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ABSTRACT. Guiasu and Picard [1] introduced the mean length for 'useful' codes. They
called this length as the ‘'useful' mean length. Longo [2] has proved a noiseless
coding theorem for this 'useful' mean length. In this paper we will give two
generalizations of 'useful' mean length. After then the noiseless coding theorems are

proved using these two generalizations.
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1. INTRODUCTION.

Belis and Guiasu [3] consider the following model for a finite random experiment

(or information source ) A:

xl x2 ceeos xn X
A= P Py ceeee P = P (1.1)
uy u2 ceses U U

where X is the alphabet, P the probability distribution and U = (ul,uz,...,un)

u, > 0 is the utility distribution. They introduced the measure

a
H(P,U) = —'2 u P log Py (1.2)

i=1
about the scheme (l1.1). They called it 'useful' information provided by a source
letter. Guiasu and Picard [1] have considered the problem of encoding the letters
output by the source (1.1) by means of a single letter prefix code, whose codewords

cl’CZ""’Cn have lengths 21,...,1.“ satisfying the Kraft's [4] inequality

<1, (1.3)
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where D is the size of the code alphabet. They defined the following quantity

L(w) =& — (1.4)

and call it 'useful' mean length of the code. They also derived a lower bound for it.
In this communication two generalizations of (l.4) have been studied and then the
bounds for these generalizations are obtained in terms of 'useful' entropy of type B,

which is given by

(0 = —— I i up, G5-D] B>0 81 1.5)
2 -1 i=1
under the condition
n —ILi n
121 uy D < 121 WP, (1.6)

which is the generalization of Kraft's inequality (1.4).
2. TWO GENERALIZATIONS OF 'USEFUL' MEAN LENGTH AND THE CODING THEOREMS.

Let us introduce the measure of length: 8

n R'i 1-8
L u,p, D B

8 1 =1

L (U = -1 B# 1,8 >0. (2.1)

! log D218 -1) n

g I u.p.

_ i1

It is easy to see that

B
lim Ll (u) = L(U).
B*1

In the following theorem we obtain lower bound for (2.1) in terms of HB(P,U).
THEOREM 1. If !.1 ’2’2""’2'n denote the lengths of a code satisfying (1.6) then

¥ ) > #’(e,0) /T 1og D, 81,8 >0 (2.2)
_ n
where U= I u

with equality iff

. #
p ‘= . (2.3)
n 8 n
(L wup,/ I wu,p,)
= BTy PH
PROOF. By Holder's inequality
ng 1/p nog 1/q n
[Z a]] [Z b;] < L a,b,, (2.4)
=1 * =1 1 =1 11

=l,p<landai,bi>0.

F-N

where 1 +
P
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Put 8
B-1 &
_ (B-1 _ i
P = B’ai'[ip/fuipi] D
i=1
1/ (1-8)
8 n
q=1-8, b, [uipi / .Z u py ]
i=1
in (2.4), we get
n 11(1-6)/5 n -8/(1-8) n g B 1/(1-8)
[ £ wu,p, D /T u.np,l [Z up/Z u, p. ]
g=1 T 1 =1 b F i=1 =1 * 7
n —li n
<L uD /L up. (2.5)
i=1 i=]
Using (1.6) in (2.5), we get
n li(1~8)/6 n B/ (B-1) n g 1 1/(8-1)
LI up, D /T upl LT wp/E upl . (2.6)
i=] i=1 i=1 i=1

Let 0 < B < 1. Raising both sides of (2.6) to the power (B-1), we get

n 11(1-8)/8 n 8 n
[Z wu,p, D /Z wu,p,] 2I[2 p / 2 u,p,l.
i=1 =1 1 o 101y MR
Since 21—3 -1>0 for 0<B <1, a simple manipulation proves (2.2) for 0 < 8 < 1.
The proof for 1 < B <* follows on the same lines. It is clear tht equality in

(2.2) holds iff

_l pB

p I-= i , 2.7)
n
(.z ipi/ 2 u;p;)
i=1 =1

which implies that
by g, o 8
li = logD (iil uipi/iil uipi) - 1ogD p;- (2.8)

Hence it is always possible to have a code satisfying

n n
B
-8 1ogD P+ logD (iil uipi/ii1 uipi) < li <

n
< -B log, P, + log, (z ipi/ E ipi) +1, (2.9)
i=1

which is equivalent to

n 8 n li 3 n 8 n

Py (z uipi/,z uipi) <D " K Dp (z uipi/'z uipi). (2.10)
=1 i=1 i=1 i=1

PARTICULAR CASE. Let u, = 1 for each i and D = 2, that is, the codes are

binary, then (2.2) reduces to the result proved by Van der Lubbe [5].
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In the following theorem, we will give an upper bound for L?(U) in terms of
#(p,0).

THEOREM 2. By properly choosing the lengths 11,22,...,!,“ in the code of
Theorenm 1, L?(U) can be made to satisfy the following inequality:

1-B
L?(U) < Eiigzﬂl— p'f . 1?3 -1 B# 1,8 > 0. (2.11)
U logD D (2 -1) 105 D
PROOF. From (2.10), we have
li -8 n 8 n
D " < Dpi (.z uipi/.z uipi) (2.12)
i=1 i=]

Let 0 < B < 1. Raising both sides of (2.12) to the power _1;_8’ we get

2.(1-8)/8 _ _ n n (1-8)/8
pt <Pl BBy B wp) (2.13)
i ivi i1
i=1 i=1
. n
Multiplying both sides of (2.13) by uipi/ L WP, summing over i and after then
raising both sides to the power B, we get:j'=l
n (l-B)li/B n 1. O g 1
[ wuwp, D /T upl <D [Z uwp/L wpld. (2.14)
i=1 i=1 i=1 i=]
Since for 0 <B <1, 21-8-1 > 0, a simple manipulation proves the theorem for

0<B<1l. Let 1 <B <>, the proof follows on same lines.
PARTICULAR CASE. Let ui =1 for each i and D = 2, that is, the codes are
binary codes, then (2.11) reduces to the result proved by Van der Lubbe [5].

REMARK. When B8 *+ 1, (2.2) and (2.11) give

B ¢y BB, (2.15)
U log D U log D

where L(U) 1is the 'useful' mean length function (1.4), Longo [2] gave the lower and

upper bounds on L(U) as follows:

H(P,U) - i log u + u log u <L) < .
u log D u log D

H(P,U) - u log u + u logu+ 1, (2.16)

where the bar means the value with respect to probability distribution P = (pl,...,pn).

Since x log x is a convex U function, the inequality
u log u > u log u

holds and therefore H(P,U) does not seem to be as basic in (2.16) as in (2.15).

Now we will define another measure of length related to HB(P,U). We define the
measure of length Lg(U) by
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n n
1 [E uipg/ I u
-1) log D i=1 i=1

£,(8-1)

8 1B #1, 8500 (2.17)

8
(u) = P
L P 1P1

It is easy to see that

lim L5(0) = L(D).
Br1
In the following theorem we obtain the lower bound for Lg(u) in terms of HB(,U).

THEOREM 3. If £1’£2""’1n denote the lengths of code satisfying (1.6), then

8
B > BED gy 850, (2.18)

U log D

_ n
where U= I u

P
1=1 i1

with equality if and only if
p. =D . (2°l9)

PROOF. Let O < B < l. By using Holder's inequality and (1.6) it easily follows
that

n 8 £i(3-l) n
I u Py D <z wp,. (2.20)
i=1 1=]
Obviously (2.20) implies
n g 1 8 li(B-l) n g 0
[CZ wp,/L wup,D )= 11 >[¢Z wup,/T wp,)=-1]10<B<I1. (2.21)
1=1 i1 =1 i¥i 1=l 171 1=1 iv1

Since (21-6-1) > 0 whenever 0 < B <1, a simple manipulation proves (2.18). The

proof for 1 < B <* follows on the same lines. It is clear that the equality in
(2.18) is true if and only if

p t=p, (2.22)

which implies that
li = logD (l/pi). (2.23)
Thus it is always possible to have a code word satisfying the requirement
log i-< 2. < log 1-+1 (2.24)
1)) p;— 1 2 Py ’ ‘

which is equivalent to
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%,
<ptc, (2.25)
1 Py

'OI--

PARTICULAR CASE. Let u; = 1 for each 1 and D = 2, then (2.18) reduces to
the result proved by Nath and Mittal [6].

Next we obtain a result giving the upper bound to the 'useful' mean length Lg(l]).

THEOREM 4. By properly choosing the lengths 9.1 ,22,...,£n in the code of Theorem

3, Lg(U) can be made to satisfy the following

-8 B8 -8
Bw 22 (g’”) 22 B%1,0<8 <1, (2.26)
2 o8 @'™-Diog p
PROOF. From (2.25), we have
L
i
Py D~ < D.
Consequently
(B=1)2 -,
o D tePp 8>0,8¢% L (2.27)
Multiplying both sides by u, and then summing over 1 and using (1.6) we get
n (B-1)2 n
L uipiD i < DB z wp, . (2.28)
i=1 i=]
Obviously (2.28) implies that
n n (B-1)2 n n
(Cz upl/z wpbp HonosoPr owpfrs owp) -1 .29
1=1 i=1 * i=1 1=]
Since ZI-B -1<0 for 0<B <1, (2.29) implies (2.26).

PARTICULAR CASE. Let u, = 1 for each i and D =2, then (2.26) reduces to the

result proved by Nath and Mittal [6].
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