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ABSTRACT. In this paper we prove first that the exponential dichotomy of linear
difference equations is "rough". Moreover we prove that if the coefficient matrix of
a linear difference equation is almost periodic, then the joint property of having an
exponential dichotomy with a projection P and being reducible with P by an almost
periodic kinematics similarity is "rough”.
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1. INTRODUCTION. Consider the difference equation
x(n+1) = A(n)x(n) (1.1)

where A(n) is a k x k invertible matrix function for n € Z = {,...,~1,0,1,...}.

In what follows we denote by |x| the Euclidean norm of the vector x. Then the
*
induced norm IA| for a matrix A is the square root of the largest eigenvalue of AA
(A is the transpose of A).

The difference equation (l.1) is said to possess an exponential dichotomy on Z if
there exist a projection P (PZ-P) and constants k21, a > 0 such that

~a(n-m)

|X(n)px"  (m)] < ke 0>m

-a(m-n)

|X(n)(I~P)x_1(m)| < Ke m>n (1.2)

where X(n) is a fundamental matrix solutions of (1.1) and n,meZ. In this situation we

also say that X(n) has an exponential dichotomy with projection P and constants K,a.
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Let A(n) be a k x k invertible matrix funtlon. Consider the equation
y(ntl) = A(n)y(n) (1.3)

Equations (1.1) and (1.3) are said to be kinematically similar if there exists a
k x k invertible matrix function S{n) which is bounded together with its inverse, such
that the change of variables x(n)=S(n)y(n) transforms (1.1) into (1.3).

Equation (l.l1) is said to be reducible with projection P if it is kinematically
similar to (1.3) where PA(n)=A(n)P.

A matrix function A(n) is almost periodic if from every sequence
{am}, amez there exists a subsequence {a;} such that 1lim A(n+a;), m * © exists

uniformly with respect to n.

According to Palmer [l, p.377] equation (1.1) has the property (H) if it has a
fundamental matrix solution x(n) which satisfies (1.2) and, moreover, is reducible

with P by a kinematic similarity S(n) such that

i) S(n) is almost periodic and
ii) the reduced system has a fundamental matrix solution which commites with P and

has an exponential dichotomy with projection P.

The main results of this paper are the following:

i) Suppose that (l1.1) has a fundamental matrix solution X(n) which satisfies
(1.2). Let B(n) be a matrix such that A(n)+B(n) 1is invertible and sup lB(n)l,
neZ} = §, § is sufficiently small. Then the perturbed equation

y(n+1) = (A(n)+B(n))y(n) (1.4)

has a fundamental matrix solution which also has an exponential dichotomy with the
same projection P.

ii) Let A(n) be an almost periodic matrix function. Suppose that (l1.1) has
property (H). Let B(n) be an almost periodic matrix function such that A(n)+B(n) is
invertible and sup{|B(n)|, nez} = &, § is sufficiently small. Then the perturbed
equation (1.4) also has property (H).

We note that these results are the discrete analogues of those of Coppel [2], [3]
and Palmer [1] but the passage from the continuous case to the discrete case is not at
all straightforward. We also note that a roughness theorem for dichotomies of
difference equations has been proved by Henry (see Theorem 7.6.7 [4, p. 232]) using
admissibility theory. However, we can easily prove that Proposition 1 of this paper
applies to dichotomies on an arbitrary set I = (ml,ml+1,...,m2}, mlmzez. Moreover,
some arguments of Proposition 1l are used in the proof of Proposition 2.

It is worthwhile to study linear difference equations because recently there has
been an increase in interest in discrete dynamical systems. It is know that linear

difference equations arise as variational equations along the orbits of such systems.
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Some results on exponential dichotomy, reducibility and almost periodicity of
difference equations are included in the papers [4], [5], [6], (7], (8], [9], [10],
(11}, (12j.

2. MAIN RESULTS.

First we derive some results for equations of the form
Ax(n) = C(n)x(n+l), nez (2.1)

where Ax(n) = x(n+1)-x(n) and C(n) is a k x k matrix function such that I-C(n) is
invertible. Since I-C(n) 1is invertible, equation (2.1) has a fundamental matrix
solution X(n).

It will be assumed that all the definitions of this paper for equations of the

form (l.1) are valid also for equations of the form (2.1).

The following lemma shows that uniform asymptotic stability is preserved under
small perturbations of the coefficient matrix for the equations of the form (2.1).
LEMMA 1. Suppose that (2.1) has a fundamental matrix solution X(n) such that

a(n-m)

Ix(n)X-l(m)l < Ke , n>m, acR. (2.2)

Let A(n) be a k x k matrix function such that the matrix function I-(C(n)+A(n)) is
invertible and

sup{'A(s)I, s€Z} = §, 6§ > 0. (2.3)
Then the perturbed equation
Ay(n) = (C(n)+A(n))y(n+1) (2.4)

has a fundamental matrix solution Y(n) which satisfies

|Y(n)y-l(m)| < Reb(n-m)’

n’m
where b=a+8Ke?.

PROOF. It is easy to show that every solution y(n) of (2.4) satisfies

n
y(n) = X(mX Lm)y(m) + I XX l(s-1)A (s-1)y(s).
s=mt+l1

Then from (1), (6) and using the discrete Gronwall's lemma [13, p. 337] if
w(n)-e—anly(n)l we obtain

a(n-m)

Ske wim).

w(n) € Ke
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So
ly(m] < ke®®™ |y(my].

Thus the proof of the lemma is completed.

REMARK 1. It is easy to show that the lemma holds if instead of (2.1) and (2.4)
we have equations (l.1) and (l1.4) correspondingly. The only change is that the
constant b is equal to a+6Re 2.

LEMMA 2. Suppose that (2.1) has an exponential dichotomy (l1.2) where P is

*
orthogonal (P =P). Then (2.1) is reducible to
Ay(n) = D(n)y(n+1) 2.5)

where the coefficient matrix D(n) commutes with P and (2.5) has a fundamental matrix
solution Y(n) which commutes with P and satisfies

|Y(n)PY_1(m)| < 2K2e-a(n-m)' n>m
(2.6)

|¥(m) (-2)v "L (m)| < 26272 o,
Also the matrix transformation T(n) satisfies
|t < 22, |17 )| < 2%, nez.
PROOF. From Lemma 1 [3, p. 39] there exists a matrix function T(n) such that
TMPT L (n) = X(n)PX (n)
and from (1.2)
It | < 222, |7 )| < 2!/%k, nez. 2.7

Also from Lemma 1 [3, p. 39] T(n) = X(n)R-l(n), where R(n) commutes with P. The
change of variables x(n) = T(n)y(n) transforms (2.1) into (2.5) where
D(n) = T-l(n)C(n)T(n+1)-T-1(n)AT(n). We have that R(n) = T-l(n)x(n) is a fundamental
matrix solution of (2.5). Therefore D(n) = (AR(n))R_l(n+l). Hence D(n) commutes
with P. If Y(n)=R(n) from (1.2) and (2.7) we have that the inequalities (2.6) are
satisfied and the proof of the lemma is completed.
In Proposition 1 below since every projection P of rank equal to £ is similar to
the projection Q=diag Qﬂdiag(Iz,O) , 1 1is the identity £ x % matrix (see [3, p. 41-
42]), we may suppose that P=diag(1z,0). .

The following lemma shows that exponential dichotomy 1is preserved under small

perturbations of the coefficient matrix for the equations of the form (2.1).
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LEMMA 3. Suppose that (2.1) has a fundamental matrix soluion X(n) which satisifes
(1.2) with P=diag(Ik,0). Let A(n) be a matrix such that the I —=(C(n)+A(n)) is
invertible. Then if

1- -2a
sup{'A(n)', nez} = 8 < min f——g——:;, ——3—;}, (2.8)
72K% 6K3e
the perturbed equation (2.4) has a fundamental matrix solution Y(n) which satisfies

[rey Hmy| < 128%™ g

(2.9)

-v(m-n)

[¥() (1-)Y } (m) | * 12K3 w>n

where v=a-6K38e’,
PROOF. We apply the change of variables x(n)=T(n)y(n) as in Lemma 2 to equations
(2.1) and (2.4). Then (2.1) and (2.4) are kinematically similar to (2.5) and

Aw(n) = (D(n)+M(n))w(n+l1) (2.10)

respectively where D(n) = T_I(n)C(n)T(n+l)-T-l(n)AT(n) and M(n) = T-l(n)A(n)T(n+l).

For any matrix A we put

E1=PEP +(I-P)E(I-P) and E2=PE(I-P)+(I-P)EP.

Then we have E=E1+E2. Obviously El commutes with P.

We claim that there exists an invertible matrix function Sl(n) which is bounded
together with its inverse such that the change of variables w(n)-Sl(n)v(n) transforms
(2.10) into the system

Ay(n) = (D(n)+{M(n)Sl(n+l)}l)v(n+1). (2.11)
It is easy to show that the claim is true if Sl(n) satisfies the equation
4s,(n) = D(n)Sl(n+1)—Sl(n)D(n)+M(n)Sl(n+l)-Sl(n){M(n)Sl(n+l)}l (2.12)
or putting Sl(n)=I+H(n) if H(n) satisfies

AH(n) = D(n)H(n+1)—H(n)D(n)+{M(n)(I+H(n+1))}2 - H(n){M(n)(I+H(n+l))}l. (2.13)

We must prove that (2.13) has a bounded solution. Consider the space E of all matrix
functions H(n) such that lH(n)' <~%, neZ. Define the operator T on E as follows:

— n-1 _
TH(n) =} Y(n)PY'l(s)(I—H(s))M(s)(1+H(s+1))Y(s+1)(1—P)Y 1(n) -

§==00
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=) Y(n)(I-P)Y " (s) (I-H(s))M(s) (I+H (s+1))Y¥(s+1)PY !(n)
s=n

where Y(n) is the fundamental matrix solution of (2.5) which satisfies (2.6).

First we prove that T H is in E. From (2.6) we get

36K06e 2
-2a

|Eﬁ(n)| < neZ.

From (2.8) we have that T H is in E.

We prove now that T : E * E is a contraction. Consider H,G €E.

It is easy to prove that

(I-H(s) IM(s) (T+H(S+1) )-(I-G(s) IM(8) (I+G(s+1)) = M(s)(H(s+1)-G(s+1))-(H(8)-G(s))IM(s)~
H(8)M(8) (H(s+1)-G(s+1) )-(H(s)-G(s) )M(8)G(s+1).

Then it is easy to prove

|TH(n) - Te(n)| < : |b-c|,

48K 8
-2a
l1-e

where |H—G|-sup{|H(n)-G(n)| neZl. So T is a contraction on the Banach Space E. So
there exists a unique HeE such that TH(n)=H(n), neZ.

We prove now that H(n) is a solution of (2.13). We have
MR(n) = (ACY(m)A ()Y (a+1)+Y(n) A (DAY (n) -
- (@A, @)Y @)=Y @, ()87 ()
where
n-1

AL(n) = ] PY '(8)(I-H(s) M(s) (L+H(s+1) )Y (s+1) (1-P)

s--ﬂ

Ay(n) = (1-2)Y(8) (1-H(s) M(s) (I+H(s+1))¥(sH1 )P,
s=n

Since AY(n) = D(n)Y(n+l) we get DY_l(n) = -Y_l(n) D(n) .

Hence
AH(R) = D(m)Y(n+1)A (a+DY  (a+1+1() (A | ()Y (at1) -
-Y(N)Al(n)‘l-l(n)D(n)—D(n)—D(n)Y(n+1)f\2(n+l)Y—1(n+l) -

=¥(0) (A, ()Y (a+ DA ()Y~ (D ().
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Since from Lemma 2, Y(n) commutes with P we have
8H(n) = D(n)H(n+1)-H(n)D(n)+{(I-H(n) M(n) (I+H(n+1))},.
It holds
PHP=0 and (I-P)H(I-P)=0, so H=HP+PH.
Therefore we can easily prove
{(1-H(n) )M(n) (T+H(n+1))}, = {M(n) (I+H(n+1))}, - H(n) {M(n) (T+H(n+1))}, .
So H(n) is a solution of (2.13) such that |H(n)| <~%, neZ. Therefore Sl(n)-I+H(n)
satisfies (2.12) and |Sl(n)' < 2-, |SIl(n)| < 2. Hence our claim is true. So
(2.10) and (2.11) are kinematically similar. It holds

[{M(s)s (s+1)} | < [M(s)S, (s+1)] < 3KS. (2 .14)

Since the coefficient matrices of (2.5) and (2.11) commute with P each equation

decomposes into two equations. Suppose that (2.5) decomposes into the equations
8y, (n) = D, (n)y,(n+1) (2.15)

A = .
yz(n) D, (n)y,(n+1) (2.16)

where (2.15) 1is uniform asymptotically stable. Suppose that (2.11) decomposes into

the equations
Avl(n) = (Dl(n)+{M(n)Sl(n+1)]ll)vl(n+1) (2.17)
sz(n) = (Dl(n)+{M(n)Sl(n+l)}lz)vz(n+l). (2.18)

Applying Lemma 1 to (2.15) and (2.17) and using (2.8) and (2.14) there exists a
fundamental matrix solution Vl(n) of (2.17) such that

v, vt @] < 2™ g,

To prove an analogous result for (2.18) we use the same method as in [6, p. 69].

Consider the equations
*
¥o(ntl) = (I-D,(n))y,(n) (2.19)

v,(n+1) = (I-ﬁz(n)—{n(n)*sl(n+1)}12)vz(n). (2.20)
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*
Since for a matrix A it holds |A| = IA' equation (2.16) has a fundamental matrix
solution Yz(n) such that

2e—a(m—n)

-1
I, @i, m] = |y ey @] < 2x , wn.

-1

*
Since Y2 (n) is a fundamental matrix solution of (2.19) and applying Remark 1 to
(2.19) and (2.20) there exists a fundamental matrix solution Vz(n) of (2.20) which
satisifies

* *
‘Vz(m)vz-{n)l = IG;'I(n)Gé(m)l < 2K2e-v(m-n). m>n.
*-1
But Vz(n)-V (n) is a fundamental matrix solution of (2.18). So (2.11) has a
funamental matrix solution V(n)-diag(vl(n),vz(n)) which has an exponential dichotomy
with P and constants 2K2,v. Hence (2.10) has a fundamental matrix solution
W(n)=sl(n)v(n) which has an exponential dichotomy with P and constants 6K2,v. Thus
Y(n)-T(n)Sl(n)V(n) is a fundamental matrix solution of (2.4) which satisfies (2.9)
and the proof of the lemma is completed.
To prove our main results we use the following lemma.
LEMMA 4., Suppose that (l1.1) has an exponential dichotomy (1.2) where
P-diag(Il, 0).
Then the adjoint equation of (l.1)

x(n+1) = A ! (n)x(n) (2.21)

has a fundamental matrix solution which has an exponential dichotomy with projection
I-P and constants K,a.

PROOF. Suppose that (l.1) has a fundamental matrix solution X(n) which satisfies
(1.2). Then since we use the Euclidean norm we obtain

~a(m-n)

X (w) (1-2)X(m)| < ®e wn

X L (mpX(n)| < ke 2(n ™

, N2me.
Since Y(n) = i-l(n) is a fundamental matrix solution of (2.21) the proof of the lemma
is completed.
PROPOSITION 1. Suppose that (l1.1) has an exponential dichotomy (1.2) where
P-diag(ll,o) . Let B(n) be a matrix function such that the matrix A(n)+B(n) is
invertible. Suppose that B(n) satisfies

-2a

sup{|B(n)|, nez] = & < minfl:gg—:;,-—-%j;J . (2.22)
72K"e 6K"e

Then the perturbed equation (l.4) has a fundamental matrix solution which has an

exponential dichotomy with the projection P and constants 12K3,v.
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PROOF. Equation (2.21) can be written to the form
*
Ax(n) = (I-A(n))x(n+l1). (2.23)
Consider equation
* *
Ay(n) = (I-A(n)-B(n))y(n+l). (2.24)

From Lemma 4 we have that (2.23) has a fundamental matrix solution which has an
exponential dichotomy with the projection I-P and constants K,a. Since (2.22) holds,
from Lemma 3 we have that (2.24) has a fundamental matrix solution which has an
exponential dichotomy with the projection I-P and constants 12K3,v. But (2.24) can
be written as the adjoint equation of (l1.4). Then from Lemma 4 the proof of the

proposition is completed.

To prove the second roughness result we use two lemmas.

LEMMA 5. Suppose that (2.1) has a fundamental matrix solution X(n) which has an
exponential dichotomy with a projection P and that (2.1) is reducible withP by the
kinematic similarity S(n) to (2.5). If Y(n) is a fundamental matrix solution of (2.5)
and Q is a projection the following statements are equivalent:

i) Y(n) commutes with Q and Y(n) has an exponential dichotomy with Q.

i1) X(n)PX—l(n) = S(n)QS_l(n), nez.

The proof of the lemma is analogous to the proof of Lemma 2 [1, p. 376].

REMARK 2. Using Lemma 5 we can easily prove the following:

Suppose that (2.1) has property (H) (See introduction for definition). Let X(n) be
the fundamental matrix of (2.1), P the projection and S(n) the kinematic similarity
which are involved in (H). Then the condition (ii) of (H) 1is equivalent to
x(n)PX L ()=s(m)Ps ' (n), n ¢ z.

REMARK 3. Using the same argument as in [l, p.377] we can prove that if S(n) is
an almost periodic invertible matrix with bounded inverse then S_l(n) is also almost
periodic.

LEMMA 6. Let C(n) be an almost periodic matrix function on Z. Suppose that (2.1)
has property (H). Let A(n) be an almost periodic matrix wunction such that

I - (C(n) + A(n)) is 1invertible. Then if A(n) satisfies (2.8), the perturbed
equation (2.4) has property H.

PROOF. Consider the fundamental matrix solution X(n) of (2.1), the projection P
and the kinematic similarity S(n) which are involved in (H).

There exists an invertible matrix L such that P-LQL_I, Q-diag(Iz,O). « Using
the same argument as in the proof of Lemma 3 [1, p. 378] we can prove tha there exists
a matrix function T(n) = S(n)LR'-1 (n), R(n) is an almost periodic matrix such that the
change of variables x(n)=T(n)y(n) transforms (2.1) into (2.5) where QD(n)=D(n)Q,
neZ and (2.5) into (2.10). We also have T(n) satisfies (2.7) and (2.5) has a
fundamental matrix solution Y(n)-’r—l(n)x(n)L which commutes with Q and has an
exponential dichotomy with the projection Q and constants 2K2,a. Arguing as in Lemma
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3 equation (2.13) has a unique bounded solution H(n), lH(n)' <%, neZ such that for

mEZ we get

n-1
H(nm)=H(n) = J  (Y(n+m)QY  (s+m)-Y(n)Q¥ ! (s))F (s+m)¥(s+1+m) (I-Q)Y ! (n+m)

S:—D
+ Y(mQY L (8) (F(s+m)-F(s) )Y (s+1+m) (1-Q)Y *(n+m) +
(2.25)
+ Y(n)QY L (8)F(s) (Y(s+14m) (I-Q)Y ! (n+m)-Y(s+1) (I-Q)Y ' (n))

= L eeeeees

s=n

where F(s) = (I-H(s))M(s)(I+i(s+1)). We have that N(n) = Y(n+m)QY  (s+m) is a

solution of
AN(n) = D(n)N(n+1)+(D(n+m)-D(n) )N(n+1).

Then from the variation of constants formula which is taken by using the same method
as in [14, p.11-12]) and since Y(n), D(n) commute with Q we get for n > s

n
N(n) = Y(mY 1(s)N(s) + § ¥(n)Y }(u-1) (D(utm—1)-D(u-1) )N(u)) =
u=g+l

n
=YY 1(s) + § ¥(n)QY ! (u-1) (D(utm-1)-D(u-1) )N(u).
u=s+l

Then we obtain
4
[¥(atm)y ! (s+M) - ¥(n)aY l(e)| < 2K |u -D| (2.26)
e

where |Dm—D| - sup{'D(nﬂn)-D(n)', neZ}. Using the same argument we can easily prove

|¥Ce+14m) (1Y ! (a4m)-¥(s+1) (1-Q¥ () | < AR et
e?-1

[o,-o| - (2.27)
Since from the proof of Lemma 3 M(n)-T"l (n) A(n)T(n+1) we get
|M|=sup{|M(n)|, nez} < 2K5. Using (2.25), (2.26), (2.27) and (2.8) we obtain

sS4 |u —M| 216K8 |M|ea|D —n[
|n -H| < = (2.28)
m 2a
e -1 (e “1)

Since from Remark 3, T-l(n) is almost periodic, we have that M(n), D(n) are also
almost periodic matrix functions. Hence from (2.28) H(n) is almost periodic. From
Lemma 3 we have that the perturbed equation (2.4) has a fundamental matrix solution
which has an expoenential dichotomy with the projection Q. Then as in the proof of
Lemma 3 the transformation y(n)=T(n)(I+H(n))v(n) transforms (2.4) into (2.11) which
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has a fundamental matrix solution which commutes with Q and has an exponential

dichotoumy with the projection Q. Using Lemma 5 we have
-1 -1 -1,-1
Y(n)PY (n) = T(n)(I+H(n))L "P(T(n)(I+H(n))L )

Using Remark 2 we have that (2.4) has property (H) with the projection P and Kinematic
similarity 'I'(n)(I+I'l(n)L_l Thus the proof of the lemma is completed.

PROPOSITION 2. Let A(n) be an almost periodic invertible matrix function.
Suppose that (l.1) has property (H) with the projection P. Consider an almost
periodic matrix function B(n) such that A(n)+B(n) is invertible for ne€Z. Then if
B(n) satisfies (2.22) we have that the perturbed equation (1.4) also has property (H)
with the same projection P.

PROOF. We use the same argument as in Proposition l. Since (l.1) has property

(H) from Remark 2 we have
-1 -1
X(n)PX “(n) = S(n)PS (n),

where X(n) is the fundamental matrix solution of (l.1), P the projection and S(n) the
kinematic similarity involved in (H). Then we obtain

-1 * * *~] * %
X (n)(I-P)X(n) =S (n)(I-P)S(n).

* *o -
It is obvious that the matrices S(n), S 1(n) are almost periodic since S(n), S 1(n)
are almost periodic.

A
From Lemma 4 X 1

(n) is a fundamental matrix of (2.23) which has an exponential
dichotomy with I—§. So from Remark 2 we have that (2.23) has property (H) with the
projection I-%. Since B(n) satisfies (2.22) from Lemma 6 we have that (2.24) also
has property (H) with the projection I-?. Let Y(n) be the fundamental matrix
solution of (2.24) and Sz(n) the kinematic similarity involved in (H). From Remark 2

we have
x -1 * - * -1 * -]
Y(n)(I-P)Y (n)-Sz(n)(I—P)S2 (n), so Y(n)PY (n)-Sz(n)PS2 (n).
Then we get
*-1 * %=1 *
Y "(n)PY(n) = 82 (n)PSz(n), nez.

From Lemma 4, ;-l(n) is a fundamental matrix solution of (l.4) which has an
exponential dichotomy with projection P. So from Remark 2 we have that (l.4) has
property (H) with the projection P. Thus the proof of the proposition is completed.

REMARK 4. Using the same argument as in [1, p. 382] we can easily prove that when
A(n) is a real almost peirodic 2x2 matrix such that (l.1) has an exponential dichotomy
then (1.1) has property (h).
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