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ABSTRACT. It is proved here that an isometry on the subset of all positive functions
of L1 n P (R) can be characterized by means of a function h together with a
Borel measurable mapping ¢ of IR , thus generalizing the Banach-Lamparti theorem

of LP spaces.
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1. INTRODUCTION.
Edwards [1] proves that all bipositive isomorphisms of P s p < @) convolution

algebras of a compact group are induced by bicontinuous isomorphisms of the group.
By changing the algebra isomorphism from bipositive to an isometry Strichartz [2]
establishes the same type of result with the exception of p = 2. Here we consider
isometries of Lln LP (R), p # 2, and give a general form to the Banach-Lamparti
theorem proving the isometry equivalent to a combination of a function h and a
Borel measurable mapping ¢ of R.
2. THE ELEMENTARY LEMMAS.

The norm of a function in Lln LP (R), denoted by ”f"n , 1s defined by

lell, = Nell, + el .

A condition equivalent to the equality of norms of f+g and f-g for positive

functions of Llﬂ P (R) 1is given in the following lemma.

LEMMA 1. Let f, g €L r LP (R) and f, g 2 0. Then

e +ell, =lif-gll, < f.g. =0 a.e.
PROOF. From Royden [3] we have
e +gllp + Il - gll? = 2¢l£ll? + llgli?) <> £z =0 a.e. 2.1)
Now, ||f + gllg = S(f+g)P =SP4+ sgP <= g = 0.

Thus, ||f + gllg = ||f||§+ |lsl|§ <> fg=0. (2.2)
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From (2.1) and (2.2), we get

P flf ollP <=> fo =

e +glll = lle-gllp <> fg=0

= - => fg =0 2.3

or e+l = lle-gll, < e (2.3)
In particular for p =1 (2.3) becomes

e +ell, = ll£ - gll, < fg=0 (2.4)
Addition of (2.3) and (2.4) yields

fg=0 = |le+gll = llf-gll .
Conversely, if “f + g“n = “f - g“n , then

Clle +gll, -l - gll ) + e +gll) -l - sl = o.

Since both of the terms in parentheses are positive, we obtain fg = 0 by (2.3) and
(2.4).

In the next lemma we show that for positive functions 1f Ll

nLP (R) on
isometry preserves the disjointness of supports.

LEMMA 2. Let f, g € L1 n 1P and f, g # 0. Let u be an isometry on L1 n Lp.
Then

(Supp f) n (Supp g) = & <= (Supp Uf) n (Supp Ug) = ¢

PROOF. (Supp f) n (Supp g) = ¢ <= fg =0
= |t +ell, =1lt-gll, (Lemma 1)
= o+ vell , = llue - vell,

<= (uf) (vg) =0

<= (Supp Uf) n (Supp ug) = ¢. O

3. THE THEOREM.

Let 1 <p <o, p#2 and U be a ono-one onto linear transformation on positive
1, LP (R) such that Iluf"n = I]f”n. Then there is a one-one Borel
measurable mapping of R onto itself and a function h such that

functions of L

Uf = h (£ (§)) for all positive f e L' nLP .

PROOF. Let MO denote the family of sets of measure zero. Clearly Mo is a

o-ideal of B, where B is the family of Borel sets.

For the o-algebra

B/MO ={ A | A = Suppf, f positive, f € L1 n 1P},
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Define a map

® : B/M, > B/M0 by

0

p—
®(A) = Supp Ue *x where A = Suppf.

A 3
We shall prove that ¢ is an o-isomorphism.

For this we must prove the following:

(i) ¢(AuB) = ¢(A) u ¢(B)

(1) ®( u A= u ¢ (A)
=1 ¥ qe1 1

(iii) ¢(R) = R
(iv) ®( &) = (3(A)) (R = the complement of A)

(v) ¢ is a bijection

(1) Let A, B €B/M and ANB = ¢. Then there are f, g € L} 1P such that
A = suppf and B = suppg. So (suppf) " (Supp g) = ¢. Therefore by lemma 2 we get

(Supp U £) n (Supp ug) = ¢ 3.1
Since AN B = ¢, we have XAUB = XA + XB’ and therefore

Ue-xzx wE = Ue‘xzx At Ue"‘sz, (by (3.1))
This gives,

Supp Ue-xz)(AUB = Supp Ue_xzxA + supp Ue-XZXB

Thus,
®(AUB) = ¢(A) v &(B)

L
be a disjoint family of members of B/M(> and let A= u A

(ii) Let (Ai)
i=]

ieN 1°
n
then XA = lim z X, . So by linearity of U we obtain
=1 A :

2 2
Ue ~ X, = 1im v X, .
A 1=1 Ay

Therefore we get

—x2 o
Supp Ue * X, = 1im )} supp UX
A A
. i=1
and hence ¢®(A) = u Q(Ai) .
i=1

(1i1) First we show that ©&(A)< ®(B) whenever A <B. For, if A SB then, B is the
disjoint union of A and B-A and XB = XA + XB—A' An application of lemma (2)
gives

—x2 —x2 o2
Supp Ue * XB = (Supp Ue ™ XA) U (Supp Ue X X_ )

B-A
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proving @(B) = ¢(A) v ¢(B-A) which in turn gives
d(A) < &(B) (3.2)

Now in order to prove ¢(R) = R, suppose that R - ¢(R) = E # ¢, and consider
e-xsz e 1! nLP. Since U isonto there exists § € t!n P such thatu § = e—xsz.
Therefore supp Y§ = supp e ® XE = E, giving ¢(A) = E, where A = suppf. Thus we
obtained R - 9(R) = ¢(A) which implies ¢(A) # ¢(R), contradicting (3.2). Hence
®(R) = R.

(iv) Since the sum of the characteristic functions on A and its complement is
unity we easily obtain (supp ve * XA) U (Supp ve * X K) = supp Ue-xz. This implies
®(A) Y &( A) =9(R) and so using (iii) we get ®(A) Y &( A) = R. Further from
®(A) N @( A) = ¢ we obtain ©(A) = ¢( A) 2as required.

(v) 1f we take $(A) = @(lzi) then supp ve * XA = supp ve ® XB and this implies
supp e > X i N supp e © XB = ¢ by lemma (2). Thus A nB=¢ which implies B CA.
Interchanging the roles of A and B gives ACSB so that A=B and thus ¢ 1is
one-one. 2

Now since Y 1is onto, corresponding to e X XA’ there exists g € Ll n P such
that ue * XA = g. Therefore supp ve XA = suppg and ¢(A) = suppg € B/Mo proving
¢ 1is onto.

Now it follows from a theorem of Royden [3] that ¢ 1is a o-isomorphism of B/Mo
onto itself. Thus there is a one-one mapping ¢ of B/M0 onto itself such that ¢

and ¢-1 are Borel measurable and

o(A) = ¢-1 (A) modulo M.

1 P =
Now, consider X[O,l] € L n L¥ and take h1 = U(X[O,ll)' 1f A1 is any Borel set

of R contained in [0,1] then X[O,l] = XAl + x[O,l]-Al' So hl = UXAl +UX

But supp XA is disjoint from (supp X[O 1]-A1) therefore from lemma (2) we get
1 »

[O,IJ-AI.

(supp U XAl) 0 (supp UX[O’”_AI) = ¢

That is U X equals h, on the support UuX, .
Al 1 Al
Therefore U)(A1 =h X supp U XAl

-x2
thsupp u e X
4

h (X, ®)
1
In general if An is a Borel set contained in [n,n+l] where n € Z, then we can

have U)(An = hn(XAn%. Further if A 1is any Borel set of R then there exists a

©

Borel set of An of R for all n such that A= U An’ Am nAn = ¢ whenever
n=_m

m # n.
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Now UX, = V(X UAn)

lim h (x,¢)

n>e

= h(xA¢), where h = lim hn.

n+e

If ¢ is any simple function we have

uy = h(¥(¢)).

Further,functions in L1 n LP(R) can be approximated in norm by a simple function,

and U is norm preserving, we get
uf = h(§(¢)).
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