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ABSTRACT. Let (Xn) be a sequence of m-dependent random variables, not necessarily

equally distributed. We give a Berry-Esseen estimate of the convergence to normality
‘of a suitable normalization of a U-statistic of the (Xn). This bound holds under

moment assumptions quite weaker than the existence of third moments for the kernel.

Since we obtain the sharpest bound, the order of the bound can not be improved.
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1. INTRODUCTION.
Let (x1,x2,...,xn) be random variables (r.v.). A very important and common

class of statistics is the class of U-statistics, of the type
U = by ROX peeenX )
1Si1<...<1k$n 1 k

where h is a measurable symmetric function which is called a kernel. (For notational

convenience, we do not consider the average of h but the sum of its values. This
will not make any difference since we will normalize U latter.) In the case of an

independent identically distributed (i.i.d.) sequence (Xi)’ it has been shown by

various authors that the distribution function of normalized U-statistics converges

to standard normal distribution function with the rate of n—”z, the latest and

sharpest result being due to R. Helmers and W. R. Van Zwet [1]. These authors
studied U-statistics of order 2, viz.,

U= Y h(X,, X
18j<ksn

But as they pointed out, their results can be extended to any order and to the

K

multi-sample case.
In this work, we relax the independent and equi-distributed assumptions about

the sequence (Xi) of r.v.'s. Consider a m-dependent sequence (Xi) of r.v.'s, i.e.
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. < -
for each 1 £ s < n-m, the sequence (Xi)iSS and (xi)i>s+m

are independent of each
other, and which is no% necessarily equi-distributed. Then we obtain a universal
Berry-Esseen bound for the convergence of the suitably normalized U-statistic to
standard normal. This bound involves the same moments as in the Helmers and Van
Zwet's result, and leads the best rate of convergence for the independent case. We
deal only with the one sample case of order two; but there is no doubt that the same
methods could extend to the general case.

2. RESULTS.

Consider a fixed sequence of m-dependent r.v.'s, X1,...,Xn and a fixed

measurable function h: R2 + R. We want to study U = ) h(Xj, Xk). Let us denote

1sjsksn
by Ei the field generated by Xi. Then the sequence Ei is m-dependent, in the sense
that for i £ s < n-m, the two ¢-fields v Ei and V 'E are independent (where
iss i>s+m i

v Ei denote the ¢g-field generated by the Ei’ iel). It is conceptually more elegant,
iel

and also more convenient to look at h(X Xk) as a function h; which is F. V F

Jak J k
of m—dependent o¢-fields and consider for

J’
measurable. So we fix a sequence (Ei)1SiSn

1 €jJ SksSnr.v. which are Ej V F, measurable. (Here we allow the possibility

hj,k —k

j = k since the proof will be the same and since it is convenient and allows to
extend the result to V-statistiecs.)

For j s k, let

= E(h F = E(h F.).
g5,k ™ By i |B B,y = By [Ep)
Let f, = 7 g . Let 3/2 < p < 2. We make the following assumptions:
J 15jn 3.1
For any 1 £ j Sk $n, E(hj k) =0 (2-1)
’
For any 1 £ j < k S n, hj K has a moment of order p. (2-2)
’

For any 1 £ i $n, f1 has a moment of order 3. (2-3)

For 1 ¢ <k Sn, let Y, = h - - i e
! ’ 3ok T Pk T Bk T By

Let G = V F, G = V F..
Volimilz2 Y 2 fik] 22t

that if k 2 j + 2 we have E(Y,  |G,) = E(Y, |G ) = 0. Moreover, if k = j + 1 and
3,kt=1 Jkl=2

Suppose now m = 1,

It is easily checked, and fundamental,

G = v Fi’ we have E(Y

1|8 = 0. We set
1603-1,5,3+1,3+2) 3,31

n n
s= 1f,0 -85 L=-03 JE|r |3
i=1 " -1

For a ¢ {1, 3/2, p}, we set

-a a —a a
M o=0° ] ElY, |7, M =0 ° ] Eln |
a gk DX a jk o 20K
B 2/3 voo o 1273
Moo= My, 07, MYo= (M3),)
-3/2 3/2 , -3/2 3/2
N=go¢ ) Ele W75 N' = ¢ E|hj’k| .

0<k-js3 0<k-js3
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Let ¢ denote the distribution of the standard normal law. The main result is as
follows:

THEOREM A, Assume m = 1, There is a univer=al constant K such that

sup |P(Uo < ) - a(e)] s k(L + M?3 e Y3 4 (10g L-1)p/2M6
t
e3P L win?y,
P 1
Let us investigate this theorem in the case that hi 5= h(Xi, Xj) and the Xi
’

. . 2,-1/2

are i.i.d. If g = (Eh(x1,X2)|X2) and if we set a1 = (Eg ) , and for t ¢ [1, 3]

(resp. [1, pl) we set b, = E|g|t, c, = E|h , we get the bound

It
1,2

)2/3 . n~2/3(c )2/33 1/3a5/2

K{n-1/233b . n-1/2a3(b e ;

3 3%3/2 3/2

+ (1/2 log n - log 33b3)p/2n2-3p/2apcp

+

n1/3"p/2ab—2pc b5/3-p . n-1/2a7c b2}.
PP 173

For p = 3/2, this bound is O(n_1/ulog3/un) and for p = 5/3, it is of the best

-1/2

possible order 0(n ). A bound of the same order is obtained in the stationary

case.
It is possible with our method to find many other bounds of the same type. An

example ~f possible variation is given in section 6. More importantly, the term

5/3- _
ML’ 3-p can be replaced by a term of the form M")LY P ofor any Y < 2 (but the

constant K will grow very fast when Y gets close to 2). It is also possible to

replace the term M;L2 by M;Lq for any q > 0, (but then K will grow with q). Hence it

2/3 l)p/2

can be said that the main terms in theorem A are L, M'L and MBlog(L- if p s

5/3 or MéLS/B—p if p > 5/3.

Theorem A can also be used to give bounds in the case m > 1., To do this, we

proceed by blocking. More specifically if for 0 s i < [n/m], we set gi = V Ei’
JeJi

where Ji = {j: im < j £ Inf((i+1)m, n)}, the fields G, are 1-dependent. Moreover, if

i
h = )

3k for j £ k, we have U =
’ ler,E'eJ

hl,l" , and it is possible
k
to apply theorem A to this U-statistic. (It is very useful at this point that we did

not assume that h3 « is of the form h(xi, Xj) and to allow the case J = k!). The
’

quantities involving the moments of the functions (hj

h'
0sjsksCn/m] J°K

k) can easily be expressed in
’

terms of the moments of the h However, this does not seem to be the case of the

L,8""
normalizing factor. This is why we do not state formally the result whenm > 1.
3. METHODS.

We shall use three basic techniques, viz. the method of R. Helmers and W. Van
Zwet [1], a method of V. Shergin [2] to deal with m-dependent r.v. and his result

about the convergence to normality of a sequence of m—dependent r.v. and an estimate
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its -

by the author of |Ee “”| where S iz a sum of m-dependent r.v. [3] (which is alzro
based on Shergin's technique).

We shall denote by K1,K9,... universal constants. No attempt has been made to

find small numerical values: their choice is made crudely, to check the consistency
of the construction.
We suppose m = 1. We shall use Esseen smoothing inequality [4].

- - T - -
sup|P(Uo 'st) - o(t) | S K (T ' } lt] " E exp(itug 1) (3-1)
t -T

- exp (-tz/z)l at}.

Let &= o | y Y. . We nhave
155<ksn 37K

. -1 -
|E exp(itUo ') - exp(‘t2/2)| s |E exp(ito 1S)(exp(it.A)—I)l

+|E exp(ito_1S) - exp(—tz/z)l.
The second term will be taken care of by Shergin's theorem. Considering that

Ieit— 1 - it] s 2|t|P, we have

IIE exp(ita”'S)(exp(itA)—1)| < |t]|ECa exp(ito"s))l + 2|t|PE|a|P. (3-2)

We shall evaluate these two terms directly. The above evaluation will be used

for t £ 10log L—1. For t 2 10log L-I, we have exp(—t2/2) s LS, and so it is enough

to bound |E exp(itUo—1)|. Let I be an interval of [1, n], (to be chosen
appropriately). Let

-1
A= Y. , A, = A - A

‘ L Y5k

18j<ksn
J,kél

We have, by expanding exp(itAZ).
|E exp(itU0_1)| < |E exp(it(o_1S+Ai)) (3-3)

+ [t]|E apexplita 'sea)| + 2]e|PE|a,)P

and we shall evaluate these three terms. In these evaluations, we shall several

times encounter the same difficulty. Say, for example we want to estimate

Elexp(it(o‘1S+A1))|. Let 8' =} f,. Then S' depends on the F, for iel. Moreover
iel

0_1(5-8') + A, depends on the F, for i£I.

1
If we knew that the F

i

; were independent, we would have

|E exp(it(o ' s+a, )| s |E exp(ita 's")|

for which good estimates are known (of the type exp (—tzo-zE(S'z)) for t not too
large). However, we must proceed in a different way. We shall use the technique

mentioned above to show that modulo a small perturbation one can (roughly speaking)

do as if S' and 0_1(S-S') + A, were independent and then use the estimate of

1

theorem 4-5,
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In order to prove theorem A, one can =uppose K 2 10‘3. SO we can assume L $

1 2

1073, It then follows that if H = [log L' '+ 1], we have HL $ 10 2 and H 2 7.

Moreover for each i,
2 /
2 (E|ri|3)2 3 <6223 5 2/100. (3-4)
4, LEMMAS,.
This section contains some of the technical tools we need.
LEMMA 4-1 [4]., Let X1""'Xk be r.v.. Then for r 2 1,
Bl 3 x 0 s k™ T Epx " (4-1)
isk isk

LEMMA 4-2 [5]. Let X1,..., X, be a martingale difference. Then for

k

p S 2, we have
el Tx P s2 elx|P. (4-2)
isk isk
LEMMA 4-3 [2]. For a sequence (xi)iSn of m-dependent r.v. of mean zero and

rz2,

r/2

M- U (4-3)

B[ %" € (me1)

THEOREM u4-4., (V. Shergin [2]). Let S be a sum of i-dependent r.v. (f‘i)1Sn of

zero mean and ¢° = ES°. Let L = ¢ 3 Y E|fi|3. There exists a universal constant K,
isn
such that
[t] 7' E exp(itsa) - exp (-t72/2)[dt $ K,L. (4-1)
Jt]K,L s 1

THEOREM 4-5. [3]. Under the hypothesis of the above theorem one has for

[t]K,L s 1 and |t] 2K, :
1

1/4 log L~ N

|E exp(it80‘1)| s (1+K2lt|) Max (exp('t2/80). (tKZL)

In particular, for 0_1K2 s |t| and o|t|K2L < 1, we have

-1
|E exp(1t8)] § (1 + Kyo]t]) Max (exp(-t26%/80), (vok,L)'/* 298 L ) (u-s)
PROPOSITION 4-6. With the above notation, for a ¢ R, let
-2 2 2
F={1el1,nl: o E[f|" 2 400L7}.
Then
T E|f |2 s o?/20. (4-6)
i
ieF
PROOF. Let q = card F. We have
o' TElr,|? 2 m00q ¢ T E|fr,|H? 2 no0q ¢ T E|r,|2. (=7
ieF 1<sisn ieF

From Holder's inequality, we have
/ 1/ 2/
) E|f1|2 ) (Elfi|3)2 3543y E|f1|3> ’,
ieF ieF ieF

So (u4-7) gives
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o §EIr |7 2 woo( § E[r |3
ieF ieF :

The result follows,

5. BOUND FOR E|a,|P.

We are going to bound a%t the same time E|A2|p and E|A|P (notice & = A, if
I =101, n].).
LEMMA 5-1. E[a,|P < K3c_p Ioely 1
ey I
where V = {j, k: 1 $j < kK £ n, either j or k belongs to I}.
PROOF. Since
oA, = ) Y, + Y. = A' + A"
2" Mt Y
1 2
V1 = {j, k: 1 £ <k sn, k € I}

Vy= {3, ki 1S3 <ksn, Jel, k£1},

it is enough by (4-1) to bound each of these sums. We bound the first one.

The proof for the second is very similar, For k € I let Z = Y., .
' K jge-2 30K

Then
' =
A ) Z, * 7 Yk-1,k'
kel kel
For i = 0, 1, 2, let

A= RS
3e+iel

is a martingale difference, since if

38+1i-1,30+1°

The sequence Y32+i-1,3£+1

H = vV F., then E(Y_, ._ |H,_,) = 0.
27 jggped 30+1-1,38+1 =21
So (4-2) implies
Ela |Ps2 §  E|Y,,,._ |P.
i qprger | 3%tiT1.3041
Thus (4-1) implies
] Y v, IPse6 E|lY,_. [P
kel 710K kel = K7Thk
The sequence (z2k)2keI is a martingale difference. Indeed, if
Ek = 1§2k§1, then Z2k is ﬂk measurable and E(22k+2l§k) = 0, A similar result holds

). So (4-1) and (4-2) give

el Iz /P su ez |P.
kel kel

for the sequence (Z2k+1

Let us fix k € I. Then, it is easily seen a
, y that both sequences (YZj,k)152jSk-2

and (Y2j+1,k)1$2J+15k~2 are martingale differences. It then follows by (4-1) and
(4-2) that
P P
Elz, |" s 4] E{Yj'kl .
jsk-2

The result follows these estimates.
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6. BOUND FOR |E(A exp it o 'S)|.

Let H = [log L' + 11. For le] z 10K, let

-1
¥(e) = (14K, | t]) Max(exp(-t2/8000), (100K zi)'/H(108 L /10000y (g,

and for |t| S 10K,, let ¥(t) = 1.,

2'
LEMMA 6-1. There exist universal constants Ky» Kg such that for ItKuL|< 1,
we have
-1
[ECa exp(ito 's))| s K tePvcemn® 3 vyen'’3 M, (uoeL)
We write
—1 -
o[E(a exp(ita 's))| s ] | E(Y, cexp(ita 's))].
15j<ksn '

We shall evaluate each of the terms of the right-hand'side.
LEMMA 6-2. If k S j*+2, we have for 100K, |t|L s 1:

|E(YJ kexp(1t0—1S))|

k+1
3/2,2/3, -3 3,1/3 H
s 2ult|w(t)(slyj’k| )" (e 1_ZJE[fi| ) + E[Yj’k|(U0tL) .

PROOF. First step: We prove that one of the following cases occurs.
First Case : Their exist s < j satisfying the following conditions:

s'
for s 8 <, €| I £,|° 2 ¢®/10 and (6-2)
1=1

there are at least 2H indices i € 1s, j-2[ for which E|fi|2s 400 Loz. (6-3)

Second Case : There exists s > k satisfying the following conditions:

T2, 2
E|1Z 'fi| 2 ¢°/10, for k < s' ss and (6-4)
=3
2
there are at least 2H indices i e Jk+2, s[ for which E|f1|2 S 400 Lo“.  (6-5)

Indeed, let S,= J f., and S, = S - S,. We have 0> = ES> + ES> + 2Ef f, .. It
17 gt 2 1 1 2 FRES

follows from (3-4) that ES? + Esg 2 9802/100. We prove that the first case occurs

2
1

be the largest integer such that ]s, j-2[ contains 2H indices which do not belong to

2 2.2
if Esf 2 4902/100 (or even ES? 2 240°/100. Let F = {iel: E[f,|® 2 400 ¢"L"}. Let s

F. For s' > s, since HL s 10_2 and L S 10—3, from (4-3) and (4-6), we get

J J
E| ) ri|2 s2 ¥ Erf s27% Er? + 2(2H+3)400L% 0%
i=g'+1 i=g'+1 ieF

S 02/10 + 3410 36 + 1610 30° < 120°/100.

It then follows that
J
E| I rilzz Esf -E| 1 |2
1siss! i=g'+1
2

- 2 Bf,f,,,,

fy

2 4802/100 - 12¢2/100 - 23°/100 2 °/10.
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2 49¢°/100.

N o

Similarly, the second case occurs for ES

Second Step. We suppose that the first case occurs, the second being similar. We
can pick for 1 £ & s H, indices s < p(%) < j-2 such that p(L) ¢ F and
p(2+1) s p(L)-2 for 1 S & < H-1. Let

Zy= 'y £, Z,- o £ -z
Jj-1sisk+1
and for 1 S & S H (resp. 1 s £ < H-1), let

-1 -1
f (resp. Z =0 ) £.).
)
p(t) 281 p(2+1)<i<p(a) |

ZZE =g

Let Sz =g 's - Z0 = eee Zl' Let us define YE = exp(itZl) = 1. It is easy to check

Y.  exp(it 30_1)

5K exp(itZo) exp(it 31) (6-6)

" Yk

2H-1 %
*'g1YLk“MingiY(us
2H
exp(itzo) my exp(itSZH).
q=1
Note that for each g, |Yq| $2 and E|Yq| s |t|E|Zq|. The last term of (6-6)

1*1)

MR

has an expectation bounded by

H H H
. E|Y LotL 6-
2 E|YJ’k| qE1E|Y2q| s E| j,kl( 0tL) (6-7)
. -1 1, e 1/2 -
since E|Z2q| =0 E|rp(2q)| So (Efp(zq)) < 20L. For 1 S & s 2H-1,

L
nmy exp(itSz+1) is measurable for the ¢-field generated by the Ei for 1 s j-2 and

q=1

i 2 k+2, hence independent of Yj,k' So, if Yo = exp(itZO)-1, since E(Yj,k) =0,
we get
L
Ep = E(Yy exp(itZo)qf1quxp(itsl+1))
L
= E(Yj,k hig quxp(1t8£+1)).
q=0
L
Since S]“1 is independent of Yj,kqfovq, we get
IEgl s ElYJ,kY0l2q215|72q|'2[2/2]+1|E exp(itS£¢1)l

[e/21
s 2E|Yj'kY0|(M0tL) |E exp (1ts,,)].

s'
- ) f, where s < s' < j by construction, it
i=1

Since Sﬁ+1 is of the form SQ+1

follows from step 1 that 0'2- Esi+1 2 1/10. So we have
sl

L= o' 3 ) Elo Ve
i=1

i|3 s 10% L.
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- 2 .
It follows from (4-5) that for 10 K,[t|L € 1 we have |E exp(its, )| s ¥(t).

Moreover, since K, 2 1 and 102K2|tlL < 1, we have (2otL)[z/2] < 2'[1/2].

Finally,

E < 3/2.2/3 3,1/3
| tE]Y t(Ele.kI )TEZG D)

Y5kl skl

In the same manner, we have
ElY, X i s
| 5.K° plitZ dexp(its )| s E|YJ,kYO|V(t).
The lemma follows from these estimates and the estimate of E|Z0|3 from (4-1).

LEMMA 6-3. If k > j+2, we have for 100K, [t]L 5 1,

exp(ito_1S))|

N Elfil3)1/3(a'3 ) E|f1|3)1/3
Ji-3]s1 |i-k|s1

c;IEJ('YJ,k

H
E|Y, .
+ |YJ'k|(u0tL)

PROOF. First Step. One of the following cases occur:
first case, second case: identical to the first and second case of lemma 6-2

respectively. Third case, there exists j+2 < 8, < s, < k=2 satisfying the following

conditions: for j+1< s'< s1< 52< s"< k-1, we have

El I £.1%2¢%/10 and (6-8)

stsigen !
there are at least 2H indices i ¢ ]j+2, 31[ for which Elfilz $ 4006°L
and 2H indices i € ]sz, k-2[ with the same property. (6-9)

The proof uses the same method as in lemma 6-2. We omit it.
Second Step. We shall treat only the first case. The second case is identical and
the third uses the same idea. For 1 £ £ S H, we pick indices s £ p(L) < j-2 such

that Efi(l) s 4000°L% and p(g+1) s p(L£)-2 for 1S & S H-1. Let
z'=0¢' ] f,2v=o ' ] f andzgsz +zv,
[i-3]s1 |i-k|=s1
and for 1 £ & S 2H, define Zm and Y& as in lemma 6-2. Then (6-6) holds.
1
Let wz = 1Y exp(itsz+]). For 1 £ & < 2H-1, the r.v. exp(itZ")wz is
q=1

measurable for the ¢-field G, generated by the F, for |1—j| 2 2. (Here we use the

1
fact that k 2 j+3). Since E(Y

1

j,k|g1) = 0, we have E(Yj,k exp(itZ“)wl) = 0. Similar

' = =
E(Yj,k exp(itz )WL) 0 and E(Yj,kwl) 0. It follows that if
YO = (exp(itZ') -1)(exp(itzZ") -1),
we have
A
E, = E(YJ’kexp(itzo)qf1quxp(1t8£+1))
L
= E(Yj,kYo ny exp(itsz+1)).

q=1
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The rest of proof is entirely similar to lemma 6-2, except that we estimate

k|3/2)2/3(15[z'z"|3)”3

2 2
< AVAL
E| S CE[Y 2] s eS|,

Yj'kYOI
/2.2/ / 1/
< t2(5|xj 32320 3 32 313,
PROOF OF LEMMA 6-1 : Follows from lemmas 6-2 and 6-3 by the use of Holder's
inequality (with K, = 100K3).

REMARK: If, in the estimate of E|Y, Y |, we use Holder's inequality
’

J
with exponents p and q = p/(p-1), we get in lemma (6-1) the bound
Kg(cPe(om /20D o Jelwem /209« m uorny™

n
where Q = o 3 E|fi|q.
i=1

7. HOW TO CHOOSE I.

Let 10-‘2 2 0 2 3-103HL2, which will be chosen later. The next lemma shows how

to pick a subinterval I of {1, ..., n} which roughly speaking will play the role
that interval {1, ..., [nel]} would play the i.i.d. case. Let

F={1i¢€e{1, ..., n}: E|fi|2 2 100 L7},

LEMMA 7-1. There exists an interval I € {1, ..., n} which has the following

properties.
I is reunion of ten subintervals 11, ooy 110, which (7-1)

extremities does not belong to ¥, and such that for

1 £ £ 10, each Il contains at least 2H elements which

does not belong to F, and is such that E( § fi)2 2 200°.
iel
A

3 T 3
1 E|f |7 s 24000 § E|f |°. (7-2)
iel i=1
If A= {j, k; j < k, j or k belongs to I}, we have
-p p -
o ) E|Yj Wl s 50000M . (71-3)
(J,k)eh '
PROOF . Let s(1) = 1. We construct by introduction a sequence s(i) in the
following way:
s(i+1) = Inf{s: s(i) < s £ n, s-1, s ¢ F, [s(i), s[ \ F contains
at least 2H elements, E( ) fg‘)2 2 2902}.
s(i)se<s
The construction goes until we reach an integer s(h) such that either s(h) = n or no
s € Js(h),n[ satisfies the required conditions. In the second case we set
s(h+1) = n.
We show now that 56(h-1) 2 1. For each 1 S i S h, let s'(i) be the largest

2 2

index s 2 s(i) such that E( ) f,)° S 200" . The definition of s(i+1) implies

s(1)stss *
easily if Ai = 18" (i), s(i+1)[ N F, then if B1 = Ja8'(i), s(i+1)[ \ Ai' we have

card Bi $ 2H + card Ai’ For each i, we have
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E( I £)2sEC ] £,)°
s(i)se<s(i+1) s(i)sess' (i)
2 2 © 2 2
Y EfCi(qy Y Efgi(iyey T2 L Efp Y2 ) Ef;.
LeA, LeB
i i
It follows that
h h
2 2 2 2
0° S 2hpo” + .2 (Bf({y-y * Efg(sy) )) (Efg. (1) Efg,(i)_1)
i=2 i=1
c2ferfe2 ] [eEf.
ieF i 9.eBi
Since s(i)-1, s(i) ¢ F it follows easily
h
o° s 2neo® + u ] EfZ + 1600nL%0" + 800L° ] card B,o”.
ieF i=1
h 2 2
But ) card Bi < 2Hh + card F, from (4-6) we got U4OOL"card F £ ¢°/20,
i=1

so we get finally

0% S 60°/20 + ho(20 + 1600L° + 1600HLZ).

Since H 2 7, We get 7¢/10 s 36h02. So 8h 2 7/30. Since 10_29 < 1, we have h 2 20, so
56(h-1) 2 1.

For 1 £1i £ h-1, let Ji = }s(i), s(i+1)[. Let

a =037 Elr)% b -aP BlY 1P
Led, (J,k)eh ’
i i

where Ai = {(j,k): 1 £3J <k £n, jor k belongs to Ji}'
It is easy to see that

) a; SL and ) by S M.
15ish-1 1515h-1 P

It follows that there are at least 19(h-1)/20 indices 1 £ i £ h-1 for which

ay < uo(h—l)_1b and bi s 80(h—1)'1Mp. Since (h-1) 2 19, it is possible to find ten

consecutive indices i+1, i+2,..., i+10 with this property. The lemma follows by
10

letting Iz = Ji+£ for 1 £ 2510 and I = 2&4 Il'

8. BOUND FOR |E exp(it(u—lS+A1))| and |E A2exp(it(a_1S+A1))|.

We shall bound the above quantities when I is chosen as in the preceding
paragraph. Let

-1.1/2
¥(t,0) = (1+K2|t|)Max(exp(-t292/80), (zlu)Ot,KzL)“u log(L "0 /2"00))

for t 2 0—1K2 and ¥(t,0) = 1 otherwise. We first show that if 31, 32 € I are such

that [31, 32] contains one of the intervals Il (2 £ % £9) then, if

U ) f,, we have Ejexp(itS')| $ ¥(t,0) whenever 2“00|t|K2L <1,
81S1532

Indeed, if Iz = (s', s"), we have
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2
EDZ = EC [ rpP R %50 T £
s, Siks? iel a"<i<s
i 2 2
- 2 2,2 2
$ 2 Bf,_ T , * 2 Ef_,f_, . 2 260" - 16000°L" 2 80",

3

Moreover g ) Elfil3 < 24006L, so the result by (4-5).

s'siss"

LEMMA 8-1. If |t|K/L <1, then

-1 H
E[a, exp(it(s 'S + a;))| S KM, (¥(r,0) + (80tL)7).

PROOF. Let us fix j < k. Then, among the intervals I it is

10 e IIO’
X J3 which do not contain either
j or k. So we can pick indices p(%), 1 § £ < H in J1 \ F such that q(%+1) 2 p(g)*Z

possible to find three consecutive intervals J1, J

for 1 § & $ H-1 and indices q(%), 1 € 2 £ H in J3 \ F-such that q(2+1) s q(%)-2 for

12

A
-
1
—
[
(a4

Z.=0 'Y £+ a T £, e

pany + !

and for 1 S & S H, let

-1
Zyy =0 (fp(l) + fq(z))

and for 1 S & S H-1,
-1 -1

Z,, ., = O ) f. + o ) f..
2871 p(L)<icp(L+1) b a(L+1)<icq(e)
Let
_1 _ _ _
Sy = (o 'S+ ) .2 z, and Y, = exp(itZ;) - 1.
ige
We have
-1
Yj’kexp(ita S) = Yj,k exp(itZ1) exp(its2)
2H~1 L
+ ¥ Y exp(itz ) M Y exp(itS, .)
J,k 4=2 1 q=2 q L+1
2H

+ YJ'kexp(itZ1)qEZquxp(itSZH).

So, by using the same type of majorations as in section 6, and since
|exp(it Sl)l S ¥ (t,0) for 2 S & S 2H by the preceding remarks, we get

EY exp(it S S 4E|Y, ¥(t,0) + E|Y, 80tL
|E Y, cexp(it  8)| [Y;  l¥ce,0 + EJY, | [(80tL)
and the lemma follows by summation (with K6 = 211001(2 + Ku).

A comparable but simpler proof yields the following.
LEMMA 8-2. If |t|K.,L <1, then

Elexp(1t(a”'s+a0)| S K (¥(t,0) + (80tL™)).

9. PROOF OF THEOREM A.
Since we can suppose K6 2 2400K2, straightforward computation from

(6-1) shows that for 1 = 0, 1, 2,
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|t|1v(t)dt s K
[elKel <

. (9-1)
e
Let us denote J(T) the integral in the right hand side (3-1). Let

T, = Inf ((80000-log 2, (e-uoKéb)- ).

It follows from (3-2), theorem 4-4, lemmas 5-1 and 6-1, and 9-1 that
(since K6 2 U40)

J(Ty) s Kyl + (log L-1)p/2Mp NEVEZERECRLE '),
For TO st s (e—uOKeh)_1 (if such t exists) we let
2 2.5/6

6 = Max (8000t 2 log |, 2400°L°"°).

2

- -2
The first term is € 10 ©, and it is indeed possible to .assume 6 s 10 for otherwise

since we can take K 2 (2"000)2, and theorem A will be automatically satisfied.

Moreover 6 2 u-10-3HL. Hence choose I as in section 6 and use the estimates (3-3)
and lemmas 5-1, 8-1 and 8-2. Notice that for this choice of 6, straightforward

cqmputation gives ¥(t,0) < K8Lu. It then follows that
- -1y 3 5/6-p
J((exp( uo)K6L) ) J(To) < K9(L *MLT - MpL ).
If we put all these estimates together we get theorem A, with the bound as stated,

but where the quantities with a "dash" are replaced by corresponding quantities
without a dash. However, since for 1 S r £ p we have Eng k|P s E(|hj klr|Ej)'
’ ’

lemma 4-1 shows that the "undashed" quantities are bounded by a universal constant
times the "dashed" ones. This concludes the proof of theorem A.
In order to get the extensions of theorem A mentioned as remarks after the

40 by e'(ﬁq*Z) 5/6

statement of this theorem one replaces e in the choice of TO and L

by LY in the choice of 6.
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