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1. INTRODUCTION.

The regular right-definite eigenvalue problems for second order differential
equations with eigenvalue parameter in the boundary conditions, have been studied in

Walter [1}, Fulton [2] and Hinton [3].

The object of this paper 1is to prove the expansion theorem for the following

regular fourth order eigenvalue problem:
e = (Ku")" - (Pu')' + qu= A , xela,b]
u(a) = (Pu')(a) = (Ku")(a) = 0 (1.1)
(Xu"')(b) = (Pu')(b) = - Au(b)

where P,q and K are continuous real-valued functions on [a,b]l. We assume that
P(x) > 0, q(x) > 0, and K(x) > 0 while A is a complex number.
Recently, Zayed [4] has studied the special case of the problem (1.1) wherein
K(x) = az, a.2 is a constant and q(x) = 0.
Further, problem (l1.1), in general, describes the transverse motion of a rotating
beam with tip mass, such as a helicopter blade (Ahn [5]1) or a bob pendulum suspended

from a wire (Ahn [6]).
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Ahn [7] has shown that the set of eigenvalues of problem (l.1) is not empty, has
no finite accumulation points and is bounded from below. He used an integral-equation

approach.

In this paper, our approach is to give a Hilbert space formulation to the problem
(1.1) and self-adjoint operator defined in it such that (l.1) can be considered as the

eigenvalue problem of this operator.

2. HILBERT SPACE FORMULATION,

We define a Hilbert space H of two-component vectors by
2
H = L"(a,b) & C;

with inner product

<, = [flgdx+fg,  ,fgeH 2.1)

and norm a
2 B 2 2
g =1 160" ax + g, (2.2)
a

where

£= (£, £) = (£,(x), £,(b) eH
and

g = (gl’ 32) = (gl(x), gl(b) eH .
We can define a linear operator A:D(A) + H by
Af = (Tf), = (KEM) + (PEPD) Y £ = (£,6,) e 0(A)  (2.3)

where the domain D(A) of A 1is a set of all f = (fl,fz) € H which satisfy the
following:

1) fl’ fi, fq and fi" are absolutely continuous with

b
« e’(a,b) andaf &|gg)? + pley|* + g, Dax < e

(11) £,@a) = (Pf])(a) = (Rf)(a) = 0

(111) £, = fl(b) .

REMARK 2.1. The parameter ) is an eigenvalue of (l.l) and f1 is a corresponding

eigenfunction of (1.1) if and only if
f = (fl,fl(b)) e D(A) and Af = Af (l.4)

Therefore, the eigenvalues and the eigenfunctions of problem (l.1) are equivalent

to the eigenvalues and the eigenfunctions of operator A.
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We consider the followlng assumptions:

") Up K (x) £, (x) - K(x)fi(x)] =0,

(2.5)
1) lig [K'(x)g,(x) - K(x)gj(x)] =0 .
LEMMA 2.1. The linear operator A in H is symmetric.
PROOF. On using the boundary conditions of (l.1) we get,
b _ —
<Af,g> = [ (tf)gdx+ [~(KE]") (b) + (P£)) (b) Ig, (b)
a
b _ b _ b _ _
= [ ®EP"gdx - [ (Pf])'g dx + [ qf gdx - (KE}')(b)g, (b)
a a a
+ (PE}) (b)g (b) (2.6)

Integrating the first term of (2.6) by parts four times and integrating the second

term of (2.6) by parts twice, we get

b
<Af,g> = [ £ (R - (Fg)' + @, lax + £,(5) [-(Rg]"™ (b)+(Fg)) (B)]
a

+ £1(b) [K'(b)g (b) - K(b)g| ()] - g}(b) [K'(b)E,(B)-K(bIE|(b)]

Applying the conditions (2.5) and using the boundary conditions of

(1.1),we obtain

b
<af,@ = [ £,Crg))dx + £,(b) [-(Kg|")(b) + (Pg))(D)] = <f,A>.
a

REMARK., 2.2. For all f = (fl,fz) in D(A) and f2 = fl(b) # 0, the domain D(A) is

dense in H.

Since the operator A in H is symmetric and dense in H, A is self-adjoint.

THE BOUNDEDNESS.

We shall show that the self-adjoint operator A 1is unbounded from above and

bounded from below. We also show that A is strictly positive.

LEMMA 3.1.

(1) If £,f' are absolutely concinuous with f(a) = 0 and P(x) >0 in

[a,b], then we have P(x) > < for some comstant ¢, > 0 such that
b
2
[eeo|e 0] ax > e |8 .
a
(i1) For feCz[a,b], there exists a positive constant c, such that

b b
Il If(x)}2 dx < ¢, / If"(x)'zdx
a a
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PROOF.
(1) Since P(x) > 0 in [a,b], we have P(x) > < for some <y > 0.

Consequently, on using Schwartz's inequality, we get

b 2 b 2 b 2 2
af PO [£1 ()| dx > ¢ i Jer G| ax > ol af Jeroax1® > ¢ |£) |

b
where [ f£'(x)dx = £(b) - f(a) = £(b) , Since f(a) = O.
a

(11) By using Theorem 2 in [8, p.67], we have for f(x) eCl[a,b] ,

b b
T 16002 ax < ao-a)? | | AL |24,
a a

stnce | AL 2 (4 28 2,

then
b b 2 b
[ 1£]? ax < a-a)? [ 'ﬂ%l ax < 16(b-a)2 [ | £ (x)|%ax 3.1
a a a

Applying (3.1) again for |f'(x)|, we get
b 2 2 ® 2
[ £ 0| ax < 16(b-a)” [ |£"(x) | ax (3.2)
a a
from (3.1) and (3.2) we get
b 2 b 2 4
af if(x)' dx < ¢, ,{ If"(x)l dx where the constant c2=256(b-a) .

LEMMA 3.2. The linear operator A is bounded from below.
PROOF. On using the boundary conditions of (l.1) we get

b
<AF,E£> = [ (1 f£))F dx + [=(RE}")(b) + (PED (D)IE (D)
a

b b b
= uri - r3 r3 "m F
i (Kf'l) £ dx i (Pfi)'fldx + 1 qflfldx—(xf1 )(b)fl(b)

+ (Pf'l)(b)?l(b). (3.3)

Integrating (3.3) by parts twice and using the boundary conditions of (l1.1), we obtain

b
<AE,£ = £1(b) (K'Y (b) - K(BE (D)) + [ xjey]%ax
a

b ) b )
+ [ Plgy|" ax + [ q|f |ax .
a a

On using (2.5) (11) and lemma (3.1), we get

b
CAF,E> > .c‘S;L)lfl(xn2 ax + ¢ |5, | + I a0 |£, (0] dx

['KE:X)‘ + q(x)llfl(x)|2 dx + clllez
2

BTN T
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® 2 2
> ¢y ! Ifl(x)l dx + cllle

where
c.= it (2 g1
3 xela,b] )
Therefore ’
i 2
<Af,£> > c ||£]] (3.4)

where the constant ¢ = min (c3, cl).

It follows, from (3.4), that the operator A is bounded from Dbelow.
Since'cl > 0, K(x) >0, q(x) > 0, ¢y >0and ¢ = min (c3,cl) then the constant c¢ 1is
positive (¢ > 0) and hence A is strictly positive.

REMARK 3.1.
(1) Since A is a symmetric operator (from lemma 2.1) then A has only real
eigenvalues.
(11) By Lemma 3.2, we deduce that the set of all eigenvalues of A is also
bounded from below.

(1i1)Since A is strictly positive, then the zero is not an eigenvalue of A.

By using theorem 3 in {8, p.60] we can state that:
Since A in H is symmetric and bounded from below, then for every elgenvalue Ai of

A in H, Ai > ¢ where the constant c is the same as in (3.4). This means that

0<ccx Al < AZ € eoseceness € Ai according to the size and Ai + oag 1 » =,
This implies that the set of all eigenvalues of A {s unbounded from above.

REMARK 3.2. Since the operator A 1s self-adjoint, then A has only real
eigenvalues and the eigenfunctions of A are orthonormal. By using theorem 3 in [8,
p+30], the density of the domain D(A) in H gives us the completeness of the

orthonormal system of eigenfunctions 01,02,03,.... of A.
4. THE EIGENFUNCTIONS OF THE OPERATOR A.

We suppose ¢k(x), wx(x), xx(x) and YX(X)’ where A € C is not an eigenvalue of A,
are the fundamental set of solutions of the fourth order differential equation of

(l1.1) wich the initial conditions:

¢A(a) =0, (PQBP(a) =0, #i(a) =1, (K¢y')(a) =0 (4.1)
¥,( =0, (Py) (a) = 0, ¥i(a) = 0, (Kp (a) = 1 (4.2)
x,(b) =0, (Pxp (b) = 1, xXy(b) =0, (R} (b) =1 (4.3)
Y, =1, (Py')(b) = 1+3,  ¥(b) =0, (Ry ") () = 1 (4.6)

Therefore the Wronskian is

W =1lim [ xl(x)(Pyi)(x) - (Px;)(x)Y&X)] =-1+#0
x+b
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Thus the solutions ¢A(x),wx(x),xx(x) and YA(X) are linearly independent of Tu = Au.
Putting x = b, we obtain the Wronskian in the form:

W= i) [ae, (b) - (P41 (B) + (Ko}")(b)]
= o) [y (b)) - (B¥)(b) + (R (D)] #0 (4.5)

Now, for f = (fl,fz) e H, we define ¢ = (¢l,¢2) € D(A) as the unique solution
of (AL - A)® = £,

Application of variation of parameter method yields the unique solution
$ € D(A) of (A\I - A)® =f, f ¢ Hwith:

(AL - 1) Ql = fl

(4.6)
A8, (b) = (P2))(b) + (K&;")(b) = f,
Therefore
b ¢, (x)a, () + 9. (X)a, ()
8 x) =[P 2 Ty (0
a
b x,(x)a,(t) + vy (x)a, (t)
+ [ =3 o "‘1fl(:)d:
a
+ dl‘A(X) + dzwx(x) + d3xx(x) + dAYA(x)’ (4.7)
where
o= |y O r©
¥,(e) x, () v, (e)
W'i(t) x';\(c) Y;(t)
ay(e) = g HE @ v
¢'A(t) x'x(t) Y'A(C)
#(e) %, (6) Y3 (e)
a0 =HL oy w© ©
#,(e) ¥ (6) v3(t)
#(e) W) Y3 (e)
and
a,(0) = B3 $,(0) Be o
¢a(t) wi(t) x;(c)
¢">‘( t) ul;‘( t) X (€)
while d d. and d, are constants.

1* 920 4 4
Calculation of 0l(b),¢1(b) and ¢i"(b) from (4.7) and substitution into (4.6) with

the inicial conditions (4.3) and (4.4), we can get the constants d , d

1 2 d3 and dA as

follows:
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b
l "
a =% (- fzwx(b) + i ul(c)fl(t)dc],

b
l ”
d, = [£,07(0) + z{ o (£)f, (t)dc]

and d, =d, = 0.

3 4
Consequently, we deduce that

f b
0 () = 35 [, () #5) - 4, GO + [ et (e 4.8)
and

e, = °1(b)

where G(x,t,\) is the Green's function defined by:

°x(x)°1(t) + w)‘(x)uz(t) a<x<t<h
W
G(x,t,1) = (4.9)
xx(x)a3(c) + Yx(x)at.(t) a<t<x<hb
W

The form of equations (4.8) and (4.9) shows that the inverse operator (Al - A)_1

is actually compact; for details of argument of theorem 5 in [8, p.120] can be used.

5. EXPANSION THEOREM.

We now arrive at the problem of expanding an arbitrary function f(x) e H for
x € [a,b] in terms of the eigenfunctions of (l.1). The results of our ivestigations
are summarized in the following theorem:

THEOREM 5.1. The operator A in H has unbounded set of real eigenvalues of finite
multiplicity, (they have at most multiplicity four), without accumulation points
in (—=, ») and they can be ordered according to the size, 0 < ¢ < H. < » € eeee € Ai
with A, + was { + =, If the corresponding eigenfunctions 01,02,¢3,... form a

i
complete orthonormal system, then for any function f(x) € H, we have the expansion:

f(x) =1 <f, ¢

> 01 (4.10)
i=1

i

which is a uniformly convergent series.

The above theorem has some interesting corollaries for particular choices of f.

COROLLARY 4.1. 1If fleLz(a,b) and f = (fl,O) ¢ H, then we have

© b
COT PG| £,0,,d00,, ()
i=1 a

® b
(11) 0= [ (f fe doe,,
i=1 a
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COROLLARY 4.2. If 01 = (Oil(x), 012) € D(A) and f = (0,1) € H, we have:
L 0
@ o gizl 012011(") ‘izl Qu(b) ‘#“(x).

) 1= 3 (o]
1o A2

2 s 2
= Jle, m1°
A8
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