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ABSTRACT. We investigate the properties of torsion groups and their essential
extensions in the category AbShL of Abelian groups in a topos of sheaves on a
locale. We show that every torsion group is a direct sum of its p-primary components
and for a torsion group A, the group [A,B] is reduced for any BeAbShL. . We give an
example to show that in AbShL the torsion subgroup of an injective group need not be
injective. Further we prove that if the locale is Boolean or finite then essential
extensions of torsion groups are torsion. Finally we show that for a first countable
hausdorff space X essential extensions of torsion groups in AbShO(X) are torsion iff X

is discrete.
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1. INTRODUCTION.

In [1] the author discusses the notion of injectivity and injective hulls of
abelian groups in a topos of sheaves on a locale where as in [2] the notion of
injectivity, injective hulls and the role played by the initial Boolean algebra in a
topos 1is discussed. Our purpose here 1is to show how torsion groups and their
essential extensions behave in the category AbShL of abelian groups in the topos ShL
of sheaves on a locale L. We show that torsion is a local property (Theorem 3.1) but
not a global one (3.2), that is, A torsion in AbShL does not necessarily imply that AE
is a torsion group in Ab. However if L has ACC, then torsion implies global
torsion. We prove number of results about torsion groups in AbShL which are analogous
to their counterparts in Ab, in particular, we show that every torsion group is a
direct sum of its p-primary components (Theorem 3.5), and for a torsion group A the
group [A,B] 1is reduced for all B € AbShL (Proposition 13.10]. Recall that in the
category Ab, the torsion subgroup of an injective group 1s Injective. We show by
giving an example that this does not hold in AbShL for an arbitrary L (3.11).

In section 4 we show that in AbShL, essential extensions of torsion groups are
torsion iff every injective group splits into a direct sum of a torsiun group and a

torsion free group (Proposition 4.2). For a Boolean locale and any fiaite locale the
above result holds (4.3) and (4.4) respectively). We also give an example to show

that the converse of (4.3) does not hold. In (4.7) we give an example of a space X

and a torsion group in AbShX with a non torison essential extension. After proving
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some more results about essential extensions of torsion groups, we conclude our paper
by showing that for a first countable Hausdorff space X, essential extensions of
torsion groups in AbShX are torsion groups 1ff X is discrete (Theorem 4.8). For basic
facts about about abelian groups with which this paper is concerned see [3] and [4].
Details concerning presheaves and sheaves on a locale can be found in [5], category

theory in [6] and topos theory in [7].

2. BACKGROUND
(2.1) Recall that a locale denoted by L is a complete lattice satisfying the
following distribution law;
UAV g U =V A

for all U, and any family {Ui}iel in L. The zero (= bottom) of L will be denoted by
0, and the unit (= top) of L by E. A morphism of locales h: L +M (also called
local lattice homomorphism) is a map which preserves arbitrary joins and finite meets
(hence preserves the zero and the unit).

An obvious example of a locale is the topology OX (that is the lattice of open
sets) of any topolocial space X with joins as unions and meets as intersections.

REMARKS. A locale L satisfies both the Ascending and Descending Chain Conditions
iff L is finite. To prove the non-trivial implication (> ) note that such an L is
spatial [8] and if L = O0(X) and X is TO' one has the following observations
concerning X: Each x € X has a smallest open neighbourhood WX and for the partial
order < given, such that x € y(x,yeX) iff 0(x) c O(y) (hence iff
Hys wx), W= tx = {yly > x}. Moreover DCC for L then implies that +x is finite,
and since X is compact by ACC, X itself is finite. It follows that L is also finite.

(2.2) ABELIAN GROUPS IN A CATEGORY. 1If E is any finitely complete category then
by AbBE one means a category with objects as abelian groups in E and maps as
homomorphisms between them [9]. For A € AbE and O#neN,

(1) The diagonal map A,: A + A" is a unique map such that

A:

A P
A i h

A+ A"+ A= 1A for all 1=1,2,...n, where p: A" > A 1is the 1t projection

*a G4
(11) The sum A" + A is the unique map such that A + A" » A = 1, where
A

9yt A+ A" is the ith injection for i=1,2...n. The composition +A AA: A>A"»Ais
denoted by n, and the kernel of n, shall be denoted by L.r: Lo iy A
DEFINITION 2.3. (1) A € AbE is called a torsion ‘.~e group iff n, is a

A
monomorphism for all 0 # n € N,

(2) A€ AbE is called a torsion group iff all kn, 0 # n € N are jointly epic, that
is, for any two homomorphisms f and g with domain A, if fkn=gkn for all O#neN then
f=g.

2.4. Recall that by AbPShL and AbShL one means the categories of Abelian groups
in the topos PShL and ShL of presheaves and sheaves, respectively, on a locale L with
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values in the category Ab of abelian groups. For any U, V € L and A € AbShL,AU will
denote the component of A at U and if V € U the restriction map AU * AV will be
written as a * a'V. If A is the sheaf reflection of the given presheaf B (also
denoted by A=B) then we shall write AU = BU. Also if h: A + B is a morphism in AbShL
then its component at U€ L is denoted by hU : AU + BU.

NOTE. AbSh2 = Ab for the two-element locale 2 and if X is a discrete
topological space then AbShX = Ab‘x‘. Further AbSh3 for the three—element locale is
the same as AbPSh2 that is the arrow category of Ab. Further AbSh3 is also AbShS for
the Sierpinski space S with points 0 and 1 and non-trivial open set {1}.

2.5. Recall that for any local lattice homomorphism ¢: L + M we get a pair of
adjoint functors AbshM ¢: AbShL where (¢, A)U = A(¢(U)) for U € L, and for any V € M

«
*
(¢*C)V = 2tCW (W ¢ L?. Then ¢* is left exact, left adjoint to ¢,. As a special
$(W)>v
case we get for each U € L a pair of adjoint functors RU:AbShL + AbSh+U and

EU:AbSh+U + AbShL defined by (RUA)W = A(WAU) and

Jav it veu
(E AV =

v 0ifv4§uU

Then EU is left adjoint 1left exact to RU. We shall also denote RUA by A|U.

Further RU preserves all limits and co-limits.
2.6. Besides the obvious external Ab valued homfunctor H = HL:
AbShLOPP x AbShL * Ab, AbShL also has an internal hom-functor [-,-]:

abshL°PP x AbShL > AbShL, for which [A,BJU = H, (A|U,B|U), with the restriction
maps [A,BIU > [A,BIV (V € U), given by h = (h))o o > h|v = (h) o [10].

2.7. In (2.3) we described what we mean by torsion free and torsion groups in
AbE. For the case E = ShL, we have the following:
(1) A € AbShL is a torsion free group iff each AU is torsion free in Ab.

(2) A € AbShL is a torsion group iff A = 2t Ker n,
0#neN

= 3 € h = .
exists a cover U vielui’ and 0 m z, such that m a Ui 0 for all iel

« That is for a € AU, there

PROPOSITION 2.8. For any Ue L , the functors RU and E pr serve torsion groups.

PROOF. Let A € AbShL which is a torsion group. Then A = %t Ker n, since
RU preserves all co-limits and limits (2.5), it follows 0#neN
RUA = 2t RU(Ker nA) = 2t Ker n hence A|U is torsion in AbSh YU. By a similar
0#neN 0#neN

Alw

argument it can be shown that EU preserves torsion groups.
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3. TORSION GROUPS.
THEOREM 3.1. A€ AbShL is a torsion group iff there is a cover E = VieIUi such
that AlUi is torsion in AbSh*Ui for all iel.

PROOF . (*) Clear by taking the trivial cover of E. On the other hand if all
A|Ui are torsion groups in AbSh+Ui, we claim A is torsion. So consider any be AU,
Ue L ThenU =V, . (UAU) and b| (U A U;) €AU A U= Alui(UA U;) for all i€ I.

all 1 € I.

But A|Ui is torsion in AbSh*Ui, and so for each i € I, there is a cover

= # = .
UA T, \/jeJiwji and 0 #n, € Nsuch that njiblei 0, j €J,. Hence for

b € AU, we can find a cover U =\G€J1 1€l wji such that

“jiblei =0 for all 1, j, 0 # “jie N, which shows that A is a torsion group in
AbShL.

COUNTEREXAMPLE 3.2. Proposition 3.1 shows that torsion is a local property.
However it 1s not a global property as we shall see from the following counter

example: Consider L = wtl and A € AbShL given by

n Z/nZ * ... * Z/22 x 2/32 % Z/22 » O (= 2/Z) + 0

n<w
w D teveceeed 3 > 2 > 1 >0

By Proposition 3.1, A is torsion, since for the cover w = Vn<mn, the group

Aln= I Z/kZ is torsion in AbSh+n for all n < w. But Aw =1 Z/nZ
k<n n<w

is not torsion in Ab, as the element (l+nZ)n<m does not have a finite order.

DEFINITION 3.3. For a given prime p, by the p-primary component of a group A€
AbShL we mean the subgroup of A given by U 0#neN Ker pnA .« We denote the p-primary
component of A by Ap. A€AbShL 1s called a p-primary group if AFAP.

DEFINITION 3.4. By the torsion subgroup B of an any group AcAbShL we mean the

Ker n,.

subgroup of A given by B = UO#neN N

THEOREM 3.5. Every torsion group is a direct sum of its p-primary components.
PROOF. Let A be a torsion group and denote by B the presheaf BU = t(AU) the
torsion subgroup of AU. Then A is the sheaf reflection of " A=.). Now BU = t(AU)=

O(t(AU))p where (t(AU))p denotes the p-primary component of t(ad). If Bp; B

is the subpresheaf BPU = (t(AU))p then clearly B = OBP in AbPShL. The Sheaf

reflection being a left adjoint preserves co-limits, in particular direct sums and so

A=3-= (B )N =eB . But B_ =A_ and hence we get A= oA .
P P P P P



ABELIAN GROUPS IN A TOPOS OF SHEAVES 93

DEFINTION 3.6. By the torsion type of a group A we mean the set of all prime
numbers p such that Ap + 0.

PROPOSITION 3.7. 1If A is a torsion group and B 2 A is an essential extension
then B and A have the same torsion type.
PROOF. Since A ¢ B, it follows Ap c Bp and therefore Apg An Bp for all

p. Consider any U € L,then
n
(AN BP)U = AUN BPU = AUN (UO#nENKer pB)U

AU N (U )

n
o#neN eT Py

n
Uo*neN(AUﬂ Ker pBU)

n
UO*nEN(A N Ker pB)U

2 Ugpnen (Ker pZ)U =Ay
Hence A N Bp = A for all primes p. We now want to show that Apg Bp is an
essential extension. If O0#C<B , then since A € B is essential it follows ANC

# 0. This means 0 # ANC N BP = Apn C, thereby showing that APE Bp is

essential. Hence Bp # 0 iff Ap # 0 which means that A and B have the same torsion
type.

DEFINITION 3.8. We call an A € AbShL to be a reduced group if it has no non zero
injective subgroups. Recall that in the category Ab, for any torsion group B the
group Hom(B,K) is reduced for all K € Ab. We shall prove the analogue of this for
the Ab-valued hom-functor H and the internal homfunctor [-,-] of AbShL(2.6).

LEMMA 3.9. If A € AbShL is a torsion group then H(A,P) is reduced in Ab for all
P € AbShL.

PROOF. Let 0*C, cH(A,P) be an injective subgroup. Consider any
0 # a €C, then for some U € L and A € AU, aU(a) # 0. Since A is
torsion and a € AU there exists a cover U = viel U1 and 0 # n, € N such that

= . #
nia‘U1 0 for all 1 € I But a.U(a) 0 implies that aUk(a'Uk) # 0 for some k

I. Consider now O # n € N, then C an injective hence divisible group in Ab implies
that there exists some B € C such that B = a. Therefore

nkBUk (alUk) = BUk(nka|Uk) = BUk(O) = 0, which means O‘Uk(a’uk) = 0, a contradiction,

hence C = 0 which shows that AbShL(A,P)=H(A,P) is reduced in the category Ab.
PROPOSITION 3.10. If A is a torsion group in AbShL, then [A,P] is reduced in
AbShL for all P € AbShL.
PROOF. Let O # BS [A,P] be an 1injective subgroup. Then for some U € L, BU
# 0 is an injective subgroup of [A,P]U = H+U(A|U,P|U). Since A is torsion, it
follows A|U is torsion (2.8) in AbSh+U. and so by last lemma H“J(AIU,P'U) is reduced
in Ab. Thus BU = 0 for all U € L, hence B = 0 which means [A,P] is reduced in AbShL.



94 K.R. BHUTANI

REMARK. Recall that in the category Ab, the torsion subgroup of an injective
group is always injective. We show in the following example that, for an arbitrary L,
the torsion subgroup of an injective group need not be injective, except for some
special locales which we shall discuss in the next section.

EXAMPLE 3.11. Consider the locale L = w + 2 and A AbShL given by

P > n Pp +.,..+P,  xP +P +0
1 n<w O 2 1 1

w+l >wdied 2>1>0

where the P1 are finite groups with increasing exponent. By one of our previous

results ([1], proposition 2.3) the injective hull of A is given by the group
B=n1 _E() ¥ 0 _ E®) ..o EE) x ECR,) *
n<w n ndw n? " 2) X 1) l:':(Pl) >0

where E(Pi) denotes the injective hull of group Pi in Ab. If TB is the torsion
subgroup of B, then (TB)n = Bn all n < w, and so

(TB)w = Bw = nn<w E(Pn), but (TB(w + 1)) = T(B(w +1)) = o " E(Pn). Hence TB S B

K
and since A S TB, it follows TB is not injective since B, being the injective hull of
A, is the minimal injective extension of A, hence the result.

4., ESSENTIAL EXTENSIONS OF TORSION GROUPS.

If for any torsion group A € AbShL, all essential extensions of A are torsion,
then we say that essential extensions in AbShL preserve torsion. The following
proposition shows "essential extensions preserve torsion" is a local property.

PROPOSITION 4.1. Essential extensions preserve torsion in AbShL iff there exists

a cover E -Vmui such that essential extensions preserve torsion in AbSh*Ui for

all 1 ¢ I.
PROOF. (*) Clear by taking the trivial cover of E. For the converse, consider

any essential extension B of the torsion group A in AbShL. Since for each 1 € I the
functor RU . AbShL + AbShHJi, preserves essential extensions and torsion [1] it
i

follows Bll.!i is an essential extension of the torsion group AlUi in AbShHJi.

By hypothesis, B‘Ui is torsion in AbStﬂUi all 1 € 1, hence by Theorem 2.1, B is
torsion in AbShL.

PROPOSITION 4.2. For any L, essenital extensions in AbShL preserve torsion iff
every injective group splits into a direct sum of a torsion group and a torsion free
group.

PROOF. (*) Let B denote the torsion subgroup of an 1njective group A € AbShL.
If C > B is any essential extension, then by hypothesis C is a torsion group. Since A
is injective we may assume that C S A, so C torsion implies C ¢ B and hence C = B.

Thus B has no proper essential extensions which means that B is injective. Therefore

A = BeE for some subgroup E of A. If TE denotes the torsion subgroup of E, then TECB

and so TECB N E = 0, hence TE = 0. Thus E is torsion free.
(*) Let P be a torsion group and H the injective hull of P. By hypothesis H =
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T ¢ F where T is a torsion group and F is a torsion free group. If F # 0, then since
H is an essential extension of P it follows that P N F = 0, a contradiction, since P
is torsion. Hence F = 0 which shows that H is a torsion group. Since every essential
extension of P has an embedding into H, it follows all essential extensions of P are
torsion, hence the result.

THEOREM 4.3. For a Boolean locale, essential extensions in AbShL preserve
torsion.

PROOF. Consider an essential extension B of a torsion group A in AbShL. Let C
denote the torsion subgroup of B(3.4). TFor any U € L consider an arbitrary element
b€ BU., Let W < Ube the largest element in YU such that b|W € CW. We claim W is
dense in ‘U, If not, then there exists S € U, S # 0 such that S A W = 0. Now for
any V< S, bIVECVgivesV<Wand so V+VAWKS AW=0 implies V = O. In
particular bls # 0. Since B 2 A is an essential extension therefore there exists a

V<SS and m € Z such that 0 # mb'V € AV S CV. Now C is the torsion subgroup of B
and 0 # mblB € CV implies b|V € CV. But then V = 0, a contradiction, since

0 # mbIV € AV. Hence W is dense in +U. Since L is Boolean we have W = U, thus
BU €S CU for all U € L and so B = C. Hence B is torsion.

REMARK. On the other hand, one can see that if essential extensions preserve
torsion in AbShL, then it does not necessarily follow that L is Boolean. Here is a
counterexample:

B

Consider L = 3, If B = +1h is torsion in AbSh3, then both Bl and B2
B
2

are torsion in Ab. By ([1], Proposition 2.3) the injective hull of B is

E(Bz) x E(Ker h)

v
E(Bz)

given by A= which is torsion in AbSh3. Hence

Hence all essential extensions of B are torsion, although L = 3 is not Boolean. Of
course the remark is a special case of the following more general result which shows
that there are non-Boolean L such that essential extensions in AbShL preserve torsion.
THEOREM 4.4, For any finite L essential extensions in AbShL preserve torsion.
PROOF. Let B be any essential extension of the torsion group A. Then for an
arbitrary a € AU, U € L. A torsion implies that there is a cover
U=U, VU, V...,VU and 0 # n, € N such that n,alU, = 0 for all i = 1,2,...,k. If

1 2 k i 1171
m=nn,...n then majU, = 0 for all i and therefore ma = 0 and m # 0. This shows

for ea];:hZU ekL, AU is aitorsion group in the category Ab. Now, if there are V €L
such that BV is not a torsion group then let S be minimal such that BS 1s not
torsion. Then S # 0 and for all U < S, BU is a torsicn ,roup in Ab. If W=
s U, then since each BU is torsion it follows by propc: ion 3.1 that B|W is
torsion in AbShtW. By the same argument as above it follows BW is torsion and hence
W<S. Consider an arbitrary b € BS of infinite order. Since B 2 A is an essenital
extension, there exists V< S and 0 # m € Z such that Otmb'V € AV. Then V # S, for
otherwise O # mb € AV has finite order and so b will have finite order, a
contradiction, since b has infinite order. Hence V < W. This implies b|W # 0.
But BW is torsion and so for some 0 # n € N, nb’w = 0. But O # nb € BS is again of

infinite order and so by the same argument 0 # nb'w, a contradiction. Hence BS is a
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torsion group which contradicts the definition of S. This shows B is a torsion group
in AbShL.

REMARK 3.4, Recall from (2.1) that the finite locales L are exactly those L in
which both ACC and DCC hold. It is therefore of interest to note that there exists an
L which satisfies DCC but for which essential extensions in AbShL do not preserve
torsion. Here is an example which is actually the same as that considered in (3.11)
for a different purpose: If A and its injective hull B > A are as in 3.11, then B is
not torsion because its torsion subgroup is proper.

THEOREM 4.5. If essential extensions preserve torsion in AbShL, then for all
U € L, the following are true:

(i) Essential extensions preserve torsion in AbSh+U.
(i1) Essential extensions preserve torsion in AbShtU.
PROOF. Let B be any essential extension of the torsion group A in AbSh+U. Since
the functor EU: AbSh+U + AbShL preserves essential extensions [l] and also torsion
(2.9), it follows E B is an essential extension of the torsion group EUA. By

U

hypothesis E B is torsion in AbShL. Therefore RU(EUB) = B is again torsion since

the functor gU preserves torsion (2.9), hence the result.

(1i) Consider the local lattice homomorphism ¢: L + tU given by ¢(W) =W V U,

Then ¢ produces ¢,: AbShtU » AbShL(2.6) where (¢ AW = AUV W), Wel.

Let B be an essential extension of the torsion group A in AbShtU. We claim that B is
torsion. We first show that ¢, preserves torsion. Let 0# ace (AW = A(U V W).

U, in 4U, and O # nic N such

Since A is torsion, there is a cover (U V W) = \/ e1 U

that niaIU1 =0 for all 1 € I. So we can for a cover W= (U VW) W= \ﬁﬁl (UiA w)
in L such that (nia)|Ui A W) =0alli€ I. Hence for 0 # a e (¢,A)W, we can always

find a cover W = V;el (UiA W) in L, such that 0 = nia'(Ui A W), and that proves

¢*A is torsion in AbShL.
To show that ¢, preserves essential extesnions take 0#b in
(¢,B)W = B(WVU), We L. Since B 2 A is essential in AbShtU. there exists

V<W VU and m € Z such that 0 # mb'V € AV, But U< VandV <WVU implies V = (VA
W)V U and therefore 0 mb|(VVW) VU € A((VAW) V U). Thus for 0 b € ( ¢,B)W, there

is (VAW). { W such that 0 # mb'V Awe ¢A) (VAW) for some m € Z. This shows ¢,B is
an essential extension of ¢ A in AbShL. Finally we show that ¢, reflects torsion.
So, let ¢,P be a torsion group in AbShl for some P € AbShtU. 1f

0# acPW, We U, then 0 # a € ($,P)W =P(W U) = PW, and so ¢,P being a torsion
group implies, that there is a cover W = vielwi in L, and 0 # nie N such that

niaIWi = 0 all i € I, where alWie ($,PIWL = P(Hi V U). If we consider the cover

W= vieI (Wi VU) in 4I. then we get 0 = nia‘(wi V U) for all 1 € I, which proves
that P is torsion in AbShtU. Thus, in order to prove (ii), we consider an essential
extension D of the torsion group C in AbShtU. Then by the above argument ¢,D is an

essential extension of ¢,C in AbShL. But $,C is torsion since C is torsion, hence
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by hypothesis ¢,D is torsion. Now ¢, reflects torsion and that proves D is torsion
in AbShtU. Hence the result.

REMARK 4.6. As a special case, if L = 0X for some topological space X and
YcXis a closed subspace then #CY = OY, the isomorphism being given by

U+UNY, Ue4CY. Hence, by the last proposition, essential extensions preserve

torsion in AbShY, if they do in AbShX.

LEMMA 3.7. On the space X = {0} U{l/n|n = 1,2,.++}JSR there is a torsion group
C with a non-torsion essential extension.

PROOF. Consider A € Ablxl by A{0} = 0, A(n) = z(p ) for all n # 0. Then the
functor F: AblX| » AbshX [1] produces B = FA, (FA)U =
ﬂx UA{x} = {¢: U » Z(pw), $(0) = 0 if 0 € U} in AbShX. Let C be the torsion subgroup
of B. Assume C = B, then CX = BX and so the function ¢ € BX given by ¢(0)=0,
¢(1/n) = a, where a has order pn, n=1,2... is in CX. This means there exists a
cover X = UisI U1 and 0 # kiE N such that k1¢'U1-0 for all i € I. Since O € U, for
some j € I and hence U, contains infinitely many {1/n, n € N} thus k.j¢|Uj =0 a
contradiction. Hence ¢ # CX, which shows B is not a torsion group in AbShX. We now
show that B is an essential extension of C. Let 0 # a € BU, then a(1/n) # 0 for
some 1/ne U. If W = {1/n}, then alW #01is of finite order since
a(1/n) € Z(p*), hence 0 # a‘w € CW. Thus B is an essential extesnion of C which is
torsion, although B itself 1s not torsion.

THEOREM 4.8. If X is a first countable Hausdorff space, then essential extensions
preserve torsion in AbShX iff X is discrete.

PROOF. (*) Suppose that X is not discrete. Then there is a point X € X for
which {xo} is not open. Let the countable basic neighbourhoods of X, be arranged in

the form U, 2 U, @ ... and for each n € N pick an element xne Un - Denote by

U .
Xo the sub:pacezof X consisting of the points {xo,xl,xz,...}. Sinc:+the sequence
{xk}kEN converges to X, it follows that the space X0 is compact in X. But X is
Hausdorff and so Xo is closed in X. For any X, n # 0 the subset Xo - {xn} also
being compact, is also closed in X. Hence {xn} ={x - {XO - {xn})} N X, is open in
the space Xo. It is then easy to see that the subspace XO consisting of {xo,xl,...} is
homeomorphic to the space {0} U {1/n|neN} c R. By the above lemma essential extensions of

torsion groups need not be torsion in AbShXo, a contradiction to Remark 4.6 hence X is

discrete. 'Xl
(*) If X is discrete then AbShX = AbSh and so if A € AbShX is a torsion

group then clearly each A{x}, xeX is a torsion group in Ab. So, if B o A is an
essential extension in AbShX, then B’{x} = B{x} EAJ{X} = A{x} 1s essential in Ab,
hence each B{x} is a torsion group in Ab. Thus B is torsion in AbShX.

COROLLAY 4.9. If X =1 Xa, where each Xa is a first countable, Hausdorff

a€el
space, and essential extensions in AbShX preserve torsion, : -+« ¥ is discrete.
PROOF. 1If X = qulxa, then each Xu = closed subspace of X, hence by Remark 4.6,

essential extensions preserve torsion in AbSth. But Xu is given to be first
countable and Hausdorff, therefore by Proposition 4.8, each Xa is discrete. Suppose
Xa is non-trivial for infinitely many a, then 2% = subspace of X. But 2% 1s compact,
hence closed in X. Also 2“ is first countable, Hausdorff. But it is not discrete,

hence only finitely many Xu are non-trivial which implies that X is disrete.
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REMARK. All finite L are spatial, and for all finite L, essential extensions in
AbShL preserve torsion. Hence there are many non-discrete spaces X such that
essential extensions preserve torsion in AbShX.
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