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ABSTRACT. The two-dimensional flow of a dusty fluid induced by sinusoidal wavy motion
of an infinite wavy wall is considered for Reynolds numbers which are of magnitude
greater than unity. While the velocity components of the fluid and the dust particles
along the axial direction consist of a mean steady flow and a periodic flow, the
transverse components of both the fluid and the dust consist only of a periodic
flow. This is true both for the outer flow (the flow beyond the boundary layer) and
the inner flow (boundary layer flow). It is found that the mean steady flow is
proportional to the ratio lmzaz/L2 (a/L<<1), where a and L are the amplitude and the
wavelength of the wavy wall, respectively. Graphs of the velocity components, both
for the outer flow and the inner flow for various values of mass - concentration of
the dust particles are drawn. It is found that the steady flow velocities of the
fluid and the dust particles approach to a constant value. Certain interesting

results regarding the axial and the transverse velocity components are also discussed.

1. INTRODUCTION.

The problems of flow of fluid induced by sinusoidal wavy motion of a wall have
been discussed by Tanaka [1], Taylor [2] and others [3,4]. Tanaka discussed the
problem both for small and moderately large Reynolds numbers. While discussing the
problem for moderately large Reynolds numbers, he has shown that, if the thickness of
the boundary layer is larger than the wave amplitude the technique employed for small

Reynolds numbers can be applied to the case of moderately large Reynolds numbers also.

Recently while studying the flow of blood through mammalian capillaries, blood is
taken to be a binary system of plasma (liquid phase) and blood cells (solid phase).
In order to gain some insight into the peristaltic motion of blood in capillaries the
authors are motivated to study the induced flow of a dusty or two-phase fluid by

sinusoidal motion of a wavy wall.

In the present paper, the two dimensional flow of a dusty fluid for moderately
large Reynolds numbers is studied on the basis of the boundary layer theory in the
case where a thickness of the boundary layer is larger than the wave amplitude of the
wall. We assume that the amplitude of the wavy wall is small but finite, so that the
solutions are obtained interms of a series expansion with respect to the small

amplitude.
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2. FORMULATION OF THE PROBLEM.

We consider a two-dimensional flow of an incompressible viscous dusty fluid due
to an infinite sinusoidal wavy wall which executes progressing motion with constant
speed. Taking the Cartesian coordinates with x-axis in the direction of the
progression of the wave, and the y-axis perpendicular to it, the motion of the wall is

described by
27w
y = h(x,t) = a cos I (x - ct) (2.1)

where a is the amplitude, L the wavelength and c, the phase velocity of the wall.
We assume that (a/L)<<1 so that (2ma/L)<l1.

The non-dimensional equations of motion of a dusty fluid as formulated by Saffman
[6] are

§, + (4 grad) § = - grad p + % ¥ Frard - (2.2)
> > > > >

qpt+(qp. grad) a, = alq - qp) (2.3)
divg=0 (2.4)
div JP =0 (2.5)

The boundary conditions are

u=0,v =-%% at y = h(x,t), (2.6)
lul, |vl, lup!, val all ( was y » = (2.7)
where h = € cos(x-t) and € = 2ma/L. The equations (2.6) represent the no slip

condition of the fluid on the wall, where an assumption has been made that the wall
executes only transverse displacement at every point. The subscript t denoting
partial differentiation with respect to t, the characteristic length being L/2w, the
characteristic time being L/2mc, the fluid velocity q = (u,v) and the particle
velocity qp = (up,vp) being non-dimensionalised with characteristic speed 2c, the
fluid pressure p being non-dimensionalised with characteristic pressure pc°, the
non—-dimensional parameters being A=mN°/p, a = KL/2wem, R = cL/2ny, where m 1is the
mass of a particle, N0 is the number density of a dust particle (assumed to be a
constant), K is the Stoke's resistance coefficient (=6mv po) being radius of a dust

particle), v is the kinematic viscosity of the fluid.

By introducing the stream functions ¢(x,y,t), ¢ (x,y,t) for the fluid and dust
respectively the governing equations (2.2) and (2.3) and the boundary conditions (2.6)
and (2.7) become
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Spe PR 2020 L2P 0P 0, (2.8)
3y 3y 2

gv2¢p+3y-2v23§§ %%%”vzw-%), (2.9)

+%}?=0, - gx=5—3:aty=h(x,t), (2.10)

|%¢| 5l a—:l’-l , |%| all < @ as y » = (2.11)

3. SOLUTION OF THE PROBLEM.

When Reynolds number becomes larger, the boundary layer is formed. Since we have
assumed that the thickness of the boundary layer is larger than the wave amplitude,
the regular perturbation technique, which was used for small Reynolds numbers can be

applied [1].

If & 1is the thickness of the boundary layer, the non-dimensional variables may
be defined as y =y/8and ¢ = ¢/8, 3; = ¢p/6. When the :}scous term is supposed to
be of the same order as the inertia terms, we have that & R 1is 0(l) as usual. The
boundary conditions at y = h are expanded into Taylor's series in terms of the inner

variables 3 and ; as

2~ 3~
o) +B2E (42 T+, --3 R (3.1)
xay 28 oy

vee =0 (3.2)

In order that Taylor series converges, O0(8) must be larger than O0(h), that is
0(e) < 0(9). Following Tanaka [1], we shall take 6=rel/2
constant of 0(l), that is R = (rze)_l. The outer flow (the flow beyond the boundary

, T being an arbitrary

layer) is described by equations (2.8) and (2.9) in terms of the original variables

(¢, ¢ , X, ¥, t), while the inner flow (boundary layer flow) is described in terms
of the inner variables (3§, ¢ , X, ¥, t), on putting R = (t'ze:)—1 and § = (re)1/2.
As €<<1, we can use perturbation method and assume that

~

b B &) =n§ 20 00 BB (3.3)
Substituting (3.3) and using y = y/6, ¢ = ¢/6, $P = ¢p/6, R = (rzs)_l, § = (t‘e)l/2

in the equations (2.8), (2.9) and the boundary conditions (3.1), (3.2) and then
equating the coefficients of the like powers of 51/2, we obtain the equations and the
boundary conditions corresponding to the first order, second order, etc.

First order (0(81/2))
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Outer:  Ll] = -ah V(o -0,

Lig,T = = o (o=6 ),

~ 3 ~ ~
inner: Mi¢ ] = - ad= (¢, - ¢,
1 ay P
~ 2 o~ ~
MG 1= - atsE -5 ),
p pl w2 1P

~ 3%
240y = 0, —0)
Y

Second order 0(eg))

- % sin(x - t),

3¢
outer: L[¢2] + aX V2(¢p2 - ¢2) =1 V2 _ - V2 —_

pl
L[¢p2] + a V2(¢2 - b)) = v

(3,] L,y e s
inner: M[4¢, + aA—:— ¢ - = — — - — 3
2 w2 P22 5 ooyl o
~ 3 ~ 3e
M (3 ]+ai($ -3 )=3¢P1 P %1 %1 34y
p 'p2 ~2°72 p2 ~ ~2 ~3
ay 3y  xdy & 3y
oy 2~ ~ 2~
2 39 3, S
—-32: (0) = —%cos(x -t) 'é (0), %— 0) = -%cos(x -t) _1; 0),
¥ 3y axay
Third order (0(53/2))

3¢ 3¢,
outer: L[¢3]+ al V2(¢p3 - ¢3) - r2V2v2¢1 +Fl V2 __axz-

34>2 3¢1 301 3¢2 3¢2 3¢1
TR R Ty TR

L 3 3 3 3 3 3¢
- = _pl 'p2 p2 'pl _ "%l p2 _ °%2
L[¢p3]+uV2(¢3 0y = 3 v 2%+ 2 v —2 2L ¢ 2 2

(3.4ab)

(3.5ab)

(3.6)

(3.7ab)

(3.8ab)

(3.9ab)

(3.10ab)

3%
_pl
vzay,
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~ 2n 2 b~
o 3 ¢ 3 ¢ ) N n 3 ¢
inner: M[¢3] + a)‘[rz(——‘éLl - 21) + —“2-(¢P3 - ¢3)]= - 2% 21~2
ax 9x 3y ax 3dy

3 ~ 3n ~ 3~ ~ 3~ ~ 3~
2 VO 3 4 3 4 3 34 39, 34

tr bt Gt s T T3 T T T3
stax’ oy axayl  dy  axdye  ax By ax 3y

2 2 e
N 2 3 o~ o~ e~ 2 % 4
Ml J1 + alr”™ — (6= ¢ ) +—5 (5= ¢ ] =1
3 NEA N IS B K ot 2x
~ 3~ ~ 3n ~ 3~ ~ 3~
L TRy 3y Th, %, 3*;332_ %, 3°§i,
¥ e e  x  % &
- 2~ 3n
3¢ 1 379y 1 2 34
——~—(0) = -;cos(x - t)'Tz—(O) - —5 cos (x - t)—~3(0),
ay 4 2r ay
20, 1 20, 1 2 3361
— (0) =-7 cos(x-t)—h(O)——z-cos (x - t) ") ) ,
x x 3y 2r Y

Fourth order (0 52))
o M My, B
2 1
outer: L[¢4] + a)‘Vz(tpr— ¢4) = -r V2V2¢2+fay- V2 ? + —= V2 _;

Wl el Malth Math

3¢ 3¢ 3 3¢
- - _pl p3 p2 p2
L[¢p4] + a vz(% ¢p4) % e -t % 7 o

3 3 3¢ 3¢ 3¢ a¢. EY) a¢
p3 pl _ _'pl p3 _ 2 - 3
+2 7l Rl R v 7

(50 aale? —2 ¢ y+ 2 G ) 2r2 i
inner: M[§, ]+ aAlr® —— (% $,) + [ 4, =-czr =
4 3x2 p2 2 ayZ 4 4 axzayz
3~ ~ 3~ ~ 3~ ~ 3~
L2k 2 30 ¥4 5 3 4 3¢ 34y
r 2Y T T T3 oAt T T3
ot 9x ay ox ax 3x dy y xay
~ ~ 3~ ~ 3~ ~ ~
LR ey 0% 0 2 ¢3 2%, 8, 9, 3%
—< 4+ —= -— < -2 s
& wye o myl x w0 x u x
3~
MI3 ] + alr? (3- 3. ( )1 =282
Oyl *alr 7 (%7 4 ~2 (07 O r 2
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(3.11ab)

(3.12ab)

(3.13ab)

(3.14ab)
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3

~ ~ 3~ o~ ~ 3~
20t T 2 P Pk Tk My %y T4y
y oo x wCay  wayl ¥ o
~ 3a ~ 3n ~ 3~ ~ 3
3 ., 3¢ 3 . 3¢ 3. 3¢ 3% . ¢
+_%3_ ;:; __pl ~13:3 _ %2 &1;1 _ “%3 33)1 i
dy dxdy 9x  Jy x 3y & 3y
- 2n 3~
3%, 1 34y L2 4
—— (0) = -~ cos(x - t) —5= (0) - — cos“(x - t) —5= (0)
3y 3y 2r ay
3 3431
- —3 cos (x-t) =% ) , (3.15ab)
6r oy
~ 2~ 3
LX) 9 )
A (0) = - L cos(x-t) ¢i (0) - LZ cosz(x-t) ‘%2 (0)
ax r axdy 2r ax 3y
3 3431
- —3 cos (x-t) — ) ,
6r
and so on.
where
-8 - -2
LD = - e L) =P
(3.16ab)
~, a" 3 ~ ~ 3 ~
MPH = g - Y M) -2, % .
' aray? PP seay’ P

A series of the
wall, while the outer
is

inner solutions should satisfy the boundary conditions on the

solutions are only restricted to be bounded as y increases, that

LT ¢ 3¢ L1
|§n-' N l—aﬁ-'ll N |Fn-| N l—g—n-l { o asy +» oforn-=1,2,3,4,...

It is necessary to ma

tch the outer and the inner solutions. Following Cole [5] the

matching is carried out for both x and y components of the velocity by the following

principles:
Lt ) N 3¢ N 3%
€+0 N2 [ 2 en/2 - z en/2 _~n_ ] =0 (3.17)
y fixed € n=1 4 n=1 dy
Lt ) N 3¢ N 3%
e+0 gzl a2 —B-] a2 —P1-0 (3.18)
; fixed € n=1 ¥ n=1 R
Lt N 3 N 3%
1 n _ 1/2 n/2 "™m o, _
e+0 g7l ) QD2 - _Z —x 10 (3.19)
€ n=1 n=1

; fixed
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Lt N 3 N 3%
€0 L7 /2 —Pﬂ-rel/zz n/2 —E21=0 (3.20)

N/2 €
3 fixed n=1 ax n=1 x

up to the N-th order of magnitude

Let us find out first order solutions in the form.

ENCR A IR N IS (O Wi MO

~ ~ ~ - * A~ - — ~
4007, = F () 100 Fa) e tame) e > (3.21abcd)

i(x-t) -1(x-t) +

8, (x,y,8) = £,(5) e +E) e £,

i(x-t) -1(x-t) +

*
¢p1(X.y,t) = fpl(y) e + fpl(y) e fpls(y) ,
By substituting (3.2labed) in the first order differential equations (3.4ab) and

(3.5ab) and the boundary conditions (3.6) we obtain the following system of equations

d"pl a%r a%r . szl
Z Tl g @ ~2 2 ’ (3.22)
dy dy dy dy
4 2 2
d'F d°F d°F
"}Os =" QX[ E;s o\;s ] ’ (3.23)
dy dy dy
szpl . szl
- _a (3.24)
~, ~, ’
dyz i cly2
a’r a%r
221s= ;s (3.25)
dy’ dy’
dzfl
—5 - £, =0 (3.26)
dy
als 1 « dzfl
—Ld ] - ])l =;I ——2" fl) (3.27)
y
a?s df
1s pls
2 - 2 (3.28)
dy dy
and their solutions
~ 1 ~
Fil _pe M +5- %+ A\Dgy - D (3.29)
F, =—2F + Ay 30
pl T i 1T A (3.30)
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dF | dF, - -
—E:s-=~—:S=C2y +Cyy (3.31)
dy dy
£, =Be” (3.32)
= 4 3.33
fpl By e ( )
df df 1
Following Tanaka [1] we take . (3.34)
dy dy 1
— — (Q1+1ax)l/2 2
where ) = ¥ -1(=(1-1) /V2), B=——==—, Q= a (A+ 1) +1 and D, A,
/2
a +1
Cl’ CZ’ B and Bl are constants. Substituting (3.29) - (3.34) into (3.17) and
(3.18), we have
Lt 3 3 Lt _
e>0 1—}2- (/2 Lo M2 7y o b0 (- e oY) 4 cicy)
7 fixed © 3y R § fixed
+c - o (—mlee"‘ley + DA B) 1) L ey - c2§2— Cyyl = 0 (3.35)
Lt 3 3 Lt _ _
€ +0 [l—}—z— 51/2—214—51/2-—-;& = €+0 [{—Bleyei(Xt)+C.C.}
; fixed © 3y & nyixed
=% pr e MY 1(x-t)
+Cl {a-i (DXIBe 1 +DAIB)+Ae + C.C.}
-cyt -y 1 =0 (3.36)
2 3 *

where C.C. stands for the corresponding complex conjugate. Taking into account that

1/2

y=r €' 'y, we have

-y . T el/z

e =e §=1-rel/2

y + %rze ;72 + .u. (y fixed) (3.37)

and noting that exp(-)‘l;) (=exp(-Mr 61/2

) y, y fixed) decays very rapidly as
€ + 0 (which is called transcendentally small term (T.S.T) and is neglected in the

matching process), we have

Lt

€ >0 [(-B+DA B) 1Y) L ccl s cl—c2§2 - c3§ +1T.5.T + o(e/D) =0 (3.38)
; fixed
Lt DA, Ba
1 1(x-t) ~2 ~ 1/2
= + —_— - - =
e+0 [( B, pary A) e + C.C. #C - Coy°- Coy + T.S.T + 0(e ' “1=0 (3.39)

; fixed
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Thus the matching condition is satisfied only if

- - -] .—a = = = .
B + D\ B =0, -A -B + parg Y B=0, C;= C,=Cy= 0 (3.40)

when similar process is carried out for equations (3.19) and (3.20), we have

Lt 3 3 Lt
1 /2 °%1 1, _ 1 1/2 -y 1(x-t)
f +0 5—1/2 [e " TE —ax] .,E + 0 51/2 [e/“{iBe 7e + C.C.}
y fixed y fixed
- re{T.S.T + ulne; + 1(—2—i - D)} ei(x-t) + Cc.C.]
Lt
=e»0 gy (2wt t ol + 00 - 0, (3.41)
; fixed ©
Lt 3 3% Lt
1 172 “%p1 _ pl, _ 1 1/2 -y i(x-t)
E-»O e——l/z [e p re ax] ~e #0—51/2[5 {iBle e + C.C.}
y fixed y fixed
- re {I.S.T. + :f? {ulns§ + 1(;—r - D)} + Ay} R
Lt
=e»0 5l 1w e+ 001 = 0, (3.42)
; fixed

so that the matching condition is satisfied if B=Bl=0. Thus we have

D=B=BI=A=C1=CZ=C3=0 (3.43)

¢ =0, (3.44)
o1 = o, (3.45)
31 = -%—; ei(x_t)+ %; e-i(x-t) (3.46)
[ 5= [1(x78) 4 ~1(x-t) (3.47)

Next we seek the second order solutions '52, zpz’ ¢2, ¢p2 in the following form

4 = erz"(x't)+ R

I:21 2s’

~ 21 (x-t) 1(x-t)
¢p2 sze + Fp21e + C.C. + Fp?.s’
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2i(x-t) i(x-t)
¢, = fae + e +C.Co+ oy,
2i(x~-t) i(x-t)
¢p2 fpze + fp21e + C.C. + f

Substituting (3.44)-(3.47) and (3.4B8abecd) into (3.8ab)-(3.10ab) we get

calculations

Let us now seek third order solutions in the form

$3 _ F3e31(x-t) . e21(x-t) +F

i(x-t)
32 31¢

F + C.

e31(x-t) + eZi(x-t) +F

i(x-t)
p32 p31e

F

e21(x—t) + ei(x-t) +cC.

32 31

e3i(x—t) +f e21(x-t) +

i(x-t)
p3 p32 p3l ©

ir e—AlBy_‘_E; -
31 262 4 28

RAO

p2s’

C. + F3s’

+ C.C. + Fp3s’

C. + f3s,

+ C.C. + f

p3s

ab(a+b)

V2 r(a2+b?) Va2t

(3.48abed)

after some

(3.49)

(3.50)

(3.51)

(3.52)

(3.53abcd)
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1r)\l -y o ir} -y

=0, f31 =78 e ”, f =— —F—9e 7,

if_gsg dfp3s _ _ab(a +b)
dy dy V2 r(az+b2) v’a2+1

i+l ¥y +q 12 /@2 +2iy - o 1?2
a-(———bH , b= ; I

10228

Ty =—="3 2

v2 yla (1+2)-50-1 {a (4+2)-2}]
T,=-T +T,,

3 2 1/2

_ a (1+)) - 5a -i(4a -2) - al

T, = coy= 1+ 2] (3.54)

03(1+A)-5a- il a2(4+A)-2]

We shall now seek the fourth order solutions in the following form

~ 41 (x-t) 3i(x-t) 2i(x-t) i(x-t)
¢4 Fl‘e +F43e + F"ze + F“e + c.c. + Fl.s’
~ 41 (x-t) 3i(x-t) 2i(x-t) i(x-t)
¢p4 F 48 + Fp43e + Fp“e +Fp41e + c.co + Fp,‘s, (3.55)
41(x-t) 3i(x-t) 2i(x-t) 1(x-t)
¢4 fl.e + f43e + f42e + f“e + c.c. + f4s’
_ 41i(x-t) 3i(x-t) 21i(x-t) i(x-t)
OP" fPAe + fp43e + fp‘.ze + fp“e + c.cot fp&s
where
F" = sz. =0,
A 2 T.B —
Py = —5 2173 8(36%-62-1,) + 6(3T,-68%+2vD) )
48 &r 38 -8
—2 Ty — 2.2 — 2.2
- V38" - ———— {2V3v(367-2Y"-T,) + v26(3T,-68 +2y") + B&]
2 2 4 4
3872y
. T, [/2)\111‘1 e—/z A ) BT4 X, —).IBy]
2 2 2_2 °©

8r 362-2y 35%-8



570 V. RAMAMURTHY AND U.S. RAO

/3 a 28%1.(368%-8%-T,)  4¥°T,(38%-2y%-T,)
- 1 "3 47 _ 1 47 g2,
2 ! 2 2 2 2 €
486r 362 - 8 36% - 2y
. x’; o _ -2y - 8
F ,.=—2_7F, + V29T e ~T. Be 1,
PA3 a3t A3 g 202 354 -2)(o31) ! 3
T IAT 2 T
TR A T ey ar el CORLRIE N
(2y"-8%)" 4B(2Y"-8")
-A B iA -2\ v
1 1 1 2 .2 2 1
e + 5373 {T58 -(2y"-B )TZ} (e -1),

272y (2v°-8%)

=) By A8y
Ale 1 iazye L

48(o1)2(ar21)  4B(o-1)2(ar2i)

a
Foi2 =21 T2 *

2

1y 2N YT 1ATy . )
P sl gt 3% T2 2. 2.t ® 2 s T3 (BT 2YT))
28 4r”(B7-2y") B (B+B ") 8r
* -\ By T, T T
_168 , 18 2] e A1‘3"_1) e U S A S T
2 2 2 2 B2l §F gl
8r?  16r 42 rf g2yt B C £+
A NB ANE Toa A8y A T.T
= . Y
e T S S 12_*12+831ye R G A
4r 8r 16r 28 4y2 r
x*B*:. 2
P y
T, +ir>‘1§2 253 nz}7
* %* »
2 2, 78 12~ 28
2 - - .
a 1) [ =X By 7 -v2 ).lyy]
F, o =-2pF -— L  _rere V2 yT.e
pal T e Fa1 T g2 7l 1
Q A B; X*B*N
a - * % - y
b (At | A8 D)
8r (a"+1)(a1i)
Y B; % A*B*a
- s
N 2 1 LN e 10T

8r2 (o+1) (o-1)2 82 (2+1) (oi)?

-v2 A
B -2y

e 17
2,2

v
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* % A ~
=(X,B+A, B )y -X, By
dFAs _ 32 + 8*2 e 1 1 e 1 )‘1 8. 1 1i8_
& " Tl w ¥z T Gyt R)
488 Oy 842 8) 8 48
x*B*m * %
- y g * * *
IS L A T SN 0 I S
* * * * ’
g2 o h RET 2 g G e 6
2 *2 * *)~
Foas _ Tas - o (es™?) THENEDY
~ ~ *
a5 a5 4(a>+1) 8B
g \ & . 1)‘*8* X*B*‘\
e B 1M~ Th a B _ 1 1P~ THEY
+ 2 ( * + A —Z—y) e + 2 (48 A + —4_}') e ’
a +l 4B a +1
o= fon = f43 = fu3 = 0
T of 2
f -2 e-2 f 2 e—Zy f S eV
42 4 > Tp42 4(a-2i) > 41 28 ’
2 df df T (82+B*2) *
¢ =_@ ir -y __4s _ pbs _ 10 B 8 -1
’ * * % 2 47
pél 1 2g dy dy g2p*2 47 BA 8 )
5= (1 + 2 )1/2 r - U 1lat61(1-d)
@31 4 O-11a+61(1-a7)
r o< CUFN-SeU -2d) o L, @)
’ ’
S Pose2i(1-24d) 6 (2i) (a2+1)
2 3 3% 3
N 2 L LT NE NBTTE WRT, @y
7 — 2> Tg 2 2 7, 2 7 2 2
(i) 8r 8r (a+1) 8r (a+1)(ai)
Q,T 3 %2 Q
Tg= B g g— -5y (3.56)
8r (o +1) 8r (a+l) (oi) a +1

In a similar way higher order solutions can also be found. Since it is very
laborious to find higher order solutions due to the complexities involved in a dsuty

fluid, we are terminating our analysis with a fourth order solution.
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4, RESULTS AND DISCUSSIONS.

Thus we found that the third and the fourth solutions consist of the steady part
in addition to the periodic one. But the contribution of the steady term in the
fourth order solution is more significant to the solution. So we shall take up for

discussion the fourth order solution.

The inner steady streaming parts of both the fluid and the dust are plotted
against §'for various values of the concentration parameter A vide fig. 1. We find
that both in the case of the fluid and the dust the inner steady streaming parts
approach to a constant value in the form of the damped oscillation with respect to the

distance from the wall.

We see that the progressive motion of the wall causes, at first, the periodic
flow in the boundary layer having the same phase as that of the wall motion and then
it causes flows of higher harmonics in the boundary layer and induces the periodic
flow in the outer layer sucessively. The components of velocities for fluid and dust,
both for the outer and the inner flows have been plotted against y and ; respectively
in figures 2-5, for various values of the parameter ) and (x-t), taking o=2.0 and
Reynolds number R = 500.0.

We observe from fig. 2 that the axial velocity components upo of the dust are
less than u, of the fluid. It is also seen that while upo increases as y increases,
u, decreases as y 1increases. The increase in the value of the concentration
parameter A results in the 1increase of the velocity components. But it is
interesting to note that both u, and upo are becoming steady as y increases further

and approach almost equal values.

From fig. 3 we observe the nature of the transverse velocity components
v° and vpo of the fluid and the particles respectively of the outer flow. The
velocity component vpo of the dust is greater than the corresponding value v of the
fluid. Both decrease as y increases and approach more or less the same constant

value.
The behaviour of the velocity components uy of the fluid and upI of the dust of

the inner flow can be studied from fig. 4. We note that upI is greater than uy and

u are oscillating between positive and negative values.

pl
From fig. 5 we study the nature of the transverse velocity components vy of the

fluid and va

nature in the case of the fluid. But both vy and va become steady as y increases.

of the dust of the inner flow. We see initially some oscillatory

When m + 0, the dusty fluid becomes ordinary viscous fluid and then our results
are in perfect agreement with those obtained by Tanaka [1] for the case of moderately

large Reynolds numbers.
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