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ABSTRACT. Means, generalized means and invariant means (on a semigroup) with values

in a Banach lattice are defined and studied.
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i. INTRODUCTION.

Let S be a multiplicative semigroup and g(S) the sup-normed Banach space of all

real valued bounded functions on S. A linear functional m on (S) is called a mean

if re(e) l, where e is the constantly one function, and re(f) > 0, for every f such

that f(s) _> 0, all s e S. A mean m is left invariant if m(sf) m(f) for all s e S

f)(t) f(st).and f e (S) where is the left-translation operator defined by (%s
The semigroup S is said to be left amenable if g(S) admits a left invariant mean.

First considered by Von Neumann [i], invariant means have been studied by several

authors including Day [2], Dixmier [3] and Mitchell [4], (also Rao [5]).

Means with values in a Banach space were first considered by Dixmier [3].

Following his technique Husain and Wong, [6,7] developed a theory of left invariant

means with values in E*, the dual of a locally convex topological vector space (ictvs)

E. Later Husain [8] reformulated and extended the theory to means with values in E.

For an ictvs E and a semigroup S, he lets (S,E) denote the space of all functions

f S E such that the weak closure K(f) of the convex hull of the range f(S) is

weakly compact. With a suitable family of seminorms (S,E) is an ictvs. He defines
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a generalized mean on a subspace X of (S,E) to be a linear operator M X E such

that M(f) K(f) for all f X. With these definitions Husain [8] proves that many

interesting results from the real valued theory, such as localization principle and

Mitchell’s theory of stationary semigroups, can be extended to vector valued function

spaces.

The real valued function spaces form an interesting subclass of Ictvs’s, since one

can define an order structure induced canonically by the order on reals. In this note

we explore the impact of order relation on vector valued means, specifically with

values in a Banach lattice. In section 2 we define the spaces B(S,E) and (S,E) and

define means and generalized means. We give a few examples and discuss the compactness

of the set of means. In section 3 we present extensions of known results on amena-

bility to the present context, mentioning only those results that are not included in

Husain’s theory. In the last section we sketch a generalization of Mitchell’s theory

of stationary semigroups showing that the left amenability of a right stationary semi-

group may be obtained in this broader context.

2. COMPACTNESS.

Let S be a multiplicative semigroup, E a Banach lattice with order unit e and E*

the normed dual of E. For any a e E, the constant function S E is defined by

a(s) a for all s e S. We define B(S,E) to be the space of all E-valued functions on

S whose range is order (and hence norm) bounded in E. (We follow Schaefer [9 for all

notions in Banach lattices). With norm defined by Ill[ sup{llf(s) ll s e s}, B(S,E)

is a Banach space; in fact it is a Banach lattice with order unit under the order

relation: f _< g iff f(s) _< g(s) for all s e S. It can also be verified that if E is an

(order complete) AM-space, so is B(S,E). We now state a proposition (that we need in

section 3) which can be proved easily in the standard way.

PROPOSITION 2.1. If E is an AM-space with predual F (an AL-space), then B(S,E) is

isometrically isomorphic to the dual of the Banach space I(S,F) of all absolutely

summable F-valued functions on S.

We let (S,E) denote the subspace of B(S,E) consisting of all f such that the weak

closure P(f) of the smallest convex sublattice containing the range f(S) is weakly

compact. When order intervals in E are weakly compact B(S,E) g(S,E), (see proof of

2.2, below). In particular B(S, It) (S) where denotes the reals. In the sequel

we take all subspaces X of B(S,E) to contain the constant functions. OccasionaIly, E

is assumed to be an AM-space; the K in E C(K) will always be compact Hausdorff.
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PROPOSITION 2.2. Let be a subspace of B(S,E) and T X E be linear. Consider the

following three conditions"

M For every f X, T(f) P(f).

M
2

If f(s) 0 for all s S, then T(f) > 0" and for every a E, T(a) a.

M
3

If a _< f(s) B for all s E S then a < T(f) < B

Then M M
2

M
3. Further if order intervals in E are weakly compact, then the

three conditions are equivalent.

PROOF. It is clear that M M
2

MS. Now assume that order intervals in E are

weakly compact. We show that if f B(S,E) and and fl denote respectively the

and sup of {f(s) s S}, then P(f) [m,fl] the closed interval with bounds ,
From this it follows that M

5 M1; incidentally, in this case, B(S,E) t(S,E).

By theorem 5.10 of [9], (p.89), we have that every element of E* is order continuous

and that E is order complete. If F is a finite subset of S, write mF and flF for the

inf and sup of {f(s) s F}. Then my + and OF
/ a. Hence F and ar

the weak topology of E. Thus , fl P(f) and [a,a] p{f). On the other hand since

P(f) is the weak closure of the smallest convex sublattice containing f(S), P(f)

[,a] and the proposition is proved.

DEFINITION 2.1. Let X be a subspace of B(S,E) and T X E be linear. Say that T

is a generalized mean on X iff "f _> 0 T(f) -> 0 and T(a) a for every a E". If

X is a subspace of (S,E), T is said to be a mean on X iff "T(f) E P(f) for all f X.’

We note that by proposition 2.2, a mean is always a generalized mean and that when

order intervals in E are weakly compact, the two are the same. Thus when E our

definition of a mean agrees with the classical real-valued mean. Also it can be

proved (as in the real-valued case) that every generalized mean is continuous and has

norm one. We now give some examples.

EXA/4PLES 2.1. (a) If I(S), >- 0 and Ill 1, then induces a generalized

mean T on any subspace X of B(S,E) if we define T(f) r. (s) f(s). (b) Let
sS

E C(K), K compact Hausdorff. Let S E be such that (i) (s) > 0, all s S,

(ii) (s)(t) converges uniformly (in t) to the constantly one function. Then TsS

defined by T(f)(t) r. (s)(t) f(s)(t) is a generalized mean on any subspace X of
sES

B(S,E).

We next consider the compactness of the set of (generalized) means. The real

valued means on a subspace X of g(S) form a w*-compact convex subset of X*. Husain
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and Wong [6,7] showed that for an Ictvs E and the space (S,E*) as defined in the

introduction, the E*-valued means on any subspace X of (S,E*) is a compact convex

X
is E* with w*-topology. Husain [8]subset of the product space (E) where Ew

obtained a similar result for E-valued means on subspaces of (his) (S,E). Now

turning to our generalized means, it is easy to check that the set of generalized

means on a subspace X of B(S,E) is convex. In fact more is true. For if T I, T
2

are

generalized means and T X E is such that T T T
2

then T is also a generalized

mean and hence the set (X) of generalized means on X is an order interval of the

L
b

ordered vector space (X,E) of all order bounded linear operators from X to E. When

E is order complete and X is a vector lattice, then Lb(x,E) is a vector lattice and

t(x) is a convex sublattice. The following example shows that X) is not compact,

in general, even when E is given the weak topology.

EXAMPLE 2.2. Let K be compact Hausdorff and S {a E ]fall < i}, the closed unit

ball in E C(K). Let X B(S,E) and i S E be the identity (inclusion) map [that

is, i(s) s] and let E denote E with the weak (that is, o(E,E*)) topology. Now if

H E
X E is the (projection) map defined by Hi(@) @(i) then . is continuous.

1 W W I

Hence if J(X) is a compact subset of E
X

then S H ((X)) is a compact subset of E
w’ i w

which is not true unless K is a finite set.

In the positive direction we have the following

PROPOSITION 2.3. If order intervals in E are weakly compact then the set of

generalized means (X) on a subspace X of B(S E) (S E) is a compact subset of E
X
W

PROOF. For each f c X,(f) {T(f) T e is a subset of the order interval

[f,nf] where f and flf are respectively the inf and sup of {f(s) s e S}. Thus (X)

is a subset of the compact set R [f,f], and it is easy to check that (X) is

rex

closed in EX and hence compact.
W

COROLLARY 2. i. If E C(K) and E denotes E with the topology of pointwise convergence
P

then the set of generalized means on any subspace X of B(S,E) is a compact subset of

Ex
P

3. MAIN RESULTS.

It is well known that an abelian semigroup S is amenable [2], that is, (S)

admits a left invariant mean. This classical result is a consequence of the well known

condition of Dixmier [lO,p.4]. We do not find an analogue of this result in Husain’s

theory [6,7,8]. The richness of the order structure in a Banach lattice enables us to
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obtain this result in the present context. Recall that for s e S and f B(S,E),

(s f)(t) f(st). A subspace X of B(5,E) is said to be left invariant if (X) X
s

for all s e S. A generalized mean M on a left invariant subspace X is said to be

left invariant if M( f) M(f) for all s S and f X. Finally say that S is lefts

B-amenable with respect to E if B(S,E) admits a left invariant generalized mean.

Dually, right invariant generalized means can be defined in a similar way. The

following theorem shows that Dixmier’s condition is valid for means with values in a

Banach lattice.

THEOREM 3.1. Let E be an order complete Banach lattice with an order unit and S be a

semigroup. A necessary and sufficient condition that S be left B-amenable with

respect to E is" For all finite sets s 1, s 2, Sn in S and fl’ f2’" fn in B(S, E)

n
inf{ Z (fl-s.fi)(s)} -< 0 (3.1)
sS i- 1

PROOF: Necessity is clear. Assume (3.1) holds and let X denote the subspace of B(S,E)

generated by the elements f f, where f B(S,E) and s e S. It is clear that for
s

X, inf{(s) s S} _< 0 < sup{(s) s S}. Let p B(S,E) E be defined by

p(f) sup{f(s) s e S}. Clearly p is a seminorm (with values in E) and p() 0 for

all e X. Now by the Hahn-Banach theorem for order complete spaces [12, p.79], there

exists a linear map T B(S,E) E such that T(f) _< p(f) for all f e B(S,E), and

T() 0 for all e X. Since T is linear we have: -T() < p(-) sup{-(s) s S}

-inf{(s) s S}, so that inf{(s) s e S} < T() _< sup{(s) s S}. Hence

T is a generalized mean and clearly T is left invariant.

COROLLARY 3. I. If E is order complete and S is abelian then S is B-amanable with

respect to E.

We omit the proof since it is similar to theorem 1.2.1 of [lO,p.5]. The eval-

uation operator 6 defined by 6 (f) f(s) is clearly a generalized mean on any sub-
s s

space X of B(S,E). When E ], the convex hull of these evaluations is w*-dense in the

set of means. As in the case of means with values in an Ictvs [8], it is not known if

the closure of the convex hull of these evaluations is the set of all means on X.

However, as in the case of means with values in an Ictvs, we can prove that means on X

can be generated by means on (S) and viceversa. This is the content of the following

theorem, whose proof is omitted since it is similar to [8,Thm.6].

THEOREM 3.2. If X is a subspace of (S,E) and M is a mean on X, then M induces a mean
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m on (S) satisfying m(x*of) x*(Mf) for every f e X and x* e E* [here, (x*of)(s)

x*(f(s))]. Conversely if m is a mean on (S), then the above equation defines a mean

M on X. If m is left invariant then so is M. Conversely if M is left invariant, then

m is left invariant on the subspace {x*of x* E*, f X} of (S).

An interesting corollary of the above theorem is

COROLLARY 3.2. (Day [2,p.517]). If S and T are left amenable semigroups then so is

their cartesian product ST.

PROOF. Let denote the canonical isometry of (ST) onto (S,(T)) and let ml,m2

be left invariant means on (S) and (T) respectively. Let M be the mean on

(S,(T)) induced by m (by Theorem 3.2) such that Ml(f)(t ml(s+f(s,t)). Since

m is left invariant, so is MI. Now define m m
2

M . It is not hard to check

that m is a left invariant mean on (ST).

4. STATIONARY SEMIGROUPS.

A semigroup S is said to be right stationary if for every f (S), the weak*

closure Z(f) of the convex hull of the right translates of f has a constant function.

Mitchell [4] proved that a right stationary semigroup is left amenable. Generalizing

this, Husain [8] (and Husain and Wong [6,7]) defined a semigroup S to be

stationary with respect to an Ictvs E if for every f (S,E), the weak operator

closure of the convex hull of the right translates of f has a constant map. By using

an analogue of the localization principle of Granirer and Lau [ii], Husain [8] proved

that if S is right stationary with respect to E, then (S,E) has a left invariant

mean. These notions carry over to the present context of means with values in a

Banach lattice yielding similar results. As such we do not present them here and

instead, try to enlarge the set Z(f) (of Mitchell and Husain). One natural way seems

to be to take Z(f) to be the smallest convex sublattice containing the right

translates and closing it in a suitable topology.

Now let E be an order complete AM-space and such that E is the dual of an

AL-space F. Write X B(S,E) and V 1(S,F). By Prop. 3.2 it follows that X V*.

Let Z(f) denote w*-closure of the smallest convex sublattice in X containing all of

the right translates of f. We now have

THEOREM 4.1. If for every f e X, Z(f) has a constant map , then for each f X and

the corresponding e E, there exists a generalized mean M on X such that M(f) .
We present only an outline of the proof of this theorem, since it is similar to

the proof of Mitchell’s theorem 3.1 [4]. (i) If f, g X and P(f) smallest convex
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sublattice containing all right translates of f, then P(f+g) P(f) p(g). (2)

Z(f) is a w*-compact order bounded subset of X. (S) Z(f+g) c_ Z(f) + Z(g). (a) The set

C(f) of all values of constant maps in Z(f) is a w*-compact subset of E and contains

its bounds. (S) If g Z(f), then Z(g) Z(f). (6) If S is right stationary with

respect to E then for every f, g X, C(f+g) C(f) C(g). (7) For f X, let

p(f) sup P(f). Then (a) p(f+g) _< p(f) p(g), (b) p(r f) r p(f) for all non-

negative reals r and (c) p(-f) -p(f). Now let Y be the subspace spanned by any

given f in X and define 0 Y E by O(r f) r . Clearly 0 is linear on Y and _< p.

By the Hahn-Banach theorem [12,p.79], extends to a linear map M X E such that

M p; and M is a generalize mean.

We are unable to show that the M obtained above is left invariant (it seems

likely that, in general, it may not be), as is the case in Mitchell’s and Husain’s

theorems. However it is possible to obtain left invariance if we replace Z(f), above,

by a smaller set W(f) defined below (but still larger than Husain’s Z(f)). Let W

denote the set of all operators T X X such that (l) ITII I, (2) T -> 0, (S) T is

weak operator continuous, and (4) T commutes with left translations. The set W

contains all right translations and is a convex sublattice. Now if for each f X,

the w*-closure of W(f) {Tf TW} has a constant function, then M is left invariant.

(The proof is similar to the one outlined above).

NOTE. Some of the results reported in this paper are based on results included in a

thesis for the Ph.D. at the University of Nebraska-Lincoln.

REFERENCES

i. VON NEUMANN, J. Zur allgemeinen theorie des Masses, Fund. Math 13{1929), 73-I16.

2. DAY, M.M. Amenable Semigroups, Illinois J. Math, I{1957), 509-554.

3. DIXMIER J., Les moyennes invariantes dans les semigroups et leurs applications,
Acta Sci Math {Szeged), 12(1950), 213-227.

4. MITCHELL, T. Constant functions and left invariant means on Semigroups, Trans.
Amer. Math. Soc. iI__9(1965), 244-261

5. RAO, C.R. (= R.RAO CHIVUKULA) Invariant means on spaces of continuous or
measurable functions, Trans. Amer. Math. Soc. i14(1965), 187-196.

6. HUSAIN, T. and WONG, J.C.S. Invariant means on vector valued functions I,
Ann. Seuola Norm. Sup. isa 27{1973), 717-729.

7. HUSAIN, T. and WONG, J.C.S. Invariant means on vector valued functions II,
Ann. Scuola Norm. Sup. pisa 27(1973), 729-742.

8. HUSAIN, T. Amenability of locally compact groups and vector valued function
spaces, Symposia Mathematica 16 {1975), 417-431.

9. SCHAEFER, H.H. Banach lattices and positive operators, Springer-Verlag, New
York 1974.



302 R.R. CHIVUKULA and I.R. SARMA

10. GREENLEAF, F.P. Invariant means on topological groups and their applications,
Van Nostrant Math. Studies No. 16, New York, 1969.

11. GRAINIRER, E. and LAU, A.T. Invariant means on locally compact groups, I1].
J. Math. 15(1971), 249-257.

12. PERESSINI, A.L. Ordered topological vector spaces, Harper and Row, New York 1967.


