
Internat. J. Math. & Math. Sci.
VOL. II NO. (1988) 121-128

121

COMPUTATION OF DISPLACEMENTS FOR NONLINEAR
ELASTIC BEAM MODELS USING MONOTONE ITERATIONS

PHILIP KORMAN

Department of Mathematical Sciences
University of Cincinnati
Cincinnati, Ohio 45221

(Received September 2, 1986)

ABSTRACT. We study displacement of a uniform elastic beam subject to various

physically important boundary conditions. Using monotone methods, we discuss

stability and instability of solutions. We present computations, which suggest

efficiency of monotone methods for fourth order boundary value problems.
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1. INTRODUCTION

We study the displacement curve u u(x) of a uniform elastic beam of length

6, supporting a distributed load of intensity q(x,u(x)). This load causes the

beam to bend from its equilibrium configuration along the x-axis. For small

displacements we have-

u q(x,u) _= f(x u) 0 < x < 6, (I I)EI

where E is Young’s modulus, is the moment of inertia, see e.g. [1]. That is

we study the equation (l.l) with appropriate two-point boundary conditions. We
show that the monotone iteration scheme and other monotone methods are appli-

cable and provide an effective computational tool, as well as means of proving

existence theorems.

Monotone methods are usually associated with maximum principles. Clearly,

there is no weak maximum principle for u f(x), since condition f(x) 0 does

not preclude u(x) from having extreme points inside of any interval. However,
if we add the boundary conditlons

u(O) u’(O) B, u() :y, -u’() (l .2)

with =, B, y, O, then condition f(x) 0 does imply u(x) 0 (since the

Green’s function in (2.2) is positive). This is an example of inverse-

positivity, a property of boundary-value problems, rather than of equations, see

[2,3]. In [3] we applied monotone methods to general inverse-positive problems,
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including (I.I) (1.2). In this paper, we present some further results, and

report on computations ith numerous nonlinearities f(x,u). The main results of

this note are the theorem 3, and our discussion of stability leading to the

theorem 4. Theorems and 2 are essentially known, and are illustrated here

computationally. For a previous application of monotone methods For this model,

see J. Schroder [4], where a rather involved splitting method was used. Most of

the results in this paper were stimulated by computations (and the Fast con-

vergence that we encountered).

Our results apply to other physically important boundary conditions, see

Remark 2, as well as to biharmonic equations in higher dimensions, see [3].

Throughout the paper @ will denote subsolution, -supersolution,

lUIco max lu(x)I.
0(x(,

2. GENERAL RESULTS

The following theorem was proved in [3].

Theorem 1. Consider the problem (one-dimensional)

u f(x,u) 0 < x < { (2.1)

u(o) , u’(o) B, u() y, -u’() .
Assume the following for 0 < x < .

(i) There exists a supersolution e C4 e fCx ), (0)
’(0) B, () y, -@’() 5, and a subsolution (x) defined by reversing the

above inequalities. Moreover < .
(ii) f is continuous, increasing in u for < u < .
Then the problem (2.1) has a C4 solution u(x), and < u < @. Moreover,

starting with or we get two monotone sequences of Picard iterations.

Theorem 2. For the problem (2.1) starting with some continuous function

Uo(X) define a sequence of approximations {Un(X) by the formula

2
3 x2 2 x3) + Bx(l x + xUn(X) m(l 7 + 2"E" (2.2)

2 2
+ }x.m 6(3-2x) + x (-x)

+ [ G(x,{) f({,Un_l({)) d{,
0

where G(x,{) is the Green’s function for u with the boundary conditions

u(O) u’(O) u() u’() O, which is given by the formula (see [5])

x2 2G(x,{)
3 (-) (3 2x Cx) for x ( 5, G(x,{) G(5,x). (2.3)

Assume the following for 0 x .
(i) u0 < u u0 u2.
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(ii) f(x,u) is continuous, decreasing in u for u0 < u < u I, and there is a

constant fo > O, such that If(x,u) f(x,v)I ( foIU-Vl if

u
0 u, v < u

4
(iii) fo 31T6 < I.

Then the problem (2.1) has a solution u(x) C4, lU-Unl Co 0 as n

(uniform convergence), and moreover

u 0 < u2 u4
( u u3 uI. (2.4)

Solution is unique in the order interval [Uo,Ul].
Proof. Relations (2.4) easily follow by induction. To prove convergence

write

Un+l(X) Un(X) f G(x,) [f(,Un(E)) f(,Un_l(F.))]dF.,
0

and hence

max lUn+l(X) -Un(X)l fo max . G(x,) dE max lUn(X) -Un_l(X)l
O<x<, x 0 O<x<,

An elementary computation shows that. .4
max ,1’ G(x,E)dE G(.t/2,E) dE 3-8
xO 0

(2.5)

To prove uniqueness it suffices to write the equation for the difference of

two solutions w(x), multiply it by w and integrate by parts twice.
0

Assume now that f(x,O) 0 and B y O. Then (2.1) possesses a

trivial solution u O. Next, we discuss existence of a nontrivial solution.

Theorem 3. Lef f(x,u) be continuous function increasing in u for 0 < u < (R),

0 < x < 2, f(x,u) > 0 for u > O, and (uniformly in x).

u lim f(x,u) O. (2.6)lim+ f(x, u) uu/O U++O,,

Then the problem (2.1) has a positive solution, provided m, B, y, a > O.

Proof. Let 0 (x) > 0 and 0 > 0 be the principle eigenfunctlon and eigen-

value for u ;u, u(O) u’(O) u() u’() O, whose existence is

guaranteed by the Krein-Rutman theorem (see [3] for details). Let Co(X) and

u 0 be the same for u uu, u(-p) u’(-p) u(+p) u’(+p) with p > O.

Notice, o(X) > 0 for o < x < . Now it is easy to check that o(X) and

Mo(X) are sub and supersolutions, provided ,p are sufficiently small and M is

sufficiently large.

This theorem covers in particular the sublinear nonlinearities. For the

superlinear case, we state the following conjecture.

Conjecture. Assume the conditions of the theorem 3 with (2.6) changed to
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ulim f(x,u)
lim O. (2.7)

u/O+ U
U+

Then the problem (2.1) has a positive solution.

We expect this solution to be unstable. We discuss the concept of stability

next.

For the equations of second order, like Au=f(x,u), it is known that if solu-

tion can be computed by the monotone iteration method, then it must be stable.

The proof of this result, as well as the definition of stability itself, makes

use of t6e maximum principle for parabolic equations, see e.g. [6]. Since we

do not know of any maximum principle for u t + Uxxxx we have to generalize the

concept of stability. We state it for a general inverse-positive operator L,

see e.g. [2,3]; in our case Lu u with the boundary conditions of (2.1).

Definition. Solution u(x) of Lu f(x,u) with f continuous and increasing

in u, xRn, is called stable if for any > 0 there exist sub and super-

solutions (x) and @(x) with 0 < lu @ICO + lu ICO , such that u @.

(If this condition holds only with @ u ( u) we say that solution is stable

from below (above)). Solution is called unstable if in the conditions above

<u.
It is easy to see that the concepts of stability and instability are

mutually exclusive for an isolated solution. (Our concept of stability

corresponds to the ’strong stability’ in H. Matano [7], and it implies stability

for elliptic equations of second order, see Proposition 4.2 in [7].)

Theorem 4. The positive solution of

u u p u(O) u’(O) u() u’() 0 p > (2.8)

must be unstable if it exists, and hence not computable by monotone iterations.

Proof. If u is a solution, then v u satisfies v vp (-P)up.
Hence v is a supersolution for < l, and a subsolution for > I.

On the other hand, it is easy to see that the trivial solution of (2.8) is

stable from above (take O, 0; if p is an odd integer take -0’
giving two-sided stability). Not surprisingly, it persists under small one-

si ded perturbations.

Proposition I. Consider the problem

u up + f(x,u) u(O) , u’(O) B, u() y, u’() 6. (2.9)

Here f is continuous, increasing in u; f(x,u), , B, Y, 6 O; f(x,O) ( O.

Then for , , B, y, 6 sufficiently small, the problem (2.9) has a non-

negative solution.

Proof. With $0 as defined in the theorem 3, choose z > 0 so small that

> TPoP for 0 ( x ( (with p > 0 chosen so small that 0(0) > O, 0() < 0).

After fixing z we see that T$0 is a supersolution for our problem, provided
, , B, y, 6 are sufficiently small. Take 0 for a subsolution, and apply

the theorem I.
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In [3] we discussed some general non-existence results which can be applied

to (2.1). In particular, we had the following result which will be illustrated

compu ta ti ona y.

Proposition 2. Consider the problem (p > l)

u u p + u(O) u’(O) u() u’() O. (2.10)

x P
Then for > (O)-T (p-l) the problem (2.10) has no positive solution" 0

k
4
k 4.7300, see [5, p 146].as defined in the theorem 3 is given by 4

0
Our next result provides a simple error estimate.

Proposition 3. For the problem (2.1) assume conditions of either theorem

4
or 2 Denote GO max [ G(x )d{ -4O<x< 0

Let f(x,u) be Lipshitz in u uni-

formly in 0 < x 2, with Lipshitz constant fo for u (u0 < u < u l) in

case of theorem I(2). In case of theorem assume additionally that Gof0 < I.

If u denotes the solution obtained by monotone iterations (u
0 or in

the theorem l), then
n nGof0lU-UnlcO < lu -Uol C (2 ll)

-Gnfn
O0

Proof. Follows by writing u-u n =k Z=n (Uk+l uk)’ and estimating each term

as in the theorem 2. (Notice that for the theorem we get convergence of both

monotone sequences to the same solution.)

Remark I. In the conditions of the theorem assume that f f(u), f(O) > O.

Then we can start with a subsolution u0 O, compute u x2(x-) 2 and

hence by (2.11)

4lu-unlc < f(-" T
n n f(O) n

foGo fo (4)n+l
-fnGn -fnGn
O0 O0

(2.12)

which explains the fast convergence that we encountered in our experiments

(=2). On the other hand, we see from (2.12) that convergence is slower, in

general, for larger , and it cannot be guaranteed beyond a certain value of

This is no surprise, since e.g. the problem u u2 + l, u(O) u’(O) u()

u’() 0 has no solution for sufficiently large, as can be seen by rescaling

x {, and then applying the theorem 4 in [3].

Remark 2. Finally, we mention that all our results hold for other physi-

cally important boundary conditions for Lu u since they only depended on

the positivity of the Green’s function. Next we list two such problems with

corresponding Green’s functions (see [5]), whose positivity is easy to check.

(I) Lu u u(O) u"(O) u() u"() O.
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G(x,C) - x(C- )(x2 +C 2 2) for x < F., G(x,) G(,x).

(II) Lu u u(O) u’(O) =u() u"() O.

2
G(x,C) x (.-) [3C2_62+(_

123
2 + 2C + 2E2)x] for x < , G(x,) G(,x).

3. Numerical Experiments

To compute the solution of (2.1) we were using the formula (2.2) with

u
0 being either sub or supersolution, or as defined in the theorem 2. In our

examples we took 2, m B y a O, and computed solution at 200 mesh

points with the uniform step size h O.Ol. The integral in (2.2) was approxi-

mated by the trapezoid rule. A PASCAL program was written, and the computations

were performed with six (sometimes twelve) decimal digits" changing the function

f(x,u) required changing of only one line of code.

One remarkable thing common to all the experiments was fast convergence.

For example, for f u 2 + and a subsolution @ 0 it took just 5 iterations

for all twelve decimal digits to stabilize (and the errors of integration in

this and all other examples never interfered with monotonicity of iterations).

The CPU time on VAX-II was 6.2 seconds. To check that convergence is to actual

solution, we started with a supersolution @ 0.05 x2(2-x) 2 and obtained the

same answer in 5 iterations. Similar computations (with six decimal digits)

were performed for other f(x,u), and some of the results are presented in the

Table I. (The remainder term of the trapezoid rule can be"easily estimated in

each case. Indeed, estimating Un+ Gxx(X,) f(,(l)d, we can

B2easily estimate [G(x,{) f({,Un())]. In practice, however, it is much

easier just to check that the iterations starting with @ and lead to the same
result, and decrease h if necessary).

When we tried f u2 + 300 with subsolution O, the iterations diverged
(to + (R)), which illustrates nonexistence of solution for this equation, in

accordance with Proposition 2. We also considered f u 2 + au. For
constants a and a lO one gets alternating convergence as in (2.4)

(starting with u0 0), but for a lO0 the iterations diverged. This is

because the condition u0 < u2 of the theorem 2 is violated.
What happens when f(O) O, but one expects existence of a nontrivial solu-

tion (in addition to the trivial one). For f(u) lOu we were able to compute
a nontrivial solution, see Table l, thus illustrating the theorem 3. For
f(u) u2 our attempts to compute a nontrivial solution failed. This led us to
Theorem 4, which shows that the positive solution must be unstable, if it

exists, and hence not computable by monotone iterations.

Finally, we mention that by changing the Green’s function, we performed
similar computations for the problem ou" f(x,u) u(O) u() O. We
obtained similar results with considerably slower convergence. The reason is
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that our Green’s function in (?.3) is "small". One measure of its smallness is

given in (2.5). Another one is derived by an elementary computation"

3

max G(x,.) G(/2, /2)

Table I. Accuracy lO -6" ,-subsolution, -supersolution; number of iterations

refers to the larger one in case of two monotone sequences.

f(x,u) @ u0 Type of Convergence # of Iterations

u2+l 0 O. 05x2 (2-x) 2 Monotone

u4+x 0 O.Ix2(2-x) 2 Monotone

xsin2u+l 0 O.125x2(2-x) 2 Monotone

u2+300 0 Divergence

u2+l -I Ou 0 A terna ti ng

u2+l -l OOu 0 Divergence

lO/- O.O0002x8(2-x) 8 Monotone
O.18xz(2-x) 2

l-xu 0 Alternating

-xCue 0 Alternating

0 Alternating

U+COS’

5

3

4

II

22

6

8

6
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