?
+2(1 = an) s = plI* = 21 = &) Ml — T

+4L(1 — ay)Aallxs — pl* +2L(1 - @) AL F(p) I,
and hence

1-2(1 =)’ L3Bu(1=Bn) =2(1 = ay) (1 = ) L(L + 1) = 4L(1 — &) A, = 2(1 - an)] |2, —pl*

< @2 xn1 = pl* +2(1 = ) LB (LB + 1)1 20-1 = plllln — P

= 2(1 = ap)Allxn = Tua | + 2L(1 = @) LI (p) I
(2.11)

Setting

by =2(1 - a,)? LB, (1 - B) +2(1 — a) (1 = ) L(L + 1) + 4L(1 — ay) Ay, (2.12)
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we conclude from (2.11) that

9 2

) 2 2, 2(1 - ) Lpu(Lpn +1)
—_ < -

”xn p“ = 1—2(1—(Xn)—bn||xn71 P” + 1—2(1—an)—bn

llxn-1 = pllllxn = pll
(2.13)
2(1 - ay)d
" 1-2(1-ay) - by,

(1-ay)ly
1-2(1-a,) -b,

26 = Tl + 2L|IF(p)|*.

Thus

1-ay,)?+b, 2(1 = ay)’LB, (LB, + 1
loon = pIF < [1+ T ]||xn_1—p||2+ o L L s il

1 -ay)i,
1-2(1-a,)-b,

- 2(1 - “n))‘”xn - Tnxn||2 + 2L||F(;’)) ”2

(2.14)

Since

1-2(1—ay) —by=1-(1-a) [2 +2(1 - an) L2 (1= fn) +2(1 = f)L(L + 1) + 4L/\n]
(2.15)

and {an};lu;ll {ﬂn}lclel {-/\n}tc;ozl C [0/1]/We get

[2 +2(1 - an) L2y (1- ) +2(1 = B)L(L+1) + 4L)Ln] <6L+203+2L(L+1).  (2.16)

Setting My = 6L + 2L3 + 2L(L + 1), it follows from condition (ii) that lim, _, (1 - a,,) = 0 and
so there must exist a natural number N, such that for all n > Ny,

1
T-2(1-ay) b,

2. (217)

Therefore, it follows from (2.14) that

len = pIP < [1+2((1 = @) + b)) [ I1xs — pI?
+2[201 = @ *LBu (L + 1) |It01 = pllllxs = pl (218)

—2(1 = aty) Al|2cy = T |* + 4L F(P) P (1 = @) A
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In order to consider the second term on the right-hand side of (2.18), we will prove that {x,}
is bounded. Indeed, utilizing (2.8) and (2.9) and simplifying these inequalities, we have

I, - pI”
= (xn=p,j(xu-P))
= (X1 = P, (%0 = P)) + (1= @) (Tuyn = \nF (Tuyn) = p,j(Xn — p))
= an (X1 =P, j(xn = p)) + (1= an) (1 - 4)
X [(Tayn = Tuxtn, j (xn = p)) + (Tuxn = Tup, j (xu = p))]
+ (1= @) dn{ (L= F) Ty = (1= F)Tap, j(xu = p)) = (1= @) da(F(p), j (0 = p))
< @allxn-t =l = pll + (1= @) (1 = A0) [Lllyn =l = pll + Lilxa - pI]
+ (1= @) k[ Lllyn = xallln = pll + Lllxa = pI?| + (1= @) AalF ()1 = p
< g1t = pllllxn = pll + (1 = ) [Ellya = xallla = pll + Lilx, = pI?]
+ (1= an) Ll F ()l -
< |an + L1 = @n)*Bu(Lpn + 1) | Ixa1 = pllllxa = p
|- @)L+ (1 - @) (1= Bu) + L(1 = @) (1= ) (L + 1) v = pIP
+ Lu(1 = an) Al F(p) 20 = pll + (1= ) La[E (p) 1 = p
< |an + L = @n)*Bu(Lpn + 1) Ixa1 = pllllxa = p
+ A= @)L+ (= @)1 = fu) + L= @) (1= fu) (L + D) llxa = pI

+(L+ 1)1 = an)\llF(p)llllxn - pll,
(2.19)

and hence

[1- (- @)L = L1 = )Bu (1= B) = L = @) (1= Bu) (L + 1))l = I
< [o + LA = @) Bu (LB + 1) Ixr = pllllxa = pl (2.20)

+ (L +1)(1 = an) AullF () llllxn = pI-
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This implies that

lloen = pl

Py ap + L(1 = ;) B (LBn + 1)
T1-(1-ay)L-L3(1 - a,)*Bn(1=Bn) = L(1 —an) (1= B)(L+1)

llxn-1 = pll

1-an)l,
(= a)L -3 - an (1 - B) = L(1 - a) (1= Bu) (L + 1) L+ DIF @)
[, pa-a) 264(1=Ba) + LA = ) (1 = fu) (L +1) + LA = )2 B (L + 1) I
= 1= (1= an)L—L3(1 = a,)2Bu(1 = Bu) = L(1 = ) (1 = B) (L + 1) 1P

(1 - an))tn
T an L B - @) (1 ) - L - a) (L po)(L+ 1) (E+DIFE)]

(2.21)

Now, we consider the second term on the right-hand side of (2.21). Since {a,}, {f.} C
we have

(1 - a) [L + L3(1 = a)fu(1 = Bu) + L(1 - B) (L + 1)] < (1-ay) [L + I3+ L(L+ 1)]. (2.22)

Since lim,, _, (1 — &) = 0, there exists a natural number N;(> N7) such that for all n > N5,

1-(1-ay)L—- L1 =a)Bu(1 =) — L1 — ) (1= fu) (L +1) > % (2.23)
Again, it follows from condition {a,}, {#,} C [0,1] that
L1 - a,)*Bn(1- ) + L(1 = ) (1= Bu) (L +1) + L(1 - a,)* B (LBn + 1)
<L3(1-a,)*+L(1-B,)(L+1) +L(1 - a,)*(L+1). 224
Therefore, it follows from (2.21) that
I = pll < {142[L20 = ) + L(1 = o) (L + 1) + L = )* (L + D] f 1t = -

+2(1 - ap) Ay (L+1)|IF(p)]l-

According to conditions (ii)—(iv), we can readily see that

i{z[ﬂ(l — ) + L(1= o) (L+1) + L(1 - a2 (L +1)] } < +o0,

! . (2.26)
> {21 - an) AL+ DIIF(p)|l} < +oo.
n=1
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Thus, in terms of Lemma 1.8 we deduce that lim,_..|/x, — p|l exists, and hence {x,} is
bounded.

Now, we consider the second term on the right-hand side of (2.18). Since {x,} is
bounded, and {f,};-; C [0,1], there exists a constant M, > 0 and a natural number N3(> N)
such that for all n > N3,

2[201 = @) L (L + 1) 121 -l = pll < 2(1 - @)’ M. (227)
Thus, it follows from (2.18) that

lcn = pIP < [1+2((1 = @) + by ) [ Ilvs = pIP +2(1 - @,)* Mo
(2.28)
= 2(1 = an) Mt = Toxall* + ALIF ()| (1 = ) A

Since {x,} is bounded, there exists a constant M3 > 0 such that ||x, — p|*> < M. It follows
from (2.28) that

20 S (1-ap)ll; - Ty 2 < llew —plP + Ms S 2[(1—aj)2+b,-]

j=N+1 j=N+1
(2.29)
n 9 9 n
+2My > (1-a;))* +4L|F(p)II* D) (1-a;)d;,
j=N+1 j=N+1
and hence
203 (=)l - Tl < llew = plP + Ms >, 2[(1- @) + b
n=N+1 n=N+1
(2.30)
+2Mz D) (1-an)* +4LIF @) 3, (1-an)hn.
n=N+1 n=N+1
Utilizing conditions (ii)—(iv), we know from (2.30) that
203 (1 = )1ty = Tuxy||* < +o0. (2.31)
n=1
Since > 771 (1 — ) = +o0, we have
liminf ||x, — T,x4|| = 0. (2.32)

This completes the proof of Theorem 2.1. O
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The iterative scheme (1.15) becomes the explicit version as follows, whenever g, = 1:
Xp = AnXy-1 + (1 —ay) [Tuxp-1 — M F(Tyxp-1)], n>1. (2.33)
In the case when N =1, (2.33) is the Mann iteration process as follows:
Xp = anXpy-1+ (1 —ay)[Txp-1 — M F(Txy1)], n>1 (2.34)

The conclusion of Theorem 2.1 remains valid for the iteration processes (2.33) and
(2.34). Furthermore, we have the following result.

Theorem 2.2. Let E be a real Banach space, and let K be a nonempty closed convex subset of E such
that K — K C K. Let F : K — K be a perturbed mapping which is both 6-strongly accretive and -
strictly pseudocontractive with 6 + X > 1. Let T be a semicompact strictly pseudocontractive self-map
of K such that F(T) # @, where F(T) = {x € K : Tx = x}, and let {a,} ;.1 and {\,},-q be two real
sequences in [0, 1] satisfying the conditions:

(i) 32,(1 - ay) = +oo;
(il) 32, (1 - ay)” < +oo;

(iii) X2 dn (1 — ay) < +oo0.
Then Mann iteration process (2.34) converges strongly to a fixed point of T.

Proof. Since

liminf ||x, — Tx,|| =0, (2.35)
n— oo

there exists a subsequence {nx} of {n} such that
lim ||xp,, — Txp,|| = 0. (2.36)
k— o0

By the semicompactness of T, there must exist a subsequence {xy, } of {xy, } such that

lim x,, = po. (2.37)
i— oo !

It follows from (2.36) that py = Tpo, and hence py € F(T). Since lim, _, »||x, — pol| exists, we
have

Tim |1, = poll = lim 1, — poll = 0. (2.38)

This completes the proof of Theorem 2.2. O
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