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ABSTRACT. It is proved that certain rings satisfying generalized-commutator

constraints of the form [xm n n n
y y y 0 with m and n depending on x and y,

mst have nll commutator ideal.

KEY WDRDS AND PHRASES. Commutator ideal, periodic ring.

1980 AMS SUBJECT CLASSIFICATION CODE. 16A70.

1. INTRODUCTION.

Let [Xl, x2] denote x x
2 x

2 xl, and for k ) 2, let [x I, x
2

xk]
[x Xk_ I], xk]. For x x and x

2
x
3

x
k

y, denote

[x, y y] by [x,y]
k

A result of Hersteln [I] and of Anan’in and Zyabko [2]

asserts that if for any x and y in a ring R, there exist positive integers m m(x,y),
m n n m

n -n(x,y) such that x y y x then the commutator ideal of R is nil. lecently,

Hersteln [3] proved that a ring R in which for any x, y, z R there exists positive

integers m re(x, y, z), n n(x, y, z), and q q(x, y, z) such that

[[xm, yn] zq] 0 must have nil commutator ideal. More recently Klein, Nada and

Bell [4] raised the follwlng conjecture which arises naturally from the above

mentioned work.

CONJECTURE. Let k > I. If for each x, y R, there exists positive integers m and

n such that Ixm, yn]
k

0, then the commutator ideal of R is nil.

In [4], Klein, Nada and Bell proved the conjecture for rings with identity I.

Given the complexity of [I] and [3], it would appear that no proof of this conjecture

is in sight. Our objective is to prove the conjecture for certain classes of rings

and to generalize a result of Hersteln in [3] and some results in [4] and [5].

A ring R is called periodic if for each x in R, there exists distinct positive
m n

integers m and n for which x -x In preparation for the proofs of our main

theorems, we start with the following lemma which is known [5] and we omit its proof.
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LEMMA I. If R is a periodic ring, then for each x in R, there exists a positive

integer k--k(x) such that x
k

is idempotent.

2. MAIN RESULTS.

The following theorem shows that the conjecture is true for Artlnian rings

THEOREM I. Let k > I, and let R be an Artinian ring such that for each x, y in R,

there exists positive integers m and n such that [x, Y]k 0. Then the commutator

ideal of R is nil.

PROOF To prove that the commutator ideal of R is nil it is enough to show that

if R has no nonzero nll ideals then it is commutative. So we suppose that R has no

nonzero nil ideals Since R is Artinian, the Jacobson radical J of R is nilpotent.

So J 0, and hence R is semisimple Artinian. This implies that R has an identity

element and now, R is commutative by Theorem 3 of [4].

Next, we prove Theorem 2 which shows that the conjecture is true for periodic

rings. This result generalizes a result of Bell in [5].

THEOREM 2. Let k > and let R be a periodic ring such that for each x, y in R

there exists positive integers m and n such that [xm yn]
k

--O. Then the commutator

ideal of R is nil.

PROOF If k-- 2, then the result follows by the theorem in [I]. So asse k > 2

and let x be any element of R and let e be any idempotent of R. By hypothesis, there

exists integers m and n such that [x
m en]k 0 This implies that [x m e] 0 and

k
hence

[xm e]k_le e[xm e]k_l

Multiplying by e from the right and using the fact that e[xm e]k_ e 0 we

obtain [xm elk_ e O. Hence 0 ([xm e] e e[xm e] )e [xm e] e.k-2 k-2 k-2
m m

Continuing this way we get [xm e]e 0 which implies that x e ex e. Similarily,
m m

can get ex ex e. This implies thatwe
m m

x e ex x R, e any idempotent and m re(x, e). (2.1)

Let y be any element of R. Since R is periodic, Lemma implies that yP is idempotent

for some positive integer p p(y). So (2I) implies that for each x, y in R there

exists positive integers m and p such that xm yPxm Now, the result follows by

the well-known theorem in [I] or [2].

THEOREM 3. Let k > I. If R is a prime ring having a nonzero idempotent element

such that for each x, y in R there exists positive integers m and n such that

[xm yn]
k

0. Then R is commutative.

PROOF. The argument used in Theorem 2 to reach statement (2.1) in the proof shows

that a ring satisfying the generalized commutator constraint [xm yn]
k

0 must have

its idempotent elements in the center. For let e and e
2
be idempotent elements in

R. (2.1) implies that e e
2

e
2

e and hence the idempotents of R commute. This

implies that the idempotents of R are central in R [6, Remark 2]. Let e be a nonzero
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idempotent of R. Then e is a nonzero central idempotent in the prime ring R. Hence e

is an identity element of R since it can not be a zero divisor Now R is eommmtative

by Theorem 3 of [4].

The proof of Theorem 4 below was done by Kezlan in the proof of his main theorem

in [7] So we omit its proof here.

THEOREM 4. Let k > I. If R is a prime ring with a nontrivial center such that

for each x, y in R there exists positive integers m and n such that

[xm, yn]
k 0, then R is commutative.

The following result generalizes Theorem of [4].

THEOREM 5. Let R be a ring and let M be a fixed positive integer Suppose that

for each x, y E R there exist positive integers m--re(x, y) M and n n(x, y) such
n

that [xm, y yn] belongs to the center of R. Then the commutator ideal of R is nil.

PROOF Again, we suppose that R has no nil ideals and hence R is a subdirect

product of prime rings satisfying the above hypothesis of R. So we may assume that R

is prime. Let Z be the center of R. If Z 0, then for each x, y R,
n n][xm, y y 0 where m re(x, y) M, and n n(x, y) This implies that R is

commutative by Theorem of [4]. So we may assume that R has a nontrivial center, and

Hence R is comnmtatlve by Theorem 4 above

The following result generalizes Theorem 8 in [3].

THEOREM 6. Let R be a ring in which, for each x, y, z R, there exists positive

integers m re(x, y, z) n n(x, y, z) and q q(x, y, z) such that [xm, y ,z]nq

belongs to the center of R. Then the commutator ideal of R is nil.

PROOF Again, we may assume that R is a prime ring satisfying the above

hypothesis Let Z be the center of R. If Z 0, then for each x, y, z R,

[[xm, yn], zq _-0, where m re(x, y, z), n n(x, y, z) and q q(x, y, z). This

implies that R is commutative by Theorem 8 of [3]. So we may assume that R has a

nontrivial center For any x, y in R, [xm yn ], yq] Z where m, n, q are each

functions of the variables x and y. So [[ [xm yn ], yq ], y] 0, which implies

that [[ [xm ynq] ynq] ynq] 0 Hence R is commutative by Theorem 4 above

REMARK. The result in Theorem 6 can be generalized as follows. Let R be a ring

such that for each x, y, z R, there exists positive integers m re(x, y, z), n
n zqn(x,y,z) and q q(x,y,z) such that [xm,y rI, r

2 ..... rk] 0 for all

elements r r
k

in R. Then the commutator ideal of R is nil. This can be done

by induction on k and using the argument in Theorem 6. We omit the details of the

proof
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