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1. INTRODUCTION,

The purpose of this paper is to furnish some characterisations of complex Ll—
predual spaces wnich are being known as Lindenstrauss spaces after [l]. The dual
unit balls of such spaces now-a-days called L-balls have been characterised by
many authors including Lazar & Lindenstrauss I:Z:], Lazar |:3:], :4_ , Lau |:5] and others
when the spaces are real, But their complex versions far from being trivial
follow-ups seem to be much complicated and in reality sometimes need ingenuity to

be formulated even, This paper contains some complex versions of Lau's results

[5] embodied in Theorem 3.

2, NOTATIONS AND PRELIMINARIES

For a compact convex subset K of a locally convex Hansdorff space E, Bel(
stands for the set of its extreme points; M(K) for the Banach space (with total
variation as norm) of complex regular Borel measures on K; Ml(l() for the set
of members of M(K) with norm < 1; C(K), A(K), P(K) for the space of all real-
valued continuous functions, continuous affine functions, continuous convex functions
on K respectively.

For bounded real-valued functions f on K, the upper envelope is denoted by
f and the lower envelope by ?EI. A measure U is said to be a boundary measure if
lu| is maximal in the ordering of Choquet; in fact W is a boundary measure iff
w(f-£)=0 for all fec(k) [6;p.129]. We shall also write T© = {ze ¢: |z|=1}.

If V is a complex Banach space, the dual unit ball K=(V*)l is convex and
compact in the w*-topology. We define the map hom f as (hom f) (x) =
IFE f (ax) do for semi-continuous function £ on K,
where do. is the unit Haar measure on 'y Clearly hom £ is I - homogeneous, i.e.

(hom £) (Bx) = B(hom £) (x) far B € I, One can easily show that hom restricted to

C(K) are norm-decreasing projections of C(K) onto the space of I' - homogeneous
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continuous functions on K, The adjoint projection hom defined as hom u=py o hom is

also a norm decreasing w*-continuous projection of M(K) onto a linear subspace

M (K) of M(K). We can write (hom f)(x) = S_£f(x) + i Tf(x)
hom 1
1 (" 9 1 (" i6
where Slf(x) = 5= f cosf f(xel )de, Tf(x) = _Z—TFJ sinef(xe'L yde
- =T

m/2 :
If we write (Sf) (x) = :2L—“ [ cosb f(xele)de

J

/2

(which multiplied by T gives what Roy |:'7:] has defined as f+) , then

2(Slf) (x) = odd Sf(x). (2.1)
Throughout the paper we shall write AO(K) for the set of all continuous

I' - homogeneous affine functions on K=(V*)l.

3., Main Results

For real Banach space V, the following results are recently proved.
Theorem 1. If K is the dual unit ball of a real Banach space V, then the
following are equivalent:

(1) V is an L,-predual space.

(ii) 1If ul,u2 are boundary measures on K having the same barycentre, then

odd ul = odd M. )

(iii) For £ € P(K), oddf is affine.

(iv) For any f € P(K), E(o) = % sup{f(x) + £(-x): xeK} = sup{even f(x) : xek}.

(v) For any l.s.c. concave function f on K such that even £f>O, there exists

a continuous affine symmetric function a on K such that f>a.

(vi) If £, -h are l.s.c. concave functions on K such that h<f and sup{even
h(x) : xek} < inf{even f(x) : x€K}, then these exists a continuous
affine symmetric function a on K such that h < a < £,

The equivalence of (i) - (iv) is due to Lazar [:4:[ while that of (i), (v),

(vi) is proved by Lau [5],

Many interesting developments are noted when efforts are made to obtain complex
analogs of these results (many others not stated here) of real Lindenstrauss spaces.
A brilliant step towards this have been made by Effros f:B-_] who has shown that odd
U is to be replaced by hom U in complex space. Olsen |:9:| has shown that the
hypothesis even £ > O in (v) is to be replaced by Zf(CkX)z O for Ck € I' with ZCk = 0,
XEK. Subsequently Roy [:7] has tried to give complex analog of (iv), replacing
odd f by odd(sf)A . His formulation is rather partial., But [9:] contains some
interesting examples.,

Below we give a characterisation of complex Ll—predual space V which is a

kind of complex analog of Lau's result and is due to Olsen [9].

Theorem 2. If K is the dual unit ball of a complex Banach space V, then the
following are equivalent:
(1) V is an L, -predual space;
(ii) For every l.s,c, concave function f on K such that Zf(f,kx) > 0 for
all xeK and Cke I'n k=1,2,...,n with I Ck=0, there is an a ¢ Ao(l()

such that re a(x) < f(x) for all xeK.
We give in Theorem 3, some complex analogs of Lau's result, However to start
with, we furnish a Lemma below:
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Lemma 1. If U be a non-zero positive measure on a compact convex subset K

of a locally convex Hausdorf space E, then for all u.s.c. convex function £ on K

1

£(x) < UK~ If(y)au where r(u) = x.

Proof: By a well-known result rlo; I.2.2.'], the stated inequality holds for
f € P(K). Now applying Mokobodzki([lo; I.S.l:]) that for every u.s.c. convex
function £, there is a dscending net {fot H fa € P(K)} which converges to f, we

get the desired result.
Our main result is

Thearem 3. If K is the dual unit ball of a complex Banach space V, then the

following are equivalent:

(i) V is an L,-predual space;

(ii) 1If £ is all.s.c. concave function on K with even (Sf) (x) > O for all
x € K, then there exists an a € AO(K) such that re a < f on K;
(iii) If £, -h are l.s.c. concave functions on K such that h < f and even
S h (x) <0< evens f(y) for all x,y € K; then there exists an a
€ AO(K) such that h < re a < £ on K,

(iv) If f, -h are l.s.c. concave functions on K such that h < f and

n
sup {kzlakh(;kx) i x €K, nE N, 0< a, Io=l, gel, Tag =o}

n
<o<inf{ I opf(gx): xeKne N, 0< oy, Iy=l, gel, Zog=0);
-~ k=1 ! -

then there is an a € AO(K) such that h < re a < f on K;
(v) If g is an u.s,c, convex function on K, then g(0) < sup{ZOLkg(l;kx):

x €K ne N, 0<a; la=l, gel, Ia g = o}
Proof . (i) ~» (ii).

We shall, in fact, show that (ii) is implied by Theorem 2 (ii)., So let £

be l.s.c. concave on K such that even Sf(x)>0., We define

/2 = .
F(x) =}1r— J |cose f(xele)] as

-T/2
Then F(x) = 2 Sf(x). Clearly F is l,s.c. concave. Let fx€ T for k = 1,2,...,n
be such that Ck = 0. Now note that Sf(x) = slf(x) + even Sf(x) and that I Hom
£ (Qkx) = 0. Thus ZF(Ckx) =2 ZSf(Ckx) = ZZSlf(i;kx) + 2T even Sf(Ckx) =

2 ¥ even Sf(;kx) which is > O by hypothesis. Consequently by Theorem 2 (ii),,
there is a function b € AO(K) such that re b < F on K.
2 (2 i0
We consider the measure u= cosf € {xe” )d6
-7/2
where €(y) is the Dirac measure at y. By |:6: pP. 115], r(4) = x. Also u(k) = %.
On. applying Lemma 1, we have 2F (x) < u(K)f(x) i.e. F(x) i%f(x). Putting a

Tb
= -2—,wehaverea_<_fonK.
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(ii) > (iii). Let f, -h be l.s.c. concave functions on K such that h <f
and even S h(x) _<O < even Sf(y) for all x,y, € K.

We first show that h(x) + h(-x) < 0 < f(y) + £(~y) for all x,y € K. Let
us establish the last inequality, since the first one can be done similarly. To

do so we take the measure

cosf e(xele)de

ENIN]

(/2
3

-m/2

and find as before by [6, p. llS:] that r (M) = x, p(K) = %.
Now apply Lemma 1 to get £(y) + f£(-y) > O from even Sf(y) > O,

Now we define F(x) = £(X)A (-h) (-x).

Then F is l.s.c. concave., Moreover by the hypothesis and the inequalities just
proved, we have F(x) + F(-x) > O for all x € K so that even SF (x) > o.
By (ii) then we have an a € AO(K) such that re a < F. This a is, in fact, the
function with the desired property.

(iii) > (iv). Let f, -h be two l.s.c. concave-functions on K, which satisfy

the conditions given in the hypothesis of (iv). Then clearly even (Sh) (x)

L
2T

/2 . .6 i6
= J cosf I_h(xel ) + h(-xe )]de <o
-7/2
Similarly even (Sf)(y) > O for all y € K.
So by (iii) there is an a € AO(K) such that h < re a < f on K.

(iv) ;1' (v). Suppose that g is an u.s.c. convex function and let

= . . . < . = = ’
95 sup{k§l %9 x): x € K; neN; 02 op; Zay =1, g €T, Zoy g o}

We assume that 9, = O; there will be no loss of generality in the assumption
A

since (g+a) 7 (0 =g (0 +a

for positive real number a,

We define - F = -0g where (0g) (x) = g(-x). Clearly F is l.s.c. concave,
Since g + 0g < 290 by the definition of gor it follows that g < F. Moreover for
ne N, O’ki o, Eo‘k =1, T E r, Zcxkck = 0, x€K, we have ):akF(t;kx) = -):akg(-ck x)

n
i ; > = = = = 0.
so that inf {kElOLkF(I;kx), xeK, ng, o> 0 Lop=1, g e T, Ty g =0} =g =0
Thus by (iv), there is anAher (K) such that g <re h<F. Weputre h=ac€eAa(K),.
Now since g < a, we have g(0) < a(0), Again -0 g > a-Zgo € A(K), so that

~
a(o) - 2go < (=) (0) = g(0).
~ A
Thus g(0) < a(0) < -g(0) + 290 so that S(o) < g, and the result follows.,
(v) @ (i) is the same as E];p.lOB:]

Note: Our result in (v) is sharper than Roy's result ﬁ; Thm 3,3 (iii)_] that
—_ n - -

for g € P(K),g(o)isup{):akg(ckx): X€K, ne N, Oio.k, ZOLk=l, Lke r, Zakl;k = o},

In fact this follows from (v) immediately, since the reverse inequality is evident

from the concave character of a.
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REMARKS"

In analog with Lazar's selection theorem for Choquet simplex, Lazar &
Lindenstrauss [—2] formulated a selection theorem for real L-balls which was
followed by a complex version by Olsen EBJ. Our results which are chiefly complex
analogue of Lau's result ]-3] seem to resemble Edward's interpolation theorem

[10; EI.B-lO]]for simplices,

REFERENCE
1, LINDENSTRAUSS, J. : Extension of Compact Operators Memoirs Amer. Math,
Soc. 48 (1964),
2, LAZAR, A. & : Banach spaces whose Duals are Lj-spaces and their
LINDENSTRAUSS, J. Representing Matrices I, Acta Math, 126 (1971), 186-193.
3. LAZAR, A, : Space of Affine Continuous Function on Simplex,
Trans, Amer, Math, Soc, 134 (1968), 503-525.
4, LAZAR, A. : The Unit Ball in Conjugate L;-spaces, Duke Math,
J. 39 (1972), 1-8
5, LAU, Ka-Sing : The Dual Ball of Lindenstrauss Space, Math. Scand.
33, (1973), 323-337,
6, CHOQUET, G, : Lectures on Analysis, vol, II W.A, Benjamin, INC, (1976).
7. ROY, A.K. : Convex Functions on the Dual Ball of a Complex.
. Lindenstrauss space, J. London, Math, Soc. (2) (1979)
529-540.,
8., EFFROS, E.G,. : On a Class of Complex Banach spaces, Illinois J, Math,

18 (1974), 48-59,

9, OLSEN, G,H. : Edward's separation Theorem for complex Lindenstrauss
space with Application to selection and Embedding
Theorem, Math, Scand. 38 (1976), 97-105.

10, ALFSEN, E.M, : Compact Convex Sets and Boundary Integrals. (1971);
Springer Verlag.,




