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The measurability of order continuous random mappings in ordered Polish spaces is studied.
Using order continuity, some random fixed point theorems and random periodic point theorems
for increasing, decreasing, and mixed monotone random mappings are presented.

1. Introduction and Preliminaries

The study of random fixed points forms a central topic in probabilistic functional analysis.
It was initiated by Špaček [1], Hanš [2], and Wang [3]. Some random fixed point theorems
play an important role in the theory of random differential and random integral equations
(see Bharucha-Reid [4, 5]). Since the recent 30 years, many interesting random fixed point
theorems and applications have been developed, for example, see Beg and Shahzad [6, 7], Beg
and Abbas [8], Chang [9], Ding [10], Fierro et al. [11], Itoh [12], Li and Duan [13], O’Regan
et al. [14], Xiao and Tao [15], Xu [16], and Zhu and Xu [17].

In 1976, Caristi [18] introduced a partial ordering in metric spaces by a function and
proved the famous Caristi fixed point theorem, which is one of the most important results in
nonlinear analysis. From then on, there appearedmany papers concerning fixed point theory
and abstractmonotone iterative technique in orderedmetric spaces or orderedBanach spaces.
In particular, some useful fixed point theorems for monotone mappings were proved by
Zhang [19], Guo and Lakshmikantham [20], and Bhaskar and Lakshmikantham [21] under
some weak assumptions.
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In this paper, motivated by ideas in [18–21], we study random version of fixed point
theorems for increasing, decreasing, and mixed monotone random mappings in ordered
Polish spaces. In Section 2, we introduce order continuous random mapping and discuss
its measurability. A well-known result is generalized (see Remark 2.4). In Sections 3–5, we
present some existence results of random periodic point and fixed point for increasing,
decreasing and, mixed monotone random mappings, respectively.

We begin with some definitions that are essential for this work. Let (X, d) be a metric
space and BX be a Borel algebra of X, where d is a metric function on X. If X is separable and
complete, then (X, d) is called a Polish space. We denote by (Ω,A, P) a complete probability
measure space (briefly, a measure space), where (Ω,A) is a measurable space, A is a sigma
algebra of subsets ofΩ, and P is a probability measure. The notation “a.e.” stands for “almost
every.”

Definition 1.1 (see [3, 5, 9, 12]). A mapping y : Ω → X is said to be measurable if

y−1(G) =
{
ω ∈ Ω : y(ω) ∈ G

} ∈ A (1.1)

for each open subset G of X. A measurable mapping is also called a random variable.
A mapping T : Ω ×X → X is called a randommapping, if for each fixed x ∈ X, the mapping
T(·, x) : Ω → X is measurable. A random mapping is said to be continuous, if for ω ∈ Ω a.e.,
the mapping T(ω, ·) : X → X is continuous. A measurable mapping y : Ω → X is said to
be a random fixed point of the random mapping T : Ω × X → X, if T(ω, y(ω)) = y(ω), for
ω ∈ Ω a.e. Let 2X be the family of all nonempty subsets of X and F : Ω → 2X a set-valued
mapping. F is said to be measurable, if

F−1(G) = {ω ∈ Ω : F(ω) ∩G/= ∅} ∈ A (1.2)

for each open subset G of X. A mapping y : Ω → X is said to be a measurable selection of
a measurable mapping F : Ω → 2X , if y is measurable and y(ω) ∈ F(ω) a.e.

We denote by FR(T) the set of all random fixed points of a random mapping T . If k is
a positive integer and u ∈ FR(Tk), then u is a random k-periodic points of a randommapping
T . By Tn(ω, x) we denote the nth iterate T(ω, T(ω, T(. . . , T(ω, x)))) of T , where T0 = I, I :
Ω ×X → X is defined by I(ω, x) = x.

Lemma 1.2 (see [3, 22]). Let (X, d) be a Polish space and (Ω,A, P) a measure space. Let T : Ω ×
X → X be a continuous random mapping. If y : Ω → X is measurable, then T(ω, y(ω)) : Ω → X
is measurable.

Lemma 1.3 (see [3, 4]). Let (X, d) be a Polish space and (Ω,A, P) a measure space. If {yn(ω)} is
a sequence of measurable mappings in X and limn→∞ yn(ω) = y(ω) ∈ X a.e., then y : Ω → X is
measurable.

Lemma 1.4 (cf. [23]). Let (X, d) be a Polish space and (Ω,A, P) a measure space. Let F : Ω → 2X

be a set-valued mapping. Then,

(1) F is measurable if and only if Graph F = {(ω, x) : x ∈ F(ω)} is A × BX measurable;

(2) if F is measurable and F(ω) is closed a.e., then there exists a measurable selection of F.
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Lemma 1.5 (see [18]). Let (X, d) be a metric space and φ : X → � a functional. Then the relation
� on X defined by

x � y ⇐⇒ d
(
x, y
) ≤ φ(x) − φ

(
y
)
, x, y ∈ X, (1.3)

is a partial ordering.

By Lemma 1.5, if � is the partial ordering induced by φ, then x � y implies φ(x) ≥ φ(y).
If (X, d) is a Polish space and � is the partial ordering induced by φ, then (X, d, φ) is called an
ordered Polish space. If x0, y0 ∈ X and x0 � y0, then [x0, y0] = {x ∈ X : x0 � x � y0} is called
an order interval in X.

Definition 1.6 (cf. [19]). Let (X, d, φ) be an ordered Polish space and (Ω,A, P) a measure
space. Let T : Ω ×X → X is a randommapping. T is is said to be increasing if

x � y =⇒ T(ω, x) � T
(
ω, y
)
, ∀ω ∈ Ω a.e.; (1.4)

T is said to be decreasing if

x � y =⇒ T(ω, x) 
 T
(
ω, y
)
, ∀ω ∈ Ω a.e.; (1.5)

a randommapping S : Ω ×X ×X → X is said to be mixed monotone if

x1 � y1, y2 � x2 =⇒ S(ω, x1, x2) � S
(
ω, y1, y2

)
, ∀ω ∈ Ω a.e. (1.6)

It is evident that, if S : Ω ×X ×X → X is mixed monotone, then S(·, ·, x) : Ω ×X → X
is increasing and S(·, x, ·) : Ω ×X → X is decreasing, for every fixed x ∈ X.

2. Measurability of Order Continuous Random Mappings

Definition 2.1. Let (X, d, φ) be an ordered Polish space and (Ω,A, P) a measure space. Let
T : Ω×X → X be a randommapping. T is said to be order continuous if for every monotone
sequence {xn},

xn −→ x =⇒ T(ω, xn) −→ T(ω, x), ∀ω ∈ Ω a.e. (2.1)

T is is said to be order contractive if there exists α(ω) ∈ [0, 1) such that

x � y =⇒ d
(
T(ω, x), T

(
ω, y
)) ≤ α(ω)d

(
x, y
)
, ∀ω ∈ Ω a.e. (2.2)

It is evident that continuity implies order continuity. If T : Ω × X → X is order con-
tractive, then T is order continuous. A mixed monotone randommapping S : Ω×X ×X → X
is said to be order continuous if and only if for monotone sequences {xn} and {yn},

xn −→ x, yn −→ y =⇒ T
(
ω, xn, yn

) −→ T
(
ω, x, y

)
, ∀ω ∈ Ω a.e. (2.3)
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Example 2.2. LetΩ = [1, 2] and X = �2 . Let φ : X → � and T : Ω ×X → X be defined by

φ((x1, x2)) = −(x1 + x2), T(ω, (x1, x2)) =

⎧
⎨

⎩

(0, 0), if x1x2 ≤ 0;

(ω,ω), if x1x2 > 0.
(2.4)

It is easy to check that T is order continuous, but T is not continuous at (0, 0).

Now we prove the following theorem which plays an important role in the sequel.

Theorem 2.3. Let (X, d, φ) be an ordered Polish space and (Ω,A, P) a measure space, where φ is
continuous. Let T : Ω × X → X be an order continuous random mapping. If y : Ω → X is
measurable, then T(ω, y(ω)) : Ω → X is measurable.

Proof. Let E(ω) = {x ∈ X : x � y(ω)}, H(ω) = {x ∈ X : y(ω) � x}, and Qε(ω) = {x ∈ X :
d(x, y(ω)) ≤ ε}, where ε > 0. Clearly, E(ω), H(ω), and Qε(ω) are all nonempty subsets of X
for all ω ∈ Ω. Since d is continuous, Qε(ω) is closed for all ω ∈ Ω. Let {xn}∞n=1 ⊂ E(ω) and
xn → x0(n → ∞). Then, from xn � y(ω), we have

d
(
xn, y(ω)

) ≤ φ(xn) − φ
(
y(ω)

)
. (2.5)

Since φ is continuous, we have d(x0, y(ω)) ≤ φ(x0) − φ(y(ω)), that is, x0 � y(ω). This shows
that x0 ∈ E(ω), and so E(ω) is closed for all ω ∈ Ω. Similarly, H(ω) is closed for all ω ∈ Ω.
We claim that

E,H,Qε : Ω −→ 2X are all measurable. (2.6)

In fact, if Bx = {y ∈ X : x � y}, then Bx is a closed subset of X. Let G be an open subset of X,
W = X\G, and E−1(W) = {ω ∈ Ω : E(ω) ⊂ W}. Then, we have

E−1(W) =
{
ω ∈ Ω : x � y(ω), x ∈ W

}
=
⋂

x∈W

{
ω ∈ Ω : x � y(ω)

}

=
⋂

x∈W
y−1(Bx) = y−1

(
⋂

x∈W
Bx

)

.

(2.7)

Since y is measurable and
⋂

x∈W Bx is closed, E−1(W) is measurable. From E−1(G) = Ω \
E−1(W), we see that E−1(G) is measurable. Hence, E is measurable. Similarly, H is meas-
urable. Now we prove that Qε is measurable. Since d is continuous and y is measurable,
d(x, y(ω)) : Ω ×X → � is measurable. Note that

GraphQε = {(ω, x) : x ∈ Qε(ω)} =
{
(ω, x) : d

(
x, y(ω)

) ≤ ε
}

(2.8)

is A×BX measurable. Using Lemma 1.4(1), we obtain thatQε is measurable. Therefore, (2.6)
holds. Let F1(ω) = {x ∈ X : x � y(ω), d(x, y(ω)) ≤ 1}. Then, F1(ω) = E(ω) ∩ Q1(ω) is
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nonempty and closed for allω ∈ Ω. By (2.6), F1 is measurable. By Lemma 1.4(2), we can take
y1(ω) ∈ F1(ω), where y1 : Ω → X is measurable. For n = 2, 3, . . ., let

Fn(ω) =
{
x ∈ X : yn−1(ω) � x � y(ω), d

(
x, y(ω)

) ≤ 1
n

}
. (2.9)

Then, Fn(ω) is nonempty and closed for all ω ∈ Ω. When yn−1 is measurable, from (2.6),
we obtain that Fn is measurable. Using Lemma 1.4(2), we can take yn(ω) ∈ Fn(ω), where
yn : Ω → X is measurable. By induction, there exists a measurable sequence {yn(ω)} such
that

y1(ω) � y2(ω) � · · · � yn(ω) � · · · � y(ω), yn(ω) −→ y(ω)(n −→ ∞), ∀ω ∈ Ω.
(2.10)

Set Y =
⋃∞

n=1{yn(ω) : ω ∈ Ω} ∪ {y(ω) : ω ∈ Ω}. Then Y is a Polish subspace of X. Since T :
Ω ×X → X is order continuous, T : Ω × Y → X is continuous. By (2.10), we have

T
(
ω, yn(ω)

) −→ T
(
ω, y(ω)

)
(n −→ ∞), ∀ω ∈ Ω a.e. (2.11)

By Lemma 1.2, T(ω, yn(ω)) is measurable for all n. Thus, from (2.11) and Lemma 1.3 it
follows that T(ω, y(ω)) is measurable. This completes the Proof.

Remark 2.4. Theorem 2.3 is a generalization of Lemma 1.2.

3. Random Periodic Points and Fixed Points for
Increasing Random Mappings

Theorem 3.1. Let (X, d, φ) be an ordered Polish space, where φ is continuous. Let T : Ω×[x0, y0] →
X be an order continuous and increasing random mapping with x0 � Tk(ω, x0) and Tk(ω, y0) � y0

for ω ∈ Ω a.e., where k is a positive integer. Then there exist a minimum random k-periodic point
u(ω) and a maximum random k-periodic point v(ω) in [x0, y0] such that u(ω) � z(ω) � v(ω) a.e.,
for all z ∈ FR(Tk).

Proof. Without loss of generality, we may assume that Ω0 ⊂ Ω, P(Ω0) = 1, T(ω, ·) is order
continuous for all ω ∈ Ω0, and x0 � Tk(ω, x0), Tk(ω, y0) � y0 for all ω ∈ Ω0. Let ω ∈ Ω0,
S = Tk , xn(ω) = Sn(ω, x0), and yn(ω) = Sn(ω, y0). Since x0 � S(ω, x0), S(ω, y0) � y0, and T is
increasing, we have

x0 � x1(ω) � · · · � xn(ω) � · · · � yn(ω) � · · · � y1(ω) � y0. (3.1)

Then, it follows from (3.1) that

φ(x0) ≥ φ(x1(ω)) ≥ · · · ≥ φ(xn(ω)) ≥ · · · ≥ φ
(
yn(ω)

) ≥ · · · ≥ φ
(
y1(ω)

) ≥ φ
(
y0
)
. (3.2)
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From (3.2)we see that {φ(xn(ω))} and {φ(yn(ω))} are two convergent sequences of numbers.
For every ε > 0 there exists a positive integer N such that

d(xn(ω), xm(ω)) ≤ φ(xn(ω)) − φ(xm(ω)) < ε, ∀m > n > N;

d
(
ym(ω), yn(ω)

) ≤ φ
(
ym(ω)

) − φ
(
yn(ω)

)
< ε, ∀m > n > N.

(3.3)

This shows that {xn(ω)} and {yn(ω)} are two Cauchy sequences in X. The completeness of
X implies that {xn(ω)} and {yn(ω)} are all convergent. Define u(ω) and v(ω) by

u(ω) =

⎧
⎨

⎩

lim
n→∞

xn(ω), if ω ∈ Ω0,

x0, if ω ∈ Ω \Ω0;
v(ω) =

⎧
⎨

⎩

lim
n→∞

yn(ω), if ω ∈ Ω0,

y0, if ω ∈ Ω \Ω0.
(3.4)

Since T is order continuous, S is order continuous. Then, we have

S(ω, u(ω)) = lim
n→∞

S(ω, xn(ω)) = lim
n→∞

xn+1(ω) = u(ω), ∀ω ∈ Ω0;

S(ω, v(ω)) = lim
n→∞

S
(
ω, yn(ω)

)
= lim

n→∞
yn+1(ω) = v(ω), ∀ω ∈ Ω0.

(3.5)

Note that P(Ω\Ω0) = 0. By Theorem 2.3, xn(ω) and yn(ω) are all measurable. By Lemma 1.3,
u(ω) and v(ω) are all measurable. Therefore, from (3.5) we see that u(ω) and v(ω) are all
random fixed points of S, that is, u, v ∈ FR(S) = FR(Tk). Since φ is continuous, we have, for
ω ∈ Ω a.e.,

d(x0, u(ω)) = lim
n→∞

d(x0, xn(ω)) ≤ lim
n→∞

[
φ(x0) − φ(xn(ω))

]
= φ(x0) − φ(u(ω));

d
(
v(ω), y0

)
= lim

n→∞
d
(
yn(ω), y0

) ≤ lim
n→∞

[
φ
(
yn(ω)

) − φ
(
y0
)]

= φ(v(ω)) − φ
(
y0
)
;

d(u(ω), v(ω)) = lim
n→∞

d
(
xn(ω), yn(ω)

) ≤ lim
n→∞

[
φ(xn(ω)) − φ

(
yn(ω)

)]
= φ(u(ω)) − φ(v(ω)).

(3.6)

This shows that x0 � u(ω) � v(ω) � y0 a.e. If z ∈ FR(Tk) = FR(S), then we have xn(ω) �
z(ω) � yn(ω) a.e., for all n. Thus, for ω ∈ Ω a.e.,

d(u(ω), z(ω)) = lim
n→∞

d(xn(ω), z(ω)) ≤ lim
n→∞

[
φ(xn(ω)) − φ(z(ω))

]
= φ(u(ω)) − φ(z(ω));

d(z(ω), v(ω)) = lim
n→∞

d
(
z(ω), yn(ω)

) ≤ lim
n→∞

[
φ(z(ω)) − φ

(
yn(ω)

)]
= φ(z(ω)) − φ(v(ω)).

(3.7)

This shows that u(ω) � z(ω) � v(ω) a.e., which is the desired conclusion.

Corollary 3.2. Let (X, d, φ) be an ordered Polish space, where φ is continuous. Let T : Ω×[x0, y0] →
X be an order continuous and increasing random mapping with x0 � T(ω, x0) and T(ω, y0) � y0 for
ω ∈ Ω a.e.. Then there exist a minimum random fixed point u(ω) and a maximum random fixed point
v(ω) in [x0, y0] such that u(ω) � z(ω) � v(ω) a.e., for all z ∈ FR(T).
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Proof. It is obtained by taking k = 1 in Theorem 3.1.

Corollary 3.3. Let (X, d, φ) be an ordered Polish space, where φ is continuous. Let T : Ω×[x0, y0] →
X be a increasing random mapping with x0 � Tk(ω, x0) and Tk(ω, y0) � y0 for ω ∈ Ω a.e., where
k is a positive integer. If T is an order contraction mapping, then there exists a unique random fixed
point u(ω) in [x0, y0].

Proof. From order contraction of T it follows that T is order continuous. By Theorem 3.1, there
exist a minimum random k-periodic point u(ω) and a maximum random k-periodic point
v(ω) in [x0, y0]. Since T is an order contraction mapping, for ω ∈ Ω a.e., we have

d(u(ω), v(ω)) = d
(
Tk(ω, u(ω)), Tk(ω, v(ω))

)
≤ [α(ω)]kd(u(ω), v(ω)), (3.8)

where α(ω) ∈ [0, 1). This shows that u(ω) = v(ω) a.e., namely, there is a unique u ∈ FR(Tk).
Let T(ω, u(ω)) = z(ω). Then we have z(ω) ∈ [x0, y0] a.e. and

z(ω) = T
(
ω, Tk(ω, u(ω))

)
= Tk+1(ω, u(ω)) = Tk(ω, z(ω)), (3.9)

that is, z ∈ FR(Tk). Hence, we have u = z. This shows that u ∈ FR(T). If y ∈ FR(T) and
y(ω) ∈ [x0, y0] a.e., then y ∈ FR(Tk), and so y = u, that is, there is a unique u ∈ FR(T). This
completes the proof.

4. Random Periodic Points and Fixed Points for
Decreasing Random Mappings

Theorem 4.1. Let (X, d, φ) be an ordered Polish space, where φ is continuous. Let T : Ω×[x0, y0] →
X be an order continuous and decreasing random mapping with x0 � T(ω, y0) and T(ω, x0) � y0 for
ω ∈ Ω a.e. Then there exists a random 2-periodic point u in [x0, y0] such that T(ω, u(ω)) ∈ [x0, y0]
a.e.

Proof. Without loss of generality, we may assume that Ω0 ⊂ Ω, P(Ω0) = 1, T(ω, ·) is order
continuous for all ω ∈ Ω0 and x0 � T(ω, y0), T(ω, x0) � y0 for all ω ∈ Ω0. Let ω ∈ Ω0,
xn(ω) = T(ω, yn−1(ω)), and yn(ω) = T(ω, xn−1(ω)), (n = 1, 2, . . .). Since T is decreasing, we
have

x0 � x1(ω) � · · · � xn(ω) � · · · � yn(ω) � · · · � y1(ω) � y0. (4.1)

Then, from (4.1) it follows that

φ(x0) ≥ φ(x1(ω)) ≥ · · · ≥ φ(xn(ω)) ≥ · · · ≥ φ
(
yn(ω)

) ≥ · · · ≥ φ
(
y1(ω)

) ≥ φ
(
y0
)
. (4.2)
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From (4.2)we see that {φ(xn(ω))} and {φ(yn(ω))} are two convergent sequences of numbers.
For every ε > 0 there exists a positive integer N such that

d(xn(ω), xm(ω)) ≤ φ(xn(ω)) − φ(xm(ω)) < ε, ∀m > n > N;

d
(
ym(ω), yn(ω)

) ≤ φ
(
ym(ω)

) − φ
(
yn(ω)

)
< ε, ∀m > n > N.

(4.3)

This shows that {xn(ω)} and {yn(ω)} are two Cauchy sequences inX. By the completeness of
X we see that {xn(ω)} and {yn(ω)} are all convergent. Define u(ω) and v(ω) by (3.4). Since
T is order continuous, we have

T(ω, u(ω)) = lim
n→∞

T(ω, xn−1(ω)) = lim
n→∞

yn(ω) = v(ω), ∀ω ∈ Ω0;

T(ω, v(ω)) = lim
n→∞

T
(
ω, yn−1(ω)

)
= lim

n→∞
xn(ω) = u(ω), ∀ω ∈ Ω0.

(4.4)

By the continuity of φ, we have, for ω ∈ Ω0,

d(x0, u(ω)) = lim
n→∞

d(x0, xn(ω)) ≤ lim
n→∞

[
φ(x0) − φ(xn(ω))

]
= φ(x0) − φ(u(ω));

d
(
v(ω), y0

)
= lim

n→∞
d
(
yn(ω), y0

) ≤ lim
n→∞

[
φ
(
yn(ω)

) − φ
(
y0
)]

= φ(v(ω)) − φ
(
y0
)
.

(4.5)

Since P(Ω\Ω0) = 0, we have u(ω), v(ω) ∈ [x0, y0] a.e.. By Theorem 2.3, xn(ω) and yn(ω) are
all measurable. By Lemma 1.3, u(ω) and v(ω) are all measurable. Therefore, from (4.4) we
have

T2(ω, u(ω)) = T(ω, v(ω)) = u(ω), ∀ω ∈ Ω a.e. (4.6)

This shows that u ∈ FR(T2), which is the desired conclusion.

Corollary 4.2. Let (X, d, φ) be an ordered Polish space, where φ is continuous. Let T : Ω×[x0, y0] →
X be a decreasing random mapping with x0 � T(ω, y0) and T(ω, x0) � y0 for ω ∈ Ω a.e. If T is an
order contraction mapping, then there exists a unique random fixed point u(ω) in [x0, y0].

Proof. Since T is an order contraction mapping, T is order continuous. By Theorem 4.1, there
exists a random 2-periodic point u in [x0, y0] such that T(ω, u(ω)) = v(ω) ∈ [x0, y0] a.e. We
claim that u(ω) = v(ω) a.e. In fact that, from (4.1) we have u(ω) � v(ω) a.e. If u(ω)/=v(ω)
a.e., then there exists α(ω) ∈ [0, 1) such that

d(u(ω), v(ω)) = d(T(ω, v(ω)), T(ω, u(ω))) ≤ α(ω)d(v(ω), u(ω))

< d(v(ω), u(ω)), ∀ω ∈ Ω a.e.,
(4.7)

which is a contradiction. Hence, u ∈ FR(T). If y ∈ FR(T) and y(ω) ∈ [x0, y0] a.e., then we
have

xn(ω) � y(ω) � yn(ω), ∀ω ∈ Ω a.e., (4.8)
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where {xn(ω)} and {yn(ω)} are the iterations in the proof of Theorem 4.1. It is easy to check
that u(ω) � y(ω) � v(ω), for all ω ∈ Ω a.e. But u = v, and so we have y = u. This completes
the proof.

Theorem 4.3. Let (X, d, φ) be an ordered Polish space, where φ is continuous and φ(X) is bounded.
Let T : Ω×[x0, y0] → X be an order continuous and decreasing randommapping with y0 � T(ω, x0)
and T(ω, y0) � x0 for ω ∈ Ω a.e. Then there exists a random 2-periodic point u in X.

Proof. Without loss of generality, we may assume that Ω0 ⊂ Ω, P(Ω0) = 1, T(ω, ·) is order
continuous for all ω ∈ Ω0, and y0 � T(ω, x0), T(ω, y0) � x0 for all ω ∈ Ω0. Let ω ∈ Ω0,
xn(ω) = T(ω, yn−1(ω)), and yn(ω) = T(ω, xn−1(ω)), (n = 1, 2, . . .). Since T is decreasing, we
have

· · · � xn(ω) � · · · � x1(ω) � x0 � y0 � y1(ω) � · · · � yn(ω) � · · · (4.9)

Then, it follows from (4.9) that

· · · ≥ φ(xn(ω)) ≥ · · · ≥ φ(x1(ω)) ≥ φ(x0) ≥ φ
(
y0
) ≥ φ

(
y1(ω)

) ≥ · · · ≥ φ
(
yn(ω)

) ≥ · · ·
(4.10)

This shows that {φ(xn(ω))} and {φ(yn(ω))} are two convergent sequences of numbers by the
boundedness of φ(X). For every ε > 0 there exists a positive integer N such that

d(xn(ω), xm(ω)) ≤ φ(xn(ω)) − φ(xm(ω)) < ε, ∀n > m > N. (4.11)

This shows that {xn(ω)} is a Cauchy sequence in X. The completeness of X implies that
{xn(ω)} is convergent. Similarly, {yn(ω)} is convergent. Define u(ω) and v(ω) by (3.4). Since
T is order continuous, we have

T(ω, u(ω)) = lim
n→∞

T(ω, xn−1(ω)) = lim
n→∞

yn(ω) = v(ω), ∀ω ∈ Ω0;

T(ω, v(ω)) = lim
n→∞

T
(
ω, yn−1(ω)

)
= lim

n→∞
xn(ω) = u(ω), ∀ω ∈ Ω0.

(4.12)

Since P(Ω \ Ω0) = 0, by Theorem 2.3, xn(ω) and yn(ω) are all measurable; by Lemma 1.3,
u(ω) and v(ω) are all measurable. Therefore, from (4.12) we have

T2(ω, u(ω)) = T(ω, v(ω)) = u(ω), ∀ω ∈ Ωa.e. (4.13)

This shows that u ∈ FR(T2), which is the desired conclusion.

5. Coupled Random Periodic Point and Fixed Point Theorems

Theorem 5.1. Let (X, d, φ) be an ordered Polish space, where φ is continuous. Let T : Ω × [x0, y0] ×
[x0, y0] → X be an order continuous and mixed monotone randommapping with x0 � Tk(ω, x0, y0)
and Tk(ω, y0, x0) � y0 for ω ∈ Ω a.e., where k is a positive integer. Then there exists a coupled
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random k-periodic point (u, v) such that Tk(ω, u(ω), v(ω)) = u(ω), Tk(ω, v(ω), u(ω)) = v(ω),
and [u(ω), v(ω)] ⊂ [x0, y0] a.e. If (u1, v1) is a coupled random k-periodic point such that
[u1(ω), v1(ω)] ⊂ [x0, y0] a.e., then [u1(ω), v1(ω)] ⊂ [u(ω), v(ω)] a.e.

Proof. Without loss of generality, we may assume that Ω0 ⊂ Ω, P(Ω0) = 1, T(ω, ·, ·) is order
continuous for allω ∈ Ω0 and x0 � Tk(ω, x0, y0), Tk(ω, y0, x0) � y0 for all ω ∈ Ω0. Let ω ∈ Ω0,
S = Tk , xn(ω) = Sn(ω, xn−1(ω), yn−1(ω)), and yn(ω) = Sn(ω, yn−1(ω), xn−1(ω)), (n = 1, 2, . . .).
Since T is a mixed monotone mapping, we have

x0 � x1(ω) = S
(
ω, x0, y0

) � S
(
ω, y0, y0

) � S
(
ω, y0, x0

)
= y1(ω) � y0. (5.1)

By induction, we have

x0 � x1(ω) � · · · � xn(ω) � · · · � yn(ω) � · · · � y1(ω) � y0. (5.2)

Thus, from (5.2) it follows that

φ(x0) ≥ φ(x1(ω)) ≥ · · · ≥ φ(xn(ω)) ≥ · · · ≥ φ
(
yn(ω)

) ≥ · · · ≥ φ
(
y1(ω)

) ≥ φ
(
y0
)
. (5.3)

This shows that {φ(xn(ω))} and {φ(yn(ω))} are two convergent sequences of numbers. In
a similar way to the proof of Theorem 3.1, we can check that {xn(ω)} and {yn(ω)} are two
Cauchy sequences in X. The completeness of X implies that {xn(ω)} and {yn(ω)} are all
convergent. Define u(ω) and v(ω) by (3.4). Since φ is continuous, it is easy to prove that
xn(ω) � u(ω) � v(ω) � yn(ω) for all n. Since T is order continuous, S is order continuous.
Then, we have

S(ω, u(ω), v(ω)) = lim
n→∞

S
(
ω, xn(ω), yn(ω)

)
= lim

n→∞
xn+1(ω) = u(ω), ∀ω ∈ Ω0;

S(ω, v(ω), u(ω)) = lim
n→∞

S
(
ω, yn(ω), xn(ω)

)
= lim

n→∞
yn+1(ω) = v(ω), ∀ω ∈ Ω0.

(5.4)

Note that P(Ω\Ω0) = 0. By Theorem 2.3, xn(ω) and yn(ω) are all measurable. By Lemma 1.3,
u(ω) and v(ω) are all measurable. Therefore, from (5.4) we see that (u, v) is a coupled
random fixed point of S, that is, it is a coupled random k-periodic point of T . If (u1, v1) is
a coupled random k-periodic point such that [u1(ω), v1(ω)] ⊂ [x0, y0] a.e., then, by mixed
monotonicity of T , we have x1(ω) = T(ω, x0, y0) � T(ω, u1(ω), v1(ω)) = u1(ω) a.e. and
v1(ω) = T(ω, v1(ω), u1(ω)) � T(ω, y0, x0) = y1(ω) a.e. Then, by induction, we have

xn(ω) � u1(ω) a.e., v1(ω) � yn(ω) a.e., ∀n. (5.5)

Since T is order continuous, we have [u1(ω), v1(ω)] ⊂ [u(ω), v(ω)] a.e.. This completes the
proof.

Corollary 5.2. Let (X, d, φ) be an ordered Polish space, where φ is continuous. Let T : Ω× [x0, y0]×
[x0, y0] → X be an order continuous and mixed monotone random mapping with x0 � T(ω, x0, y0)
and T(ω, y0, x0) � y0 for ω ∈ Ω a.e. Then there exists a coupled random fixed point (u, v) such that
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T(ω, u(ω), v(ω)) = u(ω), T(ω, v(ω), u(ω)) = v(ω) and [u(ω), v(ω)] ⊂ [x0, y0] a.e. If (u1, v1)
is also a coupled random fixed point such that [u1(ω), v1(ω)] ⊂ [x0, y0] a.e., then [u1(ω), v1(ω)] ⊂
[u(ω), v(ω)] a.e.

Proof. It is obtained by taking k = 1 in Theorem 5.1.

Theorem 5.3. Let (X, d, φ) be an ordered Polish space, where φ is continuous and φ(X) is bounded.
Let T : Ω × [x0, y0] × [x0, y0] → X be an order continuous and mixed monotone random mapping
with T(ω, x0, y0) � x0 and y0 � T(ω, y0, x0) for ω ∈ Ω a.e., where x0 /=y0. Then there exists a
coupled random fixed point (u(ω), v(ω)) such that T(ω, u(ω), v(ω)) = u(ω), T(ω, v(ω), u(ω)) =
v(ω), and [x0, y0] ⊂ [u(ω), v(ω)] a.e. If (u1, v1) is also a coupled random fixed point such that
[x0, y0] ⊂ [u1(ω), v1(ω)] a.e., then [u(ω), v(ω)] ⊂ [u1(ω), v1(ω)] a.e.

Proof. Without loss of generality, we may assume that Ω0 ⊂ Ω, P(Ω0) = 1, T(ω, ·, ·) is order
continuous for all ω ∈ Ω0 and T(ω, x0, y0) � x0, y0 � T(ω, y0, x0) for all ω ∈ Ω0. Let ω ∈ Ω0,
xn(ω) = T(ω, xn−1(ω), yn−1(ω)), and yn(ω) = T(ω, yn−1(ω), xn−1(ω)), (n = 1, 2, . . .). Then,

x1(ω) = T
(
ω, x0, y0

) � x0 � y0 � T
(
ω, y0, x0

)
= y1(ω). (5.6)

Since T is a mixed monotone mapping, we have x2(ω) = T(ω, x1(ω), y1(ω)) � T(ω, x0, y0) =
x1(ω), and y1(ω) = T(ω, y0, x0) � T(ω, y1(ω), x1(ω)) = y2(ω). By induction, we have

· · · � xn(ω) � · · · � x1(ω) � x0 � y0 � y1(ω) � · · · � yn(ω) � · · · (5.7)

Thus, from (5.7) it follows that

· · · ≥ φ(xn(ω)) ≥ · · · ≥ φ(x1(ω)) ≥ φ(x0) ≥ φ
(
y0
) ≥ φ

(
y1(ω)

) ≥ · · · ≥ φ
(
yn(ω)

) ≥ · · · (5.8)

This shows that {φ(xn(ω))} and {φ(yn(ω))} are two convergent sequences of numbers by the
boundedness of φ(X). In a similar way to the proof of Theorem 4.3, we can check that {xn(ω)}
and {yn(ω)} are two Cauchy sequences inX. The completeness ofX implies that {xn(ω)} and
{yn(ω)} are all convergent. Define u(ω) and v(ω) by (3.4). Since φ is continuous, it is easy to
prove that u(ω) � xn(ω) � x0 and y0 � yn(ω) � v(ω) for all n. Since T is order continuous,
we have

T(ω, u(ω), v(ω)) = lim
n→∞

T
(
ω, xn(ω), yn(ω)

)
= lim

n→∞
xn+1(ω) = u(ω), ∀ω ∈ Ω0;

T(ω, v(ω), u(ω)) = lim
n→∞

T
(
ω, yn(ω), xn(ω)

)
= lim

n→∞
yn+1(ω) = v(ω), ∀ω ∈ Ω0.

(5.9)

Note that P(Ω\Ω0) = 0. By Theorem 2.3, xn(ω) and yn(ω) are all measurable. By Lemma 1.3,
u(ω) and v(ω) are all measurable. Therefore, from (5.9)we see that (u, v) is a coupled random
fixed point of T . If (u1, v1) is a coupled random point of T with [x0, y0] ⊂ (u1(ω), v1(ω)) a.e.,
then, by mixed monotonicity of T , we have u1(ω) = T(ω, u1(ω), v1(ω)) � T(ω, x0, y0) = x1(ω)
a.e., and v1(ω) = T(ω, v1(ω), u1(ω)) 
 T(ω, y0, x0) = y1(ω) a.e., namely, [x1(ω), y1(ω)] ⊂
[u1(ω), v1(ω)] a.e. By induction, we have

u1(ω) � xn(ω) a.e., yn(ω) � v1(ω) a.e., ∀n. (5.10)
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Since T is order continuous, we have [u(ω), v(ω)] ⊂ [u1(ω), v1(ω)] a.e. This completes the
proof.
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