
Internat. J. Math. & Math. Sci.
VOL. 11 NO. 4 (1988) 793-804

793

SOME ROUGHNESS RESULTS CONCERNING REDUCIBILITY
FOR LINEAR DIFFERENCE EQUATIONS

GARYFALOS PAPASCHINOPOULOS

Democritus University of Thrace
School of Engineering
671 00, Xanthl, Greece

(Received October 20, 1987)

ABSTRACT. In this paper we prove first that the exponential dichotomy of linear

difference equations is "rough". reover we prove that if the coefficient matrix of

a linear difference equation is almost periodic, then the Joint property of having an

exponential dichotomy with a projection P and being reducible with P by an almost

periodic kinematics similarity is "rough".
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I. INTRODUCTION. Consider the difference equation

x(n+l) A(n)x(n) (I.I)

where A(n) is a k x k Invertlble matrix function for n Z {,...,-I,0,I,...}.

In what follows we denote by Ixl the Euclidean norm of the vector x. Then the,
induced norm IAI for a matrix A is the square root of the largest elgenvalue of AA,
(A is the transpose of A).

The difference equation (I.I) is said to possess an exponential dichotomy on Z if

there exist a projection p (p2ffip) and constants k)l, a > 0 such that

[X(n)PX-1 (m) Ke-a(n-m)

IX(n) (I-P)x-I (m) < Ke-a(m-n) m)n (,.2)

where X(n) is a fundamental matrix solutions of (I.i) and n,mCZ. In this situation we

also say that X(n) has an exponential dichotomy with projection P and constants K,a.
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Let A(n) be a k x k invertlble matr[x runt[on. Consider the equation

y(n+l) A(n)y(n) (1.3)

Equations (1.1) and (1.3) are said to be kinematically similar if there exists a

k x k invertible matrix function S(n) which is bounded together with its inverse, such

that the change of variables x(n)=S(n)y(n) transforms (I.I) into (1.3).

Equation (I.I) is said to be reducible with projection P if it is ktnematlcally

similar to (1.3) where PA(n)=A(n)P.

A matrix function A(n) is almost periodic if from every sequence

{a }, a cZ there exists a subsequence {a’} such that lira A(n+a’), m / exists
m m m n

uniformly with respect to n.

According to Palmer [I, p.377] equation (I.I) has the property (H) if it has a

fundamental matrix solution x(n) which satisfies (|.2) and, moreover, is reducible

with P by a kinematic similarity S(n) such that

i) S(n) is almost periodic and

il) the reduced system has a fundamental matrix solution which commutes with P and

has an exponential dichotomy with projection P.

The main results of this paper are the following:

i) Suppose that (I.I) has a fundamental matrix solution X(n) which satisfies

(1.2). Let B(n) be a matrix such that A(n)+B(n) is invertible and sup

neZ} 8, is sufficiently small. Then the perturbed equation

y(n+l) (A(n)+B(n))y(n) (1.4)

has a fundamental matrix solution which also has an exponential dichotomy with the

same projection P.

ii) Let A(n) be an almost periodic matrix function. Suppose that (I.I) has

property (H). Let B(n) be an almost periodic matrix function such that A(n)+B(n) is

invertible and sup{IB(n)l, ncZ} 8, is sufficiently small. Then the perturbed

equation (1.4) also has property (H).

We note that these results are the discrete analogues of those of Coppel [2], [3]

and Palmer [I] but the passage from the continuous case to the discrete case is not at

all straightforward. We also note that a roughness theorem for dichotomies of

difference equations has been proved by Henry (see Theorem 7.6.7 [4, p. 232]) using

admissibility theory. However, we can easily prove that Proposition of this paper

applies to dichotomies on an arbitrary set I {ml,ml+l,...,m2 }, mlm2Z. Moreover,

some arguments of Proposition are used in the proof of Proposition 2.

It is worthwhile to study linear difference equations because recently there has

been an increase in interest in discrete dynamical systems. It is know that linear

difference equations arise as variational equations along the orbits of such systems.
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Some results on exponential dichotomy, reduclblllty and almost periodicity of

difference equations are included in the papers [4], [5], [6], [7], [8], [9], [I0],

[1 11, [121.

2. MAIN RESULTS.

First we derive some results for equations of the form

Ax(n) C(n)x(n+l), neZ

where Ax(n)- x(n+l)-x(n) and C(n) is a k x k matrix function such that l-C(n) is

Invertlble. Since l-C(n) is invertlble, equation (2.1) has a fundamental matrix

solution X(n).

It will be assumed that all the definitions of this paper for equatlons of the

form (I.I) are valid also for equations of the form (2.1).

The following lemma shows that uniform asymptotic stability is preserved under

small perturbations of the coefficient matrix for the equations of the form (2.1).

LEMMA I. Suppose that (2.1) has a fundamental matrix solution X(n) such that

IX(n)X-l(m) ( Kea(n-m) n)m, aeR. (2.2)

Let A(n) be a k x k matrix function such that the matrix function l-(C(n)+A(n)) is

invertible and

,,up{[^(,)[, sz} , > o. (2.3)

Then the perturbed equation

Ay(n) (C(n)+A(n))y(n+1) (2.4)

has a fundamental matrix solution Y(n) which satisfies

IY(n)y-1 (m) ( Keb(n-m) n)m

where b-a+6Kea.
PROOF. It is easy to show that every solution y(n) of (2.4) satisfies

y(n) X(n)X-1
n

(m)y(m) + Z X(n)x-l(s-l)A (s-l)y(s).
sn+l

Then from (I), (6) and using the discrete Gronwall’s lemma [13, p. 337] if

w(n)-e-an[y(n)] we obtain

w(n) 4 Ke6kea(n-m)w(m).
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So

Thus the proof of the lemma is completed.

REMARK I. It is easy to show that the lemma holds if instead of (2.1) and (2.4)

we have equations (I.I) and (1.4) correspondingly. The only change Is that the

constant b is equal to a+6Ke-a.
LEMMA 2. Suppose that (2. I) has an exponential dichotomy (1.2) where P is

orthogonal (P =P). Then (2.1) is reducible to

Ay(n) D(n)y(n+l) (2.5)

where the coefficient matrix D(n) commmtes with P and (2.5) has a fundamental matrix

solution Y(n) which commutes with P and satisfies

IY(n)py-I(m)I 2K2e-a(n-m), nm

-a(m-n)IY(n)(I-P)Y-l(m) 2e
(2.6)

Also the matrix transformation T(n) satisfies

IT(n) 21/2 IT-l(n) 21/2K, ngZ

PROOF. From Lemma [3, p. 39] there exists a matrix function T(n) such that

-i -IT(n)PT (n) X(n)PX (n)

and from (1.2)

IT(n) 2
I/2 IT-1(n) 21/2K, nZ. (2.7)

Also from Lemma [3, p. 39] T(n) X(n)R-l(n), where R(n) commutes with P. The

change of variables x(n) T(n) y(n) transforms (2. into (2.5) where
-1 -1 -1

D(n) T (n)C(n)T(n+l)-T (n)AT(n). We have that R(n) T (n)X(n) is a fundamental
-I

matrix solution of (2.5). Therefore D(n) (AR(n))R (n+l). Hnce D(n) commutes

with P. If Y(n)=R(n) from (1.2) and (2.7) we have that the inequalities (2.6) are

satisfied and the proof of the lemma is completed.

In Proposition below since every projection P of rank equal to is similar to

the projection Q=diag Q=diag(l,0) I is the identity x matrix (see [3, p. 41-

42]), we may suppose that P=-diag(l,0)..

The following lemma shows that exponential dichotomy is preserved under small

perturbations of the coefficient matrix for the equations of the form (2.1).
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LEMMA 3.

(1.2) with

invertible.

Suppose that (2.1) has a fundamental matrix soluion X(n) which satisifes

P=diag(l,0). Let A(n) be a matrix such that the I -( C n)+ A( n) is

Then if

-2a
sup{ IA(n) l, neZ} 6 rain {.l-e a

72KSe-a’ 6K3e a
(2.8)

the perturbed equation (2.4) has a fundamental matrix solution Y(n) which satisfies

JY(n)py-I(m)I 12K3e-v(n-m), nm

JY(n)(I-P)Y-l(m) j* 12K3e-v(m-n), mn
(2.9)

where v=a-6K36e a.
PROOF. We apply the change of variables x(n)=T(n)y(n) as in Lemma 2 to equations

(2.1) and (2.4). Then (2.1) and (2.4) are kinematically similar to (2.5) and

Aw(n) (D(n)+M(n))w(n+l)

-i -I
respectively where D(n) T (n)C(n)T(n+l)-T

For any matrix A we put

(2. lO)

-1(n)AT(n) and M(n) T (n) A(n)T(n+l).

El=PEP +(I-P)E(I-P) and E2=PE(I-P)+(I-P)EP.

Then we have E=EI+E 2. Obviously E commutes with P.

We claim that there exists an invertible matrix function Sl(n) which is bounded

together with its inverse such that the change of variables w(n)=Sl(n)v(n) transforms

(2.I0) into the system

Av(n) (D(n)+{M(n)S l(n+l)}l)v(n+l). (2.11)

It is easy to show that the claim is true if Sl(n) satisfies the equation

ASI(n) D(n)Sl(n+l)-Sl(n)D(n)+M(n)Sl(n+l)-Sl(n){M(n)Sl(n+l)} (2.12)

or putting Sl(n)=l+H(n) if H(n) satisfies

AH(n) D(n)H(n+l)-H(n)D(n)+{M(n)(l+H(n+l))}2 H(n){M(n)(l+H(n+l))}l. (2.13)

We must prove that (2.13) has a bounded solution. Consider the space E of all matrix

functions H(n) such that IH(n) , nZ. Define the operator T on E as follows:

rH(n) . y(n)py-l(s)(l-H(s))M(s)(l+H(s+l))Y(s+l)(l-e)y-l(n)
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(n)C-)-(s)(-HCs))(s)(T+H (s+))(s+)-Cn)
s--n

where Y(n) is the fundamental matrix solution of (2.5) which satisfies (2.6).

First we prove that T H is in E. From (2.6) we get

1-e

From (2.8) we have that T H is in E.

We prove now that T E E is a contraction.

It is easy to prove that

Consider H,G eE.

-H(s))(s) (+H( S+) )-( -G(s))(s) (I+C (s+)

(s)(s) HCs+)-C(s+l))-(H(s)-C(s))(s)G(s+).

MCs)(H(s/I)-G(s/I))-CH(s)-G(s))M(s)-

Then it is easy to prove

I-H(n T--G(n) , 486e-a

l_e-2a

where I-l-up(l(n)-(=)l z>. so contraction on the Banach Space E.

there exists a unique HE such that TH(n)=H(n), nZ.

We prove now that H(n) is a solution of (2.13). We have

AH(n) (A(Y(n)A1Cn)))y-l(n+l)+Y(n)Al(n)&y-l(n)

(A(Y(n)A
2
(n)) )y-1 (n+l)-Y(n),2 (n) Ay-I (n)

where

n-I
A () =l PY- (s) (I-H(s))M(s) (I+H(s+I))Y(s+I) (I-P)

A2(n) . (I-P)Y

Since AY(n) D(n)Y(n+l)

Hence

(s) (I-H(s))M(s) (I+H(s+I))Y(sq-1)P.

-1 -1
we get DY (n) -Y (n) D(n)

-I -I
AH(n) D(n)Y(n+I)LI(n+I)Y (n+l)+Y(n)(& l(n))Y (n+l)

-Y(N)A (n)Y-1 (n)D(n)-D(n)-D(n)Y(n+I)A2
(n+l)y-I (n+ 1)

-1 -1-Y(n) (AA2(n))Y (n+1)+Y(n) A2(n)Y (n)D(n).
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Slnce from Lemma 2, Y(n) commmtes wlth P we have

AH(n) D(n)H(n+l)-H(n)D(n)+{(l-H(n) )M(n) (l+H(n+l) )}2"

It holds

PHP=0 and (I-P)H(I-P)--0, so H-HP+PH.

Therefore we can easily prove

{(l-H(n))M(n)(l+H(n+l))}2 {M(n)(l+H(n+l))}2 II(n){M(n)(l+H(n+l))}l.

So H(n) is a solution of (2.13) such that H(n) 1/2, ncZ. Therefore Sl(n)=l+H(n)
3 slsatisfies (2.12) and ISl(n) (n) 2. Hence our claim is true. So

(2.10) and (2.11) are kinematically similar. It holds

l{M(S)Sl(S+l)}ll IM(s)SI(S+I) 3K. (2 .14)

Since the coefficient matrices of (2.5) and (2.11) commmte with P each equation

decomposes into two equations. Suppose that (2.5) decomposes into the equations

AYl(n) Dl(n)Yl(n+l) (2.15)

gyz(n) D2(n)Y2(n+l) (2.16)

where (2.15) is uniform asymptotically stable. Suppose that (2.11) decomposes into

the equations

Avl(n) (Dl(n)+(M(n)Sl(n+l) ll)Vl(n+l) (2.17)

Av2(n (Dl(n)+{M(n)Sl(n+l)}12)VZ(n+l). (2.18)

Applying Lemma to (2.15) and (2.17) and using (2.8) and (2.14) there exists a

fundamental matrix solution Vl(n) of (2.17) such that

IV1 <n)V"1 (m)] 2K2e-v(n-m)’ n)m.

To prove an analogous result for (2.18) we use the same method as in [6, p. 69].

Consider the equations

Y2(n+l) (l-D2(n))Y2(n) (2.19)

v2(n+l) (I-D2(n)-[M(n)*Sl(n+l) }12)v2(n). (2.20)
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solution Y2(n) such that

-I

IY2 (m)Y2(n) -IY2(n)yl(m)l 2K2e-a(m-n) mn

,-I
Since Y2 (n) is a fundamental matrix solution of (2.19) and aplylng Remark to

(2.19) and (2.20) there exists a fundamental matrix solution V2(n) of (2.20)which

satisifies

l2(m)2-n) --l2-1(n)’2(m)l 2K2e-v(m-n). mn.

=But V2(n)-V (n) is a fundamental matrix solution of (2.18). So (2.11) has a

funamental matrix solution V(n)diag(vl(n),V2(n)) which has an exponential dichotomy

with P and constants 2K2 ,v. Hence (2.1 O) has a fundamental matrix solution

W(n)--Sl(n)V(n) which has an exponential dichotomy with P and constants 6K2,v. Thus

Y(n)T(n)Sl(n)V(n) is a fundamental matrix solution of (2.4) which satisfies (2.9)

and the proof of the lemma is completed.

To prove our main results we use the following lemma.

LEMMA 4. Suppose that (I. has an exponential dichotomy (I. 2) where

Pdiag(l, 0).

Then the adjoint equation of (I.I)

*-l
x(n+l) A (n)x(n) (2.21)

has a fundamental matrix solution which has an exponential dichotomy with projection

I-P and constants K,a.

PROOF. Suppose that (I.I) has a fundamental matrix solution X(n) which satisfies

(1.2). Then since we use the Euclidean norm we obtain

l-l(m)(l-P)(n)l Ke-a(m-n), mn

* Ke-a(n-m)

*-1
Since (n) X (n) is a fundamental matrix solution of (2.21) the proof of the 1emma

is completed.

PROPOSITION I. Suppose that (1.1) has an exponential dichotomy (1.2) where

Pdlag(l,0). Let B(n) be a matrix function such that the matrix A(n)+B(n) is

invertlble. Suppose that B(n) satisfies

sup{IB(n) l, nEZ] mln{ l-e-2a a___} (2.22)
72K5e-a’ 6K3ea

Then the perturbed equation (1.4) has a fundamental matrix solution which has an

exponential dichotomy with the projection P and constants 12K3,v.
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PROOF. Equation (2.21) can be written to the form

,
Ax(n) (l-A(n))x(n+l). (2.23)

Consider equation

,
Ay(n) (l-A(n)-B(n))y(n+l). (2.24)

From Lemma 4 we have that (2.23) has a fundamental matrix solution which has an

exponential dichotomy with the projection I-P and constants K,a. Since (2.22) holds,

from Lemma 3 we have that (2.24) has a fundamental matrix solution which has an

exponential dichotomy with the pojection I-P and constants 12K3,v. But (2.24) can

be written as the adjolnt equation of (1.4). Then from Lemma 4 the proof of the

proposition is completed.

To prove the second roughness result we use two lemmas.

LEMMA 5. Suppose that (2.1) ha a fttndamental matrix solution X(n) which has an

exponential dichotomy with a projection P and that (2.1) is reducible withP by the

kinematic similarity S(n) to (2.5). If Y(n) is a fundamental matrix solution of (2.5)

and Q is a projection the following statements are equivalent:

i) Y(n) commutes with Q and Y(n) has an exponential dichotomy with Q.

ti) X(n)PX (n) S(n)QS (n), nEZ.

The proof of the lemma is analogous to the proof of Lemma 2 [1, p. 376].

REMARK 2. Using Lemma 5 we can easily prove the following:

Suppose that (2.1) has property (H) (See introduction for definition). Let X(n) be

the fundamental matrix of (2.1), P the projection and S(n) the kinematic similarity

which are involved in (H). Then the condition (ii) of (H) is equivalent to

X(n)PX-l(n)=s(n)PS-l(n), n E Z.

REMARK 3. Using the same argument as in [I, p.377] we can prove that if S(n) is
-I

an almost periodic invertible matrix with bounded inverse then S (n) is also almost

periodic.

LEMMA 6. Let C(n) be an almost periodic matrix function on Z. Suppose that (2. I)

has property (H). Let A (n) be an almost periodic matrix unction such that

I- (C(n) + A(n)) is invertible. Then if A(n) satisfies (2.8), the perturbed

equation (2.4) has property H.

PROOF. Consider the fundamental matrix solution X(n) of (2.1), the projection P

and the kinematic similarity S(n) which are involved in (H).
-I

There exists an invertible matrix L such that P=LQL Q-diag(l,0). Using

the same argument as in the proof of Lemma 3 [I, p. 378] we can prove tha there exists

a matrix function T(n) S(n)LR-I(n), R(n) is an almost periodic matrix such that the

change of variables x(n)--T(n)y(n) transforms (2.1) into (2.5) where QD(n)-D(n)Q,

ngZ and (2.5) into (2.10). We also have T(n) satisfies (2.7) and (2.5) has a

fundamental matrix solution Y(n)T-l(n)x(n)L which commmtes with Q and has an

exponential dichotomy with the projection Q and constants 2K2,a. Arguing as in Lemma
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equation (2.13) has a unique bounded solution H(n), IH(n)l ’", ntZ such that for3

meZ we get

n-1
8(n+m)-H(n) (Y(n+m)Q-l(s+m)-Y(n)QY-l(s))F(s+m)Y(s+l+m)(I-Q)Y-l(n+m)

+ Y(n)QY (s)(F(s+m)-F(s))Y(s+l+m)(I-Q)Y (n+m) +

(2.25)
-1 -1 -1+ Y(n)Q (s)F(s)(Y(s+l+m)(I-Q)Y (n+m)-Y(s+l)(I-Q)Y (n))

Z

where F(s) (I-H(s))M(s) (I+H(s+l)). We have that N(n) Y(n+m)QY-l(s+m) is a

solution of

AN(n) D(n)N(n+I)+(D(n+m)-D(n))N(n+I).

Then from the variation of constants formula which is taken by using the same method

as in [14, p. ll-12] and since Y(n), D(n) commute with Q we get for n ) s

n
N(n) Y(n)Y-l(s)N(s) + Y(n)Y-

U’S+1
(u-l) (D(u+m-1)-D(u-1))N(u)

n
Y(N)QY-l(s) / Y(n)QY-l(u-1)(D(u+m-1)-v(u-1))N(u).

ufs+l

Then we obtain

IY(n+m)QY-1(s+M) Y(n)QY-1(s) 4K4 IDm-DI (2.26)
ea-1

where IDm-DI sup{ ID(n+m)-D(n)l, neZ}. Using the same argument we can easily prove

tY(s+I+m)(-Q)-1 (n+m)-Y(s/l)(I-Q)Y-l(n) 4K4ea IDm-DI (2.27)
ea-1

Since from the proof of Lemma 3 M(n)-T-I (n) A(n) T(n+l) we get

IMIfsup{IM(n)l, ritZ} 2K. Using (2.25), (2.26), (2.27) and (2.8) we obtain

54eaK4 Mm-MI 2161(6 IMI ea Dm-D
e (ea-1) 2

(2.28)

-I
Since from Remark 3, T (n) is almost periodic, we have that M(n), D(n) are also

almost periodic matrix functions. Hence from (2.28) H(n) is almost periodic. From

Lemma 3 we have that the perturbed equation (2.4) has a fundamental matrix solution

which has an expoenential dichotomy with the projection Q. Then as in the proof of

Lemma 3 the transformation y(n)=T(n)(I+H(n))v(n) transforms (2.4) into (2.11) which



ROUGHNESS RESULTS FOR LINEAR DIFFERENCE EQUATIONS 803

has a fundamental matrix solution which commutes with Q and has an exponential

dichotomy with the projection Q. Using Lemma 5 we have

Y(n)PY
-I

(n) T(n)(l+H(n) )L-Ip(T(n) (l+H(n) )L-I) -I

Using Remark 2 we have that (2.4) has property (H) with the projection P and Kinematic

similarity T(n)(I+H(n)L-I Thus the proof of the lemma is completed.

PROPOSITION 2. Let A(n) be an almost periodic Invertible matrix function.

Suppose that (I.I) has property (H) with the projection P. Consider an almost

periodic matrix function B(n) such that A(n)+B(n) is invertlble for nEZ. Then if

B(n) satisfies (2.22) we have that the perturbed equation (1.4) also has property (H)

with the same projection P.

PROOF. We use the same argument as in Proposition I. Since (I.I) has property

(H) from Remark 2 we have

X(n)PX-l(n) S(n)PS -l(n),

where X(n) is the fundamental matrix solution of (I.I), P the projection and S(n) the

kinematic similarity involved in (H). Then we obtain

*-1 * * *-1 * *X (n)(I-P)X(n) S (n)(I-P)S(n).

,
It is obvious that the matrices S(n), -I (n) are almost periodic since S(n), S

-I (n)

are almost periodic.

From Lemma 4 -l(n) is a fundamental matrix of (2.23) which has an exponential

dichotomy with I-P. So from Remark 2 we have that (2.23) has property (H) with the

projection I-P. Since B(n) satisfies (2.22) from Lemma 6 we have that (2.24) also

has property (H) with the projection I-P. Let Y(n) be the fundamental matrix

solution of (2.24) and S2(n) the kinematic similarity involved in (H). From Remark 2

we have

* -I * -1
Y(n) (I-P)Y (n)=S2(n) I-P)S

2
*-1

(n), so Y(n)PY * -l(n(n)-S2(n)PS 2

Then we get

*-1 * *-1 *Y (n)PY(n) S
2 (n)PS2(n), nEZ.

*-IFrom Lemma 4, Y (n) is a fundamental matrix solution of (1.4) which has an

exponential dichotomy with projection P. So from Remark 2 we have that (1.4) has

property (H) with the projection P. Thus the proof of the proposition is completed.

REMARK 4. Using the same argument as in [I, p. 382] we can easily prove that when

A(n) is a real almost peirodlc 2x2 matrix such that (I.I) has an exponential dichotomy

then (I.I) has property (h).
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