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ABSTRACT. Sufficient conditions, in terms of typically real derivatives, are given
which force functions to be univalent.
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1. TYPICALLY REAL FUNCTIONS WITH A TYPICALLY REAL FIRST DERIVATIVE.
Let D = {z: |z| < 1}. Rogosinski [1] defined the class, T, of typically real

functions as follows: If feT, then f 1s‘regu1ar on D, f(z) = z+a zz*ooo, and Im{z}

2
= 0 if and only if Im{f(z)} = 0. (See Goodman [2], p. 184.) The last part of this
definition is equivalént to the statement that Im{z} = O if and only if
Im{z}Im{f(z)} > 0. If feT, then f must be one-to-one on the real interval, (-1,1).
So, if feT, if z,2'eD with z » 2', and if f(z) = f(z'), then Im{z}Im{z'} > 0. These
establish the following:

LEMMA 1. Let feT. Let D' = DN {z: Im{z} > 0} and let D = DN {z: Im{z} < O}.
Then f is univalent on D if and only if f is univalent on each of D* and D
separately.

The notion of a function which is typically real on D has nothing to do with
its normalization. In what follows, it is convenient to say that a function, g,
regular on D, is typically real on D if the following holds: Im{z} = 0 if and only
it Im{g(z)} = 0. This is equivalent to saying that g is typically real on D
provided that, for xe(-1,1) and for zeD, then Im{z} = 0 if and only if
g'(x)Im{z}Im{g(z)} > O.
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As is known, it is not necessarily the case that a function in T is univalent
on D, e.g., f(z) = z*z3. The following will show, however, that a simple additional
requirement on functions in T will insure such univalence.

DEFINITION 1. Let T' = {feT: f' is also typically real on D}.

Barnard and Suffridge [3] have shown that if f(z) = z*a222+~~- € T', then |a2|

< (3w+2)/2n = 1.8183+++ and that the result is sharp. We show the following:

THEOREM 1. If feT', then f is univalent in D.

PROOF. It is enough to show that f is univalent in each of D+ and D as
defined in Lemma 1. Since f' is typically real in D it follows that f"(0)Im{f'(z)}
> 0 for ch’. Hence, f' maps the convex set, D*. into a half-plane whose boundary
passes through the origin. By a result of Noshiro [4] and of Warschawski [5], f is
univalent on D'. (See Goodman [2], p. 88.) Similarly, f is also univalent on D .

2. TYPICALLY REAL FUNCTIONS, ALL OF WHOSE DERIVATIVES ARE UNIVALENT.
In [6], Shah and Trimble introduced the class, E, of functions, normalized in
D, such that feE if and only if f(N) is univalent in D for n = 0,1,2,°++. ([7]
provides a survey of results about E.} Among other things, they showed that if feE,
then f is entire. Here, we wish to study results about functions in E which are
typically real.
DEFINITION 2. Let ER be those functions in E such that if f(z) = z+a

z2+---,

2
then a, is real for n = 2,3,+++. Let ER be those functions which are uniform limits

on compact subsets of D of sequences in ER. Let ERP be those functions in ER such
that a > 0 for n = 2,3,---,

THEOREM 2. feER if and only if (™

PROOF. If every f(n)
is univalent on D. Hence, feER.

is typically real on D for n = 0,1,2,°°-,
i{s typically real on D, then Theorem 1 implies that each
£(n)
On the other hand, if a function, univalent on D, has real Maclaurin
coefficients, it is well-known that the function is typically real on D. Hence, if
feER, then £(M

LEMMA 2. EE - ER is the set of polynomials with real Maclaurin coefficients

is typically real on D for n = 0,1,2,¢°".

such that each derivative of each polynomial including the polynomial itself, is
either constant or univalent on D.
PROOF. Let f € (EE - ER). Then there is a sequence, (fk}k:1, in ER which

converges to f uniformly on compact subsets of D. Since the Maclaurin coefficients
of each f, are real, the Maclaurin coefficients of f must also be real. If

k
ne{0,1,2,+++}, then [f‘((n)}k:1 converges to f(n)

(n)

uniformly on compact subsets of D.

(n) is

univalent on D for all n, then feE, which is impossible. Hence, there is some N
such that f(N) is constant on D. So, if n > N, f(")(z) =0 on D. It follows that f

By Hurwitz's Theorem, f is either univalent or constant on D, If f

is a polynomial of degree at most N.
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Now let P be a polynomial with real Maclaurin coefficients such that each
derivative of P, including P itself, is either constant or univalent on D. For

ke{1,2,°+°}, let re = 1-1/(k+1). Let g(z) = (e"z—1)/n. (Note that geERP.) Let N

be the degree of F. Let lék]k:1 be a sequence of positive numbers tending

monotonically to 0. Define

P(rkz)takg(z)

Pty

Fk(z) =

Then {Fk}k:1 converges to F uniformly on compact subsets of D. We now show that

erER for all k.

The Maclaurin coefficients of each F, are all real, so it is sufficient to show

K
that, if ke{1,2,-++} and if ne(0,1,2,++}, then Fi")

then F&n)(z) = Gkg(n)(z)/(rk+6k). which is univalent on D. Since rkNP(N)(z)/(rk+6k)

iN) is also univalent on D. Suppose n < N. To show that Fin)

(n)
Kk

{z: |z| = p}. Let 0 < p <1 and let |z| = |u| = p, z » w. Recall that, if h is

univalent on D, then

is univalent on D. If n > N,
is constant, F is

univalent on D, it is enough to show that, if 0 < p < 1, then F is one-to-one on

n(z)-h 1-0° [ (h(2)-h(0)) (h(w)=-h(0
> o
Z-w - 0 |h'(0)|
5 10| (1-p)
- (1+p)3

(See Duren [8], p. 127.) So,

rf{"’(z)-ﬁﬁ“’(w)i . l P (r,2)p ™ (r 0
Z-Ww = r +§
k 'k

z-w |

Z-w

6'( I g(n)(z)-g(n)(m)_
k

N . (n+1) _ s
5 (1/2) |P (0)](1-p) 1 max Is("+1)(c)|

1*61 (l*p)3 (172) |Cl'0
, 2 [P0y (1-g) 25 oNeT
2 148 3 11‘9-
1 (1+p)

(n)

Choose 6‘ so that this last expression is positive for 0 < n < N. Then Fk will pbe

one-to-one on {z: |z| = p}. The proof of the lemma is done.
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In what follows, it is convenient to write functions in EE as z + Zkrzbkzk,

even though some of them may be polynomials.

THEOREM 3. Let feER and geER. Let Ae(0,1). Suppose f(z) = z+I, ".a zX

k=22k?
g(z) = 2+, 7.b 2. Assume a b, > 0 for all k. If h(z) = Af(z) + (1-\)g(2), then
heER. Hence, ERP is a convex set.

PROOF. Since a b, > 0, the signs of R0y, £* 0y, ana g™ (0) are

all the same. So, if zed, K™ (0)im(z}In(th™ (z)} = ™V (O)Imiz}Inie™ (2)} +
(1—A)h(n*1)(O)Im{z}Im{g(n)(z)} > 0 if and only if Im{z} = 0. Hence, h(n) is
bk > 0 and so [Af +

and

typically real on D. By Theorem 2, heER. If f,geERP, then a,

(1-A)gl) € ERP, i.e., ERP is convex.

REMARK. Suffridge [9] has shown that, if feERP and if f(z) = 2*32224-0-, then

< n2k/(2k+1)! for k = 1,2,°++ and a K < 232w2(k_1)/(2k)!. The inequalities

2
is necessarily involved in the bounds for the

B2k+1

are sharp. It is interesting that a,

even coefficients but not for the odd.
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