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ABSTRACT. Regular LB-space is fast complete but may not be quasi-complete. Regular

inductive limit of a sequence of fast complete, resp. weakly quasi-complete, resp.

reflexive Banach, spaces is fast complete, resp. weakly quasi-complete, resp. reflexive

complete, space.
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i. INTRODUCTION.

In [I, 31.6] Kothe has a sequence of Banach spaces E
1
c E2

c whose inductive

limit is not quasi-complete. In [2] there is an example of reflexive Frechet spaces

E whose inductive limit is not even fast complete. Since an LF-space is fast complete
n
iff it is regular, see [3], there is a natural question asked by Jorge Mujica in [4]:

Is every regular LB-space complete?

Throughout the paper E c E2
c is a sequence of locally convex spaces with

continuous inclusions E E n e N. Their locally convex inductive limit isn R+I,

denoted by E. The space E is called regular if every set bounded in E is bounded in

some E
n

2. MAIN RESULTS.

Let F be a locally convex space and A c F absolutely convex. We denote by FA the

seminormed space U{nA;neN} whose topology is generated by the Minkowski functional of A.

If FA is Banach space, A is called Banach disk. The space F is called fast complete

if every set bounded in F is contained in a bounded Banach disk. Every sequentially

complete space is fast complete and there are fast complete spaces which are sequentially

incomplete, see [5].

EXAMPLE. For each neN and x NxN C, put

llx
n

max {sup{j-ilxij. l; i n, j e N}, sup {Ixijl; i > n, j e N}

En {x; llx lln + & lim
j xij 0 for i > n}, Bn {x e En; llx lln I}, an
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E indlim E We prove that each E is a Banach space, E1
E2

c inclusions
n n

En En+l’ n e N, are continuous, E is regular and not quasi-complete.

CLAIM i. Each space E is Banach.
n

PROOF. Let {x(k)} be a Cauchy sequence in E For each i, j e N the sequence
n

{x(k)ij} is Cauchy in C and has a limit xij. Let x be the matrix with the entries xij"

Given > 0, there is k such that p, r - k implies ix(p) x(r) .< e. Hence,
n

< lira sup Ix(p) x(r) < and[Ix(p) x
n r n

Ilxll < IIx- x(p) + IIx(p)ll < +
n n n

Take i > n and choose Ji so that Jx(k)ij < for j > Ji"
+ x(k)ij < 2e andThen xij -<- xij x(k)ij + x(k)ij < x x(k) n

lim x.. 0.

CLAIM 2. E E
2
c and each inclusion E E

n n+l
is continuous. Proof

> x| > x e U {En; n e N}.follows from the inequalities llxll I 2

CLAIM 3. E is regular.

PROOF. Let D c E be not bounded in any E For each n e N choose x(n) e D such
n

that llx(n)ll > n. There are i(n), j(n) e N for which
n

]x(n)i(n),j(n) >
nj(n) i(n) if i(n) <= n

if i(n) > n

Put m(n) n + max {i(k);k <_- n} and r(n) min {j(k)-i(k); k -< m(n)}, n e N.

If k > n then Ix(n)m(k) >. Im(k >- J(n)-i(n)x(n)i(n)j(n)l > nr(k),

if k _-< n then llx(n)Hm(k) >_- x(n) llm(n) > nr(k).

Let V U {r(k)Bm(k); k e N} and U coV. Assume x(n) e n U. Then

s
x(n) Z kY(k),

k=l

where =k >-- 0, Z a,
k i, and y(k) e nr(k) Bm(k). To prove that ly(k)i(n)j(n) =< n

for k e N, we have to distinguish three cases:

(a) k > n: Then lY(k)i(n),j(n) lY(k)i(n),j(n) J(n)i(n)-i(n)[ <

<-- y[k) llm(k) j(n) i(n) nr(k)j(n) i(n) <_- n.
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(b) k =< n & i(n) <- m(k): Then ly(k)i(n),j(n)l <- y(k) Mm(k) j(n)
i(n)

-< nr(k)j(n) i(n) =< n.

(c) k -< n&i(n) > m(k): Then [y(k)i(n),j(n)l <- My(k)l[m(k) -< nr(k) -< n.

On the other hand Ix(n)i(n),j(n)l > n and x(n) cannot be a convex combination

of y(k), k < s, i.e. x(n) nU. Since U is a 0-neighborhood in E, D is not bounded in E.

CLAIM 4. E is not quasi-complete.

PROOF. Let A {6 c NxN; {j e N; (i,j) e 6} is finite, i e N} be ordered by set

inclusion. Denote by x(6) the set characteristic function of 6 e A. Then {x(6); 6 e A}

c B1
and the filter associated with 6 x(6) is bounded in E

1
hence also bounded in E.

cNxN cNxNLet P be the projection of an NxN matrix on its n-th row. Take a
n

a closed absolutely convex 0-neighborhood V in E. For each n EN choose m(n) e N and

r(n) > 0 so that r(n)B
n

c V, m(n) 2r(n) -I/n and put o {(i j) e NxN; j < m(i)}

If , 6 e A, , 6 o, then x()ij x(6)13.. 0 for j re(i) and Pn(X() x(6)) n
sup {j-n x()nj x(6)nj l;J > m(n)} < m(n) -n 2-nr(n). Hence 2nPn(X() x(6))

er(n) B c V. Since V is absolutely convex, the sequence
n

k -nE 2 2+riP (x() x(6)) k e NYk n
n=1

is contained in V. It is also contained in B1
and converges coordinate-wise to

x(y) x(6) in El
Hence x(y) x(6) is in the weak closure of V. Since V is closed

and convex, it is also weakly closed and x() x(6) e V. So {x(6); 6 e A} is a base

of a bounded Cauchy filter in E. If it had a limit x e E, then x.. 1 for all i, j e N.

This would imply x E for any n e N and x E, q.e.d.
n

LEMMA. Regular inductive limit of a sequence of semireflexive, resp. reflexive,

spaces is semireflexive, resp. reflexive.

PROOF. Let each E be semlreflexive. Since E indlim E is regular, its strong
n n

equalsto projlim (En) and (E)’ c U {((En))’;neN U {En; n e N} E.dual Eb

Let each E be reflexive. By [7;IV, 5.6] it suffices to show that E is semlreflexive
n

and barreled. Take a barrel B in E. For each n e N, B 0 E is a barrel in E Since
n n

E is reflexive, the barrel B 0 E is a neighborhood in E which implies that B is a
n n n

neighborhood in E and E is barreled.

CONSEQUENCE. Inductive limit of a sequence of reflexive Banach spaces is

reflexive.

PROOF. By [6; Th. 4] the inductive limit of reflexive Banach spaces is regular.
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THEOREM. Let E indlim E be regular. Then:
n

(a) Each E fast completeE fast complete.n

(b) Each E weakly quasi-complete E weakly quasi-complete.n

(c) Each E semireflexive E quasi-complete.n

(d) Each E reflexive Banach E complete.
n

PROOF.

(a) Let B c E be bounded, then it is bounded in some E and contained in a bounded
n

Banach disk in E Since any Banach disk bounded in E is also bounded in E,n n

the proof is complete.

(b) Follows from Lemma since any locally convex space is weakly quasi-complete iff

it is semireflexive, [7;IV, 5.5].

(c) Follows from (b) since every weakly quasi-complete space is quasi-complete.

(d) Letbe a Cauchy filter in E. Then as a filter of continuous linear

to a linear, notfunctionals on E’ converges uniformly on bounded sets in Ebb’
C Since E is reflexive, it sufficesnecessarily continuous, functional h: Eb

to show that h is continuous.

The space E is regular, [6; Th 4],h is continuous iff h-l(0) is closed in Eb.
hence Eb’ projlim E’n is Frechet. Take a sequence {Xn,. n 1,2...} c h-l(0) which

converges to Xo in Eb.’ We have to show that h(xo) 0. Choose e > 0. The set

hence there is F eT such thatB {Xn; n 0,1,2 is bounded in Eb,

sup {If(Xn) h(Xn)l; f e F, x
n

e B} < e. Fix an f e F and choose n e N so that

If(xn) f(xo) < e. Then lh(xo) lffil h(xo) h(Xn) l&l h(Xo) f(Xo) +

If(xo) f(xn) +If(xn) h(Xn)l < 3e which implies h(x 0
O

CONJECTURE. Regular LB-spacemay not be sequentially complete.

REFERENCES

I. KOTRE, G. Topological vector spaces I, Springer Verlag, 1969.

2. KUCERA, J., MCKENON, K. Kothe’s example of an incomplete LB-space, Proc. Amer.
Math. Soc., Vol. 93, No. I, (1985), 79-80.

3. KUCERA, J., BOSCH, C. Bounded sets in fast complete inductive limits, Int. J.
Math.& Math. Sci., Vol. 7, No. 3, (1984), 615-617.

4. MUJICA, J. Functional an.alysis hol0morphy and approximation theory II
North Holland 1984.

5. BOSCH, C., KUCERA, J., MCKENNON, K. Fast complete locally convex linear
topological spaces, Internat. J. Math. & Math. Sci. Vol. 9, No. 4, (1986),
791-796.

6. KUCERA, J., MCKENNON, K. Dieudonne-Schwartz theorem on bounded sets in inductive
limits, Proc. Amer. Math. Soc., Vol. 78, No. 3, (1980), 366-368.

7. SCHAEFER, H. Topological vector spaces, Springer Verlag, 1971.


