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ABSTRACT. It 1is proved that certain rings satisfying generalized—commutator
constraints of the form [xm, yn, yn, ceey yn] = 0 with m and n depending on x and y,

must have nil commutator ideal.
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1. INTRODUCTION.

Let [xl, xZ] denote X Xy T Xy X, and for k > 2, let [xl, Xys eees xk] =
[[xl, ceey xk—ll’ xk]. For X =x and Xy T Xy T oeeemxo o=y, denote
[xy, ¥, ees, y] by [x,y]k . A result of Herstein [1] and of Anan'in and Zyabko [2]
asserts that if for any x and y in a ring R, there exist positive integers m = m(x,y),
n =n(x,y) such that x" yn = yn %™ , then the commutator ideal of R is nil. Recently,
Herstein [3] proved that a ring R in which for any x, y, z €R there exists positive
integers m = m(x, y, z), n = n(x, y, z), and q = q(x, y, z) such that
[[xm, yn], zq] =0 mst have nil commtator ideal. More recently Klein, Nada and
Bell [4] raised the following conjecture which arises naturally from the above
mentioned work.

CONJECTURE. Let k > 1. If for each x, yé R, there exists positive integers m and
n such that [xm, yn]k = 0, then the commutator ideal of R is nil.

In [4], Klein, Nada and Bell proved the conjecture for rings with identity 1.
Given the complexity of [1] and [3], it would appear that no proof of this conjecture
is in sight. Our objective 1is to prove the conjecture for certain classes of rings
and to generalize a result of Herstein in [3] and some results in [4] and [5].

A ring R is called periodic if for each x in R, there exists distinct positive
integers m and n for which x"=x". In preparation for the proofs of our main

theorems, we start with the following lemma which is known [5] and we omit its proof.
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LEMMA 1. 1If R is a periodic ring, then for each x in R, there exists a positive
integer k = k(x) such that xk is idempotent.

2. MAIN RESULTS.

The following theorem shows that the conjecture is true for Artinian rings.

THEOREM 1. Let k > 1, and let R be an Artinian ring such that for each x, y in R,
there exists positive integers m and n such that [x, y]k = 0. Then the commutator
ideal of R is nil.

PROOF. To prove that the commutator ideal of R is nil it is enough to show that
if R has no nonzero nil ideals then it is commutative. So we suppose that R has no
nonzero nil ideals. Since R is Artinian, the Jacobson radical J of R is nilpotent.
So J = 0, and hence R is semisimple Artinian. This implies that R has an identity
element and now, R is commtative by Theorem 3 of [4].

Next, we prove Theorem 2 which shows that the conjecture is true for periodic
rings. This result generalizes a result of Bell in [5].

THEOREM 2. Let k > 1 and let R be a periodic ring such that for each x, y in R
there exists positive integers m and n such that [x“l , yn]k = 0., Then the commitator
ideal of R is nil.

PROOF., If k = 2, then the result follows by the theorem in [l]. So assume k > 2
and let x be any element of R and let e be any idempotent of R. By hypothesis, there

exists integers m and n such that [xIn R en]k = 0. This implies that [xm . e]k = 0, and
hence
m m
x" , el _je=elx , el ;.
Multiplying by e from the right and using the fact that e[xIll , e] e =0 we

obtain [x", e]k—l e = 0. Hence 0 = ([x", el, , e~ elx", el o )‘e( .1 =", el o e
Continuing this way we get [xm , ele = 0 which implies that x" e = ex” e. Similarily,
we can get ex” = ex™ e. This implies that
e =ex , x € R, e any idempotent and m = m(x, e). (2.1)

Let y be any element of R. Since R is periodic, Lemma 1! implies that yp is idempotent
for some positive integer p = p(y). So (2.1) implies that for each x, y in R there
exists positive integers m and p such that xmyp = ypxm . Now, the result follows by
the well-known theorem in [1] or [2].

THEOREM 3. Let k > 1. If R is a prime ring having a nonzero idempotent element
such that for each x, y in R there exists positive integers m and n such that
=", yn]k = 0. Then R is commtative.

PROOF. The argument used in Theorem 2 to reach statement (2.1) in the proof shows
that a ring satisfying the generalized commutator constraint [xm , y“]k = 0 must have
its idempotent elements in the center. For let e and e, be idempotent elements in
R. (2.1) implies that e e 2 land hence the idempotents of R commute. This
implies that the idempotents of R are central in R [6, Remark 2]. Let e be a nonzero

= e, e
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idempotent of R. Then e is a nonzero central idempotent in the prime ring R. Hence e
is an identity element of R since it can not be a zero divisor. Now R is commtative
by Theorem 3 of [4].

The proof of Theorem 4 below was done by Kezlan in the proof of his main theorem
in [7]. So we omit its proof here.

THEOREM 4. 1Let k > 1. If R is a prime ring with a nontrivial center such that
for each x, y in R there exists positive integers m and n such that
=", yn]k = 0, then R is commitative.

The following result generalizes Theorem 1 of [4].

THEOREM 5. Let R be a ring and let M be a fixed positive integer. Suppose that
for each x, y € R there exist positive integers m = m(x, y) < M and n = n(x, y) such
that [xm, yn, yn] belongs to the center of R. Then the commutator ideal of R is nil.

PROOF. Again, we suppose that R has no nil ideals and hence R is a subdirect
product of prime rings satisfying the above hypothesis of R. So we may assume that R
is prime. Let Z be the center of R. If Z = 0, then for each x, y € R,

[xm, yn, yn] = 0 where m = m(x, y) < M, and n = n(x, y). This implies that R 1is
commutative by Theorem 1 of [4]. So we may assume that R has a nontrivial center, and
Hence R is commtative by Theorem 4 above.

The following result generalizes Theorem 8 in [3].

THEOREM 6. Let R be a ring in which, for each x, y, z¢R, there exists positive
integers m = m(x, y, z) n = n(x, y, z) and q = q(x, y, z) such that [x", yn, z9)
belongs to the center of R. Then the commitator ideal of R is nil.

PROOF. Again, we may assume that R is a prime ring satisfying the above
hypothesis. Let Z be the center of R. If Z = 0, then for each x, y, z€R,

[[Xm. Yn], zq] = 0, where m = m(x, y, 2), n = n(x, y, 2z) and q = q(x, y, z). This
implies that R is commtative by Theorem 8 of [3]. So we may assume that R has a
nontrivial center. For any x, y in R, [[xm, yn 1, yq] € Z where m, n, q are each
functions of the variables x and y. So [[[xm , yn 1, yq 1, y] = 0, which implies

that [[ [xm, ynq], ynq], ynq] = 0. Hence R is commutative by Theorem 4 above.

REMARK., The result in Theorem 6 can be generalized as follows. Let R be a ring
such that for each x, y, z € R, there exists positive integers m = m(x, y, z), n =
n(x,y,z) and q = gq(x,y,z) such that [xm,yn, zq, Ty Tyseees rk] = (0 for all
elements t1 » eees T in R. Then the commutator ideal of R is nil. This can be done
by induction on k and using the argument in Theorem 6. We omit the details of the
proof.
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