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ABSTRACT. The spaces OM and 0(': of multiplication and convolution operators
on temperate distributions, together with their strong duals 0;{ and OC, are
Montel and distinguished.
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Let $, resp. $', be the space of rapidly decreasing functions, resp.
temperate distributions, on R". Then OM is the space of all functions

o o n
f € C for which the map ¢ > ¢D f: $§ -+ $ is continuous for each o € N .
The topology of OM is generated by a family of seminorms
f max{ltp(x)Daf(x)l; x € R")},p €8, a ¢ N*. Its strong dual is denoted

Al
by OM.

For each q € IN the space

L= (£ R = ¢ ufni =z /g |28 (x) | Zdx < w}

lo+B]=q

is Hilbert. If we denote its dual by L_q we have 8 = projlim L and
q+oo

$' = indlim L__.

q*>

= 2 ;i
Put W(x) = (1 + |x]9)?, x € R®. Then for each integer k (positive or

negative) the map Tk :f > ka : $' > 8" is bijective. We denote by kam,

k, m € Z, the image of LIll under Tk and provide it with the topology which

makes Tk : Lm > WkLm a topological isomorphism.

Let 0 = ind lim prq, q € N, and 0

+>o0
proved in [4] that ®_ = projlim W PL .
q prw 4

0;4 = ind lim O_q, see [3 & 5].

q>

-q be its strong dual. It is

Also, OM = proj 1im O and

q-boo
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PROPOSITION 1. The spaces OM and 0& are Montel.

PROOF. First we prove that Oh is Montel. It is ultrabornological,
[5; Th. 4] and barreled [1l; 3-15, Ex. 9]. Hence it is infrabarreled.
Further 0& is complete and Schwartz, [5; Ths. 2 & 3] and therefore it is
semi-Montel, [1; 3-15, Prop. 4], [6; II, §4, No. 4, Th. 16]. As infra-
barreled semi-Montel space, it is Montel.

OM is Montel as a strong dual of the reflexive space 0&, [5, Th. 1],

[1; 3-9, Prop. 9].

PROPOSITION 2. The spaces OM and Oﬁ are distinguished.

PROOF. Both 0M and Oﬁ are ultrabornological and reflexive,
[5; Ths. 1 & 3]. Hence they are strongly ultrabornological and strongly
barreled, [1; 3-15, Ex. 9]. By [1; 3-16, Prop. 1], they are distinguished.

Let Oc be the strong dual of the space Oé of convolution operators on
$'. Then Fourier transformations F :OM > Oé and F :0& > oc are topological
isomorphisms and we have

COROLLARY. The spaces OC and Oé are both Montel and distinguished.
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