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ABSTRACT. We study existence and uniqueness of the nonlincar wave
cquation
2 2
§—§—+ M(x,j'lvu(x,t)lzdx + jlu(x,t)l“dx)(—Au+u) =0
t

in unbounded domains., The above model describes nonlinear wave phe-
nomenon in non-homogeneous media. Our techniques involve fixed point

arguments combined with the energy method.
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1. INTRODUCTION

In this paper we prove the existence and uniqueness of a local so-

lution for the following problem:

2
28+ M(x, fu(e)[®)au = o
dt

(1.1)
u(x,O) = ug ut(x,O) = ul(x)
n
where M: R xR -» R,
2 b du 2 ' 2
”u(t)” = I IS;T(X’t)I dx + |u(x,t)]“dx, ¥t =0
Jj=1 ‘an J Jan
and n azu
Au = -Au+u = - I + u.
. 2
j=1 Bxi
Since the above problem is considered in ambonnded domain we can
not use the same method of existence of solulions usced, Tor example, hy
P, Rivera ([l]), in which he studied the problem (1.1) when s

n . : .
in a bounded open subset of M. le found a weak local solution for Lhe

problem using Galerkin method and the discrete spectrum of the Taplacian

operator in bounded domains,
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In the other hand, since that the mapping M depends explicity on
x wec can not usc Fourier transform as was done, for cxample, by. G.P.,
Mcenzala ([2]) in which he studied the problcem (1.1) when M(x,k): MO(A),
that is when the mapping M is independent of  x.

Our assumptions about the mapping M arc described bcelow.

There exist functions ¢,V € wl (R ) and mo > 0 such that p(x)2
z2m >0 a.c. in Rn, y(x) = 0 a.e. in R" and M(x,)) = p(x) +
+ t(AM)u(x), (x,r) € RxR where f: R » R is continuously differenti-
able with (1) = 0 for ) =z O.

Here WHT@®M) = (¢ L"@®™: 2 € L°(R"), j=1,...,n}. We also

. Tiny .
consider the usual Sobolev space H (R™) with the norm
2 by 2
T T IS
j=1 an IRn

Our main result in this paper will be:
There exists a unique local solution for problem (1.1) with the fol-

lowing properties:

There exists T, > O and a function u: R"x[0,T ,] * R which (1.2)
belongs to 2([0 T,);L (R )) n Cl([o T,]; LZ(R )) n

n c(Lo,T,];H (tR )).

For each t < T, u(-,t) € H2(R™) g: .,t) € HY(R™). (1.3)
Here Ci([O,Tz];Lz(Rn)) = {u: [O,T ] - L2(R ) =t w-(u(t)lv) is
twice continuously differentiable in [O,TZ], v veEL (Rn)} where

('l') denotes the usual inner product in L2(Rn). We also denote by
Hz(Rn) the usual Sobolev space of order two.

The basic idea in order to obtain our result will be to use fixed
point arguments together with the energy method in appropriate Banach
spaces.

It is important to observe that our main result holds also in any
open subset of r"

Before concluding this introduction we would like to make a few

comments on the literature. J.L. Lions ([3]) considered the problem:

32u

— - M( Ivulzdx)Au =0 0 x (O,T)
’ o (1.4
u(x,0) = u (x),  uy(x,0) = uy(x)
where M(\) = m, > O and (Q denotes a bounded open subset of r™.
Avosio=Spagnolo ([M])) solved Lhe problem (1.4) when M(A) -~ O, v A =0
in the analytic casce. Recently, Ebihara=Miranda-Medeiros ([")]) stuadiced

problem (1.4) when M(A) = 0, ¥ XA z O for more general casces.  Others
authors like Andrade ([6]), Ball ([7]), Bernstein (I83), pickey ([91),
Greenberg-llu ([10]), Medeiros ([11]), Menzala ([12]), Nishida ({131),
Nishihara ([14]), Pohozacv ([15]), Rivera ([16]), Ribeiro ([17]) and
Yamada ([18,19]) also studied reclated problems.
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2. A PRELIMINARY RESULT
In this scction we prove Lhe existence and uniqueness of a solution
of the following "lincarized" problem: Let T > O. Let

v e cH(Lo,r1;ut(®™))

2
s u ., M(x,“v(t)”z)Au =0 in R" x (0,T]
3

o (2.0)
u(x,0) = uo(x) ut(x,O) = ul(x)
From now on we shall denote by H the usual space LZ(Rn) in which we
consider the norm Iu]2 = ( lu(x)lzdx and inner product (ulv). Let
us consider the linecar ope;gzor A: D(A) € H » H defined by Au = -Au+u,

with D(A) = HZ(Rn). Clearly A is self-adjoint and satisfies:

(Aulu) = Iulz, u € D(A). (2.1)
A1l functions we consider in this paper will be real valued. The
square root of A, denoted by Al/2 has domain V = D(Al/z) = Hl(Rn).
The inner product in V is defined by:
n
[u]v] = (Al/zuIAl/Zv) = T K %E— %¥~ dx + g u(x)v(x)dx
j=1 r™ J j rR™

defined in §1.
For each A € R we define B(\): H-+ H by B(A)u = M(+,)\)u.

Because of our assumptions on M(x,\A) the operator B(k) has the fol-

with norm ”'

lowing properties:

For each )\ € R, B(x) is a linear bounded symmetric operator (2.2)
on H,

For each X = 0 (B(A)u|u) = molulz, u€ H (2.3)
For each )\ = O B(X): V +» V is a linear continuous (2.4)

bijective operator

¥T >0 dap >0 such that l]B(Xl)-B(kz)lf£(V) < aplrg -, (2.5)
if ‘kll,lkzl < T. Here £(V) is the space of linear

continuous operators on V

¥T >0 &8, >0 such that if (u,v) € D(A)xV and |A] < T (2.6)
[(B()Aulv) - (B)AY 2420 | < gl |v]
B: [0,+=) - £ (1) Ls continuonsly ditterentiable, (2.7)

Here  £(11) is the wpace of Tinear continuous operators on Hg

LEMMA 1. Let v belonging to CI(IR;V), then

¥ t € R N(t) = Al/2 U(Hv(t)uz)Al/Z is a self adjoint (2.8)
operator in I  with domain D(N(t)) = D(A), ¥ t € R.

o
(N(t)ulu) = molu[“ v t € R and ¥ u € D(A) (2.9)
¥ T > O there is m such that (2.10)

.
INCINTH(0) = N(SINTT(O)lg ) = mp [ t=s]

whenever ltl,lsl < T,
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PROOF: By (2.4) we can show that D(N(t)) = D(A), ¥ t € R and ihat
the image of N(t) is H. lence since A2 ana B("v(t)”z) are
symmetric we obtain (2.8).

In the other hand if u € D(A) we obtain by (2.1) and (2.3) that
(N(t)uju) = (B(Hv(t)”z)Al/zulAl/zu) 2 mOIAl/zuI2 > molul2 therefore
(2.9) follows.

To prove (2.10) we observe by (2.8) and the closed graph theorem,
that N(t)[N(o)]'1 € £(H).

We consider u€ H and T > O, then by (2.5) we obtain,
IN(£)IN(0)] "hu-N()IN(0)] "Hul = aglLB(Iv(0)I) il yy lul ] -5l
|t|,|s' < T which proves (2.10).

PROPOSITION 1. Let u_ € H3(R“) = D(A3/2), u, € HZ(R“) and v € Clckvx

Then there is a unique function wu: R - HB(Rn) such that:

u e c2(R;v) n cl(r;D(a)) (2.11)
w o+ B(|v(t)]|®)au(t) = 0 in VxR
(2.12)
u(0) = u, u’ (0) = u,

PROOF: By Lemma 1 and a result due to J. Goldstein (see Theorem 2.2.
in [20]) there is a unique function w: R - Hz(Rn) such that

w e c2(R;H) n cl(Rr;V) (2.13)
W + N(t)w(t) = 0 in HxR (2.14)

2.1
w(0) = Al/zuo w’ (0) = A1/2u1

Let us consider u(t) = A-l/zw(t) for t € R then u: R - H3(Rn)
satisfies (2.11) and (2.12).

Therefore it follows that u is the unique solution of (2.12)
which satisfies (2.11).
PROPOSITION 2, Let T be a positive real number. Then given
v e ct(o,T;v), u, € W@®Y = p(4¥2) ana u, € H2(R"). There is a
unique function u = u(v): [0,T] ~» HB(Rn) such that:

u e ¢?(0,1;v) n cl(o,T;D(a)) (2.15)
o+ (v 7)Aan(eL) = o (2.16)
u(o) = u v/ (0) = uy

PROOF: Wc define

v(t) if O0< ts< T

w(t) = (v (T)(t-T)+v(t) if t>T

v (0)t + v(0) il t<oO
w € Cl(R;V) and hence there is u = u(w): R + H which satisfies the
Proposition 1, in particular u satisfies (2.15) and (2.16), with

n
u: [0,T] -+ HB(R ).
Remains to prove the uniquecness. Supposec that we have another so-

lution 2z of (2.16) which satisfies (2.15).
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Then of(t) = u(t)-z(t) satisfics
o (t) + B(|v(t)]|?)ac

o(0) =0 a’(0) =

0 in v x [0,T] ( )
2.17

(@)

"

Wo consider 7(t) = % (]’ (¢) ]2+ (B(Iv(6)12)aY 25|14 25)]  thon by

(2.17) we obtain that
P (6) = ~B(v(e))acle’) + (BUV(H)2)AY 2012 250 ) «
+ Tv(8) v (8)7 (B° (v(£) [ 2)a 25 a2/ 25y
Hence by (2.6) and (2.7)

() 5 ST (lo()]% + lo” (D)12) + ogllo(e)]?
where

cp = sup (I8 (v (g gy IOV (D1

O<t<T

Now, using (2.3) we obtain that there exists > O such that:

N

Tl(t) < N T(t)’ t € (O9T]°
Hence, since 7T(0) = 0, it follows that 7(t) = 0, ~ t € [0,T] which
proves the Proposition 2.

1 n 3,0 2, . n

COROLLARY 1. Let v € v (0,T;V(R)), u € H (R) and u, € H (r").
Then there is a unique u: [0,T] =+ HB(Rn) such that:
ue c2(o,m);HY®™)) n ct(Lo,1];H%(R™)) and satisfies (2.0).

3. SOLUTION OF PROBLEM (1.1)
We consider T > O and we denote by XT = {u: fo,T] » H :
ue ¢'(0,1;V) n c(0,T;D(a)}. Clearly X,
norm |lully = sup {Jlu’(¢)]| + |Au(¢)]|}. Now, we consider
T O<t<T

is a Banach space with the

u € HB(Rn) = D(A3/2) and uy € p(A) = HZ(Rn). We observe that given

v € X there is a unique u = S(v) € X which satisfies (2.15) and

T T

(2.16). Lot ns call Hn]—”"! + I/\u“l” = € and considey
b = {v o X, ”v(())“"‘ < C}.
,C
LEMMA 2, There are r = r(C) > 0 and '1‘0 = ’I‘O(C) > 0 such that if

Ve oo Il s e B8Ol <

PROOF: We consider T > 0 and u = s(v) where v € XT and we define
z(t) = % {”u'(t)”2 + (B(”v(t)”z)AulAn)]. Thus, since u satisfics
(2.16) we obiain that z’(t) = [v' () [v(£)1(® (Iv()[F)au]an).  There-
forec, by (2.3)

() = o nvuiT I v (O g gy () - (3.1)
- Y EEIRCTRINY
r= min(l,mO) :

Therefore if Hv“XT < r then [B'(|v(t)D] < v,» ©O< ts T. Thus,
by (3.1) we obtain that:

2

2(t) < 2(0) exp(3-r® vy t), 0s< ts T. (3.2)
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m
We choose T0 = min[T,p], where =-—-%——log 2 then for cach

2r-Y
0 < t < To' we conclude that: c

2(t) = 2 2(0) = c(1 + [BUIVOI)Ig ()
and so, by (2.3)
(Jlu’ (£)]| + |Au(t)|)2 < r?, for Os ts T, -
This completes the proof of Lemma 2.

Now, we define the space YT = {u: [0o,T] » H: uc¢€ C(O,T;V) n
n ¢c1(0,T;H)] with the norm:

lully.. = sup  {lu(e)]l + [u (£)]3.
T  o0st<T
Clearly Y, is a Banach space.

T
LEMMA 3, We consider r and TO > O as in Lemma 2. Then there are

0 < T1 < To and 0 < g < 1 such that

"S(u)-S(v)"Y < e"u-v"Y for every u and v in ETl,C (3.3)
Ty T
with [|ul| < v and |v < T.
xz, Xz,

PROOF: Let us consider u and Vv in ETO,C' Then o(t) =
= S(u)(t)-s(v)(t) satisfies:
o (£) + B(lu()|2)ac + [B(Ju(6)|2)-B(Iv(£)]%)IAs(v) = 0

6(0) = 0 = ¢’ (0)

(3.4)

If we define
y(8) = L (1o’ ()12 + B(lu(e)]2)aY 30142 25))
by (2.6) and (3.4), then we obtain that:
y (1) - a.,“’IIO(lr)IIIO'(L)I +
s AN UV I g gy [As(D) o (1] +
+ lur (o) TauCe) LI Q) g gy llo (6112

It "uHxT < r and ”V”XT < v, then by (2.3), (2.5) and Lemma 2

o o
above we obtain that

2 2 2 2

vy (t) <« (=8 +-2— vy v°)y(t) + 20, rf|u-v llo . (3.5)
JE; T, m, 'ec T, ” "YT0 "Y o

. 1 1 2 .
Let us consider T =-7;:-BTO +-E; Ycr . Then, since that y(O) = 0,
we obtain by (3.5) that

2

am T
T 2Tt
y(1) s—le—(e - 1) flu=vlly llelly 0< ts T . (3.6)
T
o o
in(1 r
Now, we choose T; < min{T_, %? log (Tifiiifgl_ + 1)}.
ap T
If we repeat the proof for O s t < T s Tz follows, by (3.6), that:
2
(o’ (0] + lo(D? = ollu-vlly Noly » o< t=s1 (3.7)
. Ty T1

o r- ZTTl 4

where ¢ = —Q (c - 1)

min(l,moi.
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e
THEOREM 1., Given u - D(Ag/") and uy € D(A). Then there exists
)

'I‘] > 0 and a unique tunction [O,Tl] - D(A) such that:

we o2(Co,m,15m) n cY(Lo,1,151) n c([0,T,];V) (3.8)
u' (&) € v, 0s ts T (3.9)
L (0) V) + B(lu(e)®)au(t)|v) =0, v veHn (3.10)
u(0) = u, u’ (0) = uy (3.11)
Moreover, there is r = r(c) > O such that ”u”XT < r.
PROOF: Let T, be defined in Lemma 3. !

We define u= 0, ué€ ETl,C and consider u, ; = S(uv),
v = 0,1,2,... where u =u= 0.

We note that u, € X C Yp s ¥ V. Furthermore, by Lemma 1 (§3),

T
1
we have that ”“v”xT < r V. Thus by Lemma 3 we obtain that

HUV+1‘uV”Y < Bv“ulﬁ . Therefore for V 2 u
T Ty
9“
”u\)-up“ < 1-6 ”ul”YT .
1
Which implies that there is u € YTl such that:
1im u, = u in Y (3.12)

V4o Tl

By Lemma 2, (3.12) and (2.5), we obtain that:

. 2 2 .
1lim B(”uv(t)” ) = B(Jlu(£)]|”) in  £(Vv) (3.13)
V4 +@
wmitformly o O - 11.
By ('}.l.‘.‘) and Lenma 2 we conclude Lhals
u(t) € n(a)  » v Lo,r,] and  JAau(e)] < r, te [o,m)].
Morcover, for cach v in V, 1lim (Auv+l(t)|v) = (Au(t)lv)
uniformly in [O,le hence Vo
lim (Auv+l(t)|v) = (au(t)|v) wniformly in [0,T;] v ve I, (3.10)
Vo ’

because V  is dense in M.

Now, wec have that

" 2
(w, (£ [¥) = =(B(lu, (O)1D)au,, (1) |v),  wven
conscquently, by using (3.13) and (3.1&) we obtain, that
1im (u6+1(t)|v) = -(B(”U(t)HZ)Au(t)Iv), ¥ v € H uniformly (3.15)
Ve in [0,T)]

Therefore, by (3.12), then u € Cj([O,Tl];H) and
L (w (0 V) = -B(lu(p)P)au(t)|v), te[0,T] v ve H.

By Lemma 2 and (3.12) we obtain that u’(t) € V. t¢€ [0,T,] and
lu' ()] < v, € [0,T,].
It remains to prove uniqueness. We consider u and v satisfy-

ing the Theorem 1. We note that IAu(t)l + ”u(t)” s r & te€ [O,T]]
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and |Av(t)]| + ||[v(t)] < r ¥ t € [O,Tl] then if we consider of(t) =

= u(t)-v(t) and using a similar proof of Lemma 3 we obtain that

”oHY < BHUHY < ”o”YT and therefore o(t) = 0 v t, t¢ [O,Tl].
Ty T1 1
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