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generated by nilpotents or multiplicatively generated by idempotents and nilpotents.
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1. INTRODUCTION.

In a Boolean ring, every element is trivially a product of idempotents. On the

other hand, in a nil ring, every element is trivially a product of nilpotents. This

motivates the study of the structure of a ring, which as a seml-group, is generated

by its idempotents, or is generated by its nilpotents, or more generally, is

generated by its idempotents and nilpotents. Indeed, we prove that a ring which is

multiplicatively generated by its nilpotents is nil if it is Artinian or if it
m m+l

satisfies the polynomial identity x x f(x) (f(x) is a polynomial with integer

coefficients). We also prove that if R is a ring which is multiplicatively

generated by its idempotents and nilpotents such that the set N of nilpotent

elements is commutative, then N forms an ideal of R and R/N is Boolean. We

also give examples to show that our conditions are essential for the validity of our

theorems.

We start with the following definitions, the first of which was introduced in [I].

DEFINITIONS. A ring R is called an 1-ring if as a semigroup R is generated

by its idempotents. A ring R is called an N-ring if as a semi-group R is

generated by its nilpotents. R is said to be an Nl-ring if as a semlgroup R is

generated by its idempotents and nilpotents.

The following two theorems were proved in I].

THEOREM A. Let R be an 1-ring with identity. Then R i__s Boolean.

THEOREM B. Let R be a finite 1-ring. Then R i__s Boolean.

REMARKS.

i. A homomorphic image of an 1-ring, N-ring, or an Nl-ring is an 1-ring, N-ring, or

an Nl-ring.

2. If R is an N-ring with identity, then R {0}.

3. Trivially, every 1-ring and every N-ring is an Nl-ring.
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4. An 1-ring need not be Boolean as shown in [I]. An N-ring need not be nil (see

Example below). An Nl-ring need not be neither Boolean nor nil (see Example 2

below).

2. MAIN RESULTS.

In preparation for the proofs of our theorems, we start with the following lemmas.

Lemma is known but we give its proof for completeness.

LEMMA 1. Let R be a ring such that for some positive integer m, and some
m m+l

polynomial f(x) with integer coefficients, x x f(x) for all x i__n R. Then

xm(f(x)) TM
is an idempotent of R for all x i__n R.

m m+l
x
m xm+2 m 2m

PROOF. x x f(x) xf(x) f(x)). Continuing we get x x

(f(x))
m

which implies that e xm(f(x))m is an idempotent.
m xm+IfLEMMA 2. If a rin R satisifes the polynomial identity x (x) then the

Jacobson radical J of R is nil.

PROOF. Let x e J. By Lemma I, xm(f(x)) TM
is an idempotent element in J. So

m m m 2m )m 0 for every xx (f(x)) 0 and since x x (f(x) (Lemma I), we obtain x
m

in J. So H is nil.

In [lJ, it is proved that a finite 1-ring is Boolean. In the following two

theorems we study the analogous case for N-rings. Indeed, we prove that an N-ring R
m m+l

is nil of R is Artinian or if R satisfies the polynomial identity x x f(x).

THEOREM I. Let R be an Artinian N-rin. Then R is nilpotent.

PROOF. Let J be the Jacobson radical of R. Suppose J # R, then R/J (being

semisimple Artinian) has an identity. So R/J is an N-ring with identity (Remark I).

Thus R/J {0}, by Remark 2. This contradicts our assumption that J # R. So

R J, and hence R is nilpotent, since J is nilpotent in an Artinian ring.
m m+l

THEOREM 2. Let R be an N-rin satisfying th___e polynomial identity x x f(x)

(m i_s positive and f(x) is a polynomial with integer coefficients). Then R is
nil.

PROOF. By Lemma 2, the Jacobson radical J of R is nil. R/J being semisimple

is semiprime, and hence R/J is a subdirect product of prime rings R Each non-
m xm+ifzero prime ring R satisfies the identity x (x) and hence by Theorem 1.4.2

of [2], R has a nontrivial center. Let c # 0 be a central element of R
m mBy Lemma i, e ca(f(ca)) is an idempotent of R and hence e is a central

m 2m
idempotent of Ra. ea # 0, otherwise ca ca (f(ca))m 0 which contradicts the

fact that c
a

is a nonzero central element of a prime ring and cannot be a zero

x x 0 for all x R Sodivisor by Lemma 2.1.3 of [3]. But e
a

R e
a a a a a

e x x 0 for all x in R and hence R has an identity element. So R

is an N-ring (Remark I) with identity. So R 0 (Remark 2). This implies that

R/J {0}, and R J is nil.

We now give an example to show that Theorem need not be true if R is not

Artinian and Theorem 2 need not be true if R does not satisfy the identity
m m+l

x x f(x). The ring used in the following example was used in [I] to show that

an 1-ring need not be Boolean.

EXAMPLE I. Let D be any ring with identity, and let R be the ring of all

matrices over D in which at most a finite number of entries are nonzero. Let

x be any element of R. Then, for some positive integer n and some nxn matrix
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A over D we have

A is nxn, O’s are zero matrices.

n

Let S
n

T A O’s are zero matrices.
0

0

It is easy to verify that S and T are nilpotent elements, and X ST. Thus R

is an N-ring which is not nil since is not nilpotent. This example shows
0 0

that we cannot drop the hypothesis that R is Artinian in Theorem or the hypothesis
m m+l

that R satisfies the identity x x f(x) in Theorem 2.

Next we study the structure of certain Nl-rings. The following example shows that

an Nl-ring need not be neither Boolean nor nil.

Example 2. Let R

over GF(2). Trivially, R is a finite Nl-ring which is neither Boolean nor nil.

In example 2 above, the Nl-ring R has the property that the set N of nilpotent

elements forms an ideal of R and R/N is Boolean. This motivates the study in the

next theorem. Indeed, we prove that an Nl-ring will have this property if the nil-

potent elements of R commute.

THEOREM 3. Le__t R be an Nl-ring such that the set N of nilpotent elements o__f
R is commutative. Then N is an ideal of R and R/N is Boolean.

PROOF. If R has no nonzero idempotents, then R is multiplicatively generated

by nilpotents only. So R N is nil since N is commutative, and the theorem

follows. So we may assume that R has nonzero idempotents. Let e be any nonzero

idempotent of R and let x be any element of R. Clearly, (ex exe) N and

(xe exe) e N. Now, since N is commutative

e(ex exe) (xe exe) e(xe exe) (ex exe) 0.

2
This implies that ex -exexe 0, and hence

(i) (exe) 2 2
ex e.

Using induction, (I) implies that

2
n

2
n

(2) (exe) ex e for all positive integers n.

Let a e N. Then using (2) we obtain

(3) eae e N for every a N.

Since N is commutative, N is a subring of R. So using (3) and the fact that

ea eae N and ae eae e N we get
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(4) ea e N, ae N for every a e N and every idempotent e.

Now since R is multiplicatively generated by idempotents and nilpotnets and since N

is commutative, (4) implies that

(5) N is an ideal of R.

Let x x + N be any nonzero element of R/N. Since R is an Nl-ring, (5) implies

that either x e N or

Soe e 2, en.
x e e

2 en for some idempotent elements

x e e
2 en + N (el + N) (e2 + N)...(e

n
+ N),

and hence

(6) R/N is an I-ring.

If is any idempotent element of R/N, then ( ) and ( e) are

nilpotent elements of R/N. But R/N has no nonzero nilpotent elements. Thus

ex exe xe for all x in R/N and hence

(7) The idempotents of R/N are central.

Now, by (6) and (7), R/N is 1-ring with central idempotent elements, and hence R/N

is Boolean. This completes the proof of Theorem 3.

We now give an example to show that Theorem 3 need not be true if the nilpotents

of R do not commute.

EXAMPLE 3. Let R be the ring of Example i. Then R, being an N-ring, is an

Nl-ring. Clearly, te set N of nilpotent elements of R is not an ideal of R.

This example shows that we cannot drop the hypothesis that the nilpotent commute in

Theorem 3.
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