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ABSTRACT. The two-dimensional flow of a dusty fluid induced by sinusoidal wavy motion

of an infinite wavy wall is considered for Reynolds numbers which are of magnitude

greater than unity. While the velocity components of the fluid and the dust particles

along the axial direction consist of a mean steady flow and a periodic flow, the

transverse components of both the fluid and the dust consist only of a periodic

flow. This is true both for the outer flow (the flow beyond the boundary layer) and

the inner flow (boundary layer flow). It is found that the mean steady flow is

proportional to the ratio 42a2/L2 (a/L<<l), where a and L are the amplitude and the

wavelength of the wavy wall, respectively. Graphs of the velocity components, both

for the outer flow and the inner flow for various values of mass concentration of

the dust particles are drawn. It is found that the steady flow velocities of the

fluid and the dust particles approach to a constant value. Certain interesting

results regarding the axial and the transverse velocity components are also discussed.

I. INTRODUCTION.

The problems of flow of fluid induced by sinusoidal wavy motion of a wall have

been discussed by Tanaka [1], Taylor [2] and others [3,4]. Tanaka discussed the

problem both for small and moderately large Reynolds numbers. While discussing the

problem for moderately large Reynolds numbers, he has shown that, if the thickness of

the boundary layer is larger than the wave amplitude the technique employed for small

Reynolds numbers can be applied to the case of moderately large Reynolds numbers also.

Recently while studying the flow of blood through mammalian capillaries, blood is

taken to be a binary system of plasma (liquid phase) and blood cells (solid phase).

In order to gain some insight into the peristaltic motion of blood in capillaries the

authors are motivated to study the induced flow of a dusty or two-phase fluid by

sinusoidal motion of a wavy wall.

In the present paper, the two dimensional flow of a dusty fluid for moderately

large Reynolds numbers is studied on the basis of the boundary layer theory in the

case where a thickness of the boundary layer is larger than the wave amplitude of the

wall. We assume that the amplitude of the wavy wall is small but finite, so that the

solutions are obtained interms of a series expansion with respect to the small

amplitude.
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2. FORMULATION OF THE PROBLEM.

We consider a two-dimenslonal flow of an incompressible viscous dusty fluid due

to an infinite sinusoidal wavy wall which executes progressing motion with constant

speed. Taking the Cartesian coordinates with x-axis in the direction of the

progression of the wave, and the y-axis perpendicular to it, the motion of the wall is

described by

y h(x,t) a cos (x ct) (2.1)

where a is the amplitude, L the wavelength and c, the phase velocity of the wall.

We assume that (a/L)<<l so that (2a/L)<1.

The non-dimensional equations of motion of a dusty fluid as formulated by Saffman

[6] are

V2 +qt + (q" grad) q grad p + %(qp-q)

+(pqpt grad) qp (q qp)

(2.2)

(2.3)

div q 0 (2.4)

div qp 0 (2.5)

The boundary conditions are

h
u 0, v =- at y h(x,t), (2.6)

where h E cos(x-t) and 2a/L. The equations (2.6) represent the no sllp

condition of the fluid on the wall, where an assumption has been made that the wall

executes only transverse displacement at every point. The subscript t denoting

partial differentiation with respect to t, the characteristic length being L/2, the

characteristic time being L/2c, the fluid velocity q E (u,v) and the particle

velocity qp E (Up,Vp) being non-dimensionalised with characteristic speed 2c’ the

fluid pressure p being non-dimensionalised with characteristic pressure the

non-dimensional parameters being %--mN /p, KL/2cm, R cL/2y, where m is the
o

mass of a particle, N is the number density of a dust particle (assumed to be a
o

constant), K is the Stoke’s resistance coefficient (=6 p) being radius of a dust

particle), is the kinematic viscosity of the fluid.

By introducing the stream functions (x,y,t), D(x,y,t) for the fluid and dust

respectively the governing equations (2.2) and (2.3) and the boundary conditions (2.6)

and (2.7) become
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8-V2 + -y V2 3_x -x V2 -y !R + %= ( %- ) (2 .8)

t y x x

+ 0,
8h

y x 8 at y h(x,t), (2.10)

3. SOLUTION OF THE PROBLEM.

When Reynolds num6er 6ecomes larger, the 6oundary layer is formed. Since we have

assumed that the thickness of the 6oundary layer s larger than the wave amplitude,

the regular pertur6aton technique, which was used for small Reynolds numbers can 6e

applied [I].

If is the thickness of the 6oundary layer, the non-dimenslonal varlables y

bo dofnod g y/a ana $ /a, +p p/a. on ho =ou e i uppoed o

6e of the same order as the inertia terms, we have that 62R is 0(I) as usual. The

6Dundary conditions at y h are expanded into Taylor’s series in ter of the inner

varia61es and y as

h h
2 83 8h(0) + (0) + (0) + (3 )
22 2 6

-(0) +N 3
0) + 0 (3.2)

In order that Taylor series converges, 0() must be larger than 0(h), that is

0(:) < 0(g). Following Tanaka [1], we shall take ;r:1/2, r being an arbitrary

constant of 0(I), that is R (r2) -I. The outer flow (the flow beyond the boundary

layer) is described by equations (2.8) and (2.9) in terms of the original variables

(, _, x, y, t), while the inner flow (boundary layer flow) is described in terms

of the inner variables (, , x, y, t), on putting R (r e) and --(re) I’2.!

As e<<1, we can use perturbation method and assume that

(, p,’, "-p) n/2( n’ 6p, 6n 6pn) (3.3)

Substituting (3.3) and using y y/, /, p p/, R (r2) -I
6 (re) I/2

in the equations (2.8), (2.9) and the boundary conditions (3.1), (3.2) and then

equating the coefficients of the like powers of el/2, we obtain the equations and the

boundary conditions corresponding to the first order, second order, etc.

First order (0(e1/2))
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Outer: L[,I -al V2(,pl-,l )’

32
inner: M[I] a (v*"l I )’

32
P y

--(0) 0 (0) i sin(x t)x r

Second order 0(e))

outer: L(*2] + (%2- *2 --- 3x 3y

(3.4ab)

(3.5ab)

(3.6)

(3.Tab)

L[,p2] + ,m V2(,2 *p2 V2 !*pl 3’pl V2 3’pl

3
2

inner: M(2] + a% (*p2 2
33

(3.Sab)

32
2

(0) 32Icos(x t)
~2 (0), -- (0) cos(x t) (0),r y r x (3.9ab)

Third order (0(e3/2))

3’1 V2 3*2outer: L ’3 ]+ o, V
2

,p3 *3 r2 V2 V2 *1 + -- x:

(3.10ab)

L[%3]+V2(,3- 3 3%1 V
2 + 3%2 V2 !I 3pl

V
2 3%2 3%2 V2 3pl

8y 8x y 3x 8x 8y 8x ’
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inner

2
2 @plM[3] + aX[r

@x
2

@2i @2 @4i
@x

2 @2 *p3 x2
By

+ r x2+ +
2

M[@p3 + a[ 2 @2 @3
@t x2

@@3 2(0) cos(x t) (0) cos (x t) (0)
By 2r 2 y

BO3 @202(0) cos(x t) (0)
Bx r x

2 @3I
2r

cos (x t)
x2

(0)

(3.11ab)

(3.12ab)

Fourth order (0 E2))

outer: L[@4] + aV2(@p4 @4 =-r

/ @@3 2 @@1 @@1 V2 @@3
By @x x By

@@2 V2 @@2 @@3 V2 (3.13ab)

L @p4 + a V2 @4- @p4

inne r M[ 4 ]+ aA[r2 @2 @2

@352 @$1 @3512 2+r +r r
@t x2 x3

2 @$1 @351
x 2 x2

+ +
@3 @3@@I $3 @@2 $2 @3@@3

M[ @p4 + [r 2

@x
2

@2 2 p2 (3.14ab)
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+ r
2

4 (0) 23 2 32
--cos(x t) (0) -cos (x t) (0)

r By 2r
2 By

3 @4I
3
cos (x-t) (0)

6r By
(3.15ab)

(0)
32%

cos(x-t) (0)
r Bx@

__I 2 }32
2r

cos (x-t)
3x2

(0)

3 @4I
cos (x-t) (0)

6r 3 x3

and so on.

where

V2@, Lp( V
2

(3.16ab)

M() {By4 tBy2 ’ Mp(p)
t 72 %

A series of the inner solutions should satisfy the boundary conditions on the

wall, while the outer solutions are only restricted to be bounded as y increases, that

is

It is necessary to match the outer and the inner solutions. Following Cole [5] the

matching is carried out for both x and y components of the velocity by the following

principles:

Lt N N
o

y fixed J/2 " e
n/2 " e

n/2 --- 0
n=l BY nffil By

n/2 Z n/2 0+o Ty[l
fixed

n=l By nil
e By

Lt N 8n 1/2 en/2 n+0 7 I en/2--- r e

fixed
e n=l n=

x 0

(3.17)

(3.18)

(3.19)
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Lt N aCpn 1/2 i aCpn
e 0 N-- n/2 r e: n/2 0

fixed
e: n=l 8x n=l

e
(3.20)

up to the N-th order of magnitude

Let us find out first order solutions in the form.

i(x-t) *l(x,y,t) FI() e + FI() e
-l(x-t) + Fls()

i(x-t) * -i(x-t)
P-I(x’y’t) Fpl(Y) e + F (y) e

pl
+ Fpls (Y) (3.21abcd)

i(x-t) * -i(x-t) (y)I (x,y,t) fl (y) e + fl (y) e + fls
i(x-t) * -i(x-t) (y)P-I(X’y’t) f (y) e + f (y) e + fplspl pl

By substituting (3.21abcd) in the first order differential equations (3.4ab) and

(3.5ab) and the boundary condltlons (3.6) we obtain the following system of equations

d4F d2F
+i

dy
"4 d;2

a d2Fpl d2Fl ]d2 d2
(3.22)

d4Fls
dy

a
d;2 d;2

(3.23)

(3.24)

d2F d2Flpls s

d2 d)2
(3.25)

d2fl
f 02

dy
(3.26)

2 Pl
dy

d2fla
___f- dy2

(3.27)

d2fls dfpl s

dy
2

dy
2 (3.28)

and their solutions_
+F1 D e r + ID D (3.29)

F =--- F + Ay
pl a-i
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dF dF

___
___s =C22+C

dy dy

f =B e
-y

f B e
-y

pl

Following Tanaka [I we take
dfls dfpl s
dy dy

c

where )’I ,/ -i(=(l-i) /,/2 ), B

1/2
(QI +i

Q1 a (),2+ I) + and D, A,
,/ a2+l

CI, C2, B and B are constants. Substituting (3.29) (3.34) into (3.17) and

(3.18), we have

(3.31)

(3.32)

(3.33)

(3.34)

I12 @I I/2 @I LtLt
[e e e 0 Be -y e

i(x-t)
e 0 I/2
y fixed

e BY By y fixed

+ C.C.}

i(x-t)
+ c (-D)‘IBe )‘I / + D)‘18) e + C.C. C2g2- C3’] 0 (3.35)

Lt
I12 # pl I12 Bp_[ Lt

0 I-- 0 {-Ble-Ye i(x-t)
y fixed

e By By
y fixed

( xl i (-t)+ C {-- (-D)‘IBe- + D)‘18) + A e + C.C.

+ C.C.}

C2’2 C3" 0 (3.36)

where C.C. stands for the corresponding complex conjugate. Taking into account that
I/2

y r e , we have

1/2
-r e I/2_ 2 ~2

e-y e y r +r ey + (" fixed) (3.37)

and noting that exp(-kl) (=exp(-)‘/r e
I/2

y, y fixed) decays very rapidly as

0 (which is called transcendentally small term (T.S.T) and is neglected in the

matching process), we have

Lt
e 0 [(-B+Dk 8) e

y fixed

i(x-t) 2+ C.C. + Cl-C2Y C3Y + T.S.T + 0(eI/2 0 (3.38)

Lt DI 8a
e +0 [(-B +

-i
y fixed

-A) e
i(x-t) -2 + T.S T + 0(el/2+ C.C. +C I- C2Y C

3
]=0 (3.39)
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Thus the matching condition is satisfied only if

-B + DI8 0, -A -BI+- DI=0, CI= C2= C3-- 0

when similar process is carried out for equations (3.19) and (3.20), we have

(3.40)

{iBe-Ye i(x-t) + C.C.}

i(x-t)re{T.S.T + iiDBY + i(w-- D)} e + C.C.]
r

Lt 1/2 i(x-t)e 0 7 [e (iB)e

y fixed
e

+ c.c. + o(e)] o,

Lt
e /0

y fixed

Lt
el/2e

I/2
rE e 0 -72

y fixed
e

{iB le-Yei( x-t + c.c.}

i(x-t)a (I___ D) + A} e + C.C]rE {T.S.T. +- {illD + i 2r

(3.41)

Lt
ell2( l(x-t)

e +0 I- iBI) e

y fixed
e

+ c.c. + o(e)] o, (3.42)

so that the matching condition is satisfied if

D B B A C C
2

C
3

0

and the first order solutions are obtained as

B=BI=0. Thus we have

(3.43)

1 0,

i (x-t) -i (x-t)
1 =r e +r e

__q_a [ei(X-t) + e-i(x-t)p a-i 2--{

Next we seek the second order solutions 2’ %2’ 2’ %2
i(x-t)

2 F2e21(x-t)+ F21e + C.C. + F2s

p2 Fp2e21(x-t) + Fp21ei(X-t) + C.C. + Fp2s,

in the following form

(3.44)

(3.45)

(3.46)

(3.47)



568 V. RAMAMURTHY AND U.S. RAO

zi(x-t) i(x-t)
@2 f2e + f21e + C.C. + f2s’

21(x-t) i(x-t)
p2 fp2e + fp21e + C.C. + fp2s’ (3.48abcd)

Substituting (3.44)-(3.47) and (3.48abcd) into (3.8ab)-(3.1Oab) we get after some

calculations

lh -I ~ i i(-t)
@z (- e y + --) e + c.c., (3.49)

-ye i (x-t)
@2 - e + C.C., (3.51)

a -y i(x-t)
@p2 -i 2 e e + C.C. (3.52)

Let us now seek third order solutions in the form

3i(x-t) F32e2i(x-t) + F31e@3 F3e + i (x-t) + C.C. + F3s

() i(x-t)
e
2j-x-t- + F e@p3 Fp3e3i(x-t) + Fp32 p31 + C.C. + F (3.53abcd)

p3s’

3i(x-t) 2i(x-t) i(x-t)
@3 f3e + f32e + f31e + C.C. + f3s’

3t(x-t) 2i(x-t) i(x-t)
@p3 fp3e + fp32e + f e + C.C. + fp3sp31

where

F3 0, F -A1 Sy/)’IY T2
T3 e32 4--{ T1e +

4r 4r

F31

dF3s
dy

Ir -llSY r ,-2 Irll
2B

2 e +- Y 28
y+

282

Xl -)’I / X -X18 YQ1
[--e +-e4(+1

+ ab(a+b)- r(a2+b2 Va2+l

F
p3 0, F e

Fp3
a

p32 a-21 F32’ a-i F31’

3s -11 8ydF3s + i a I a

d" 4r a2+1 )’1 4r 2+1
-LIBY

Xi8 e
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=f
3

ir ’I ir ’I-y a -y
p3 f32 fp32 0, f31 28

e f
p31 -i 2 8

e

df3s
dy

a

df
p3s ab(a + b)

dy ,/ r(a2+b 2)

,/(Q+2 ,2) + Q1
1/2

2

,/(Q +a2 ,2) Q1
1/2

b=(-
2

T
2

/ [ J(l+l)-5-i {2(4+I)-2 }]

T -T +T
2 3

3 2 1/2
a (l+l) 5a-i(4--2) a),

T3 3 a2 Y [1 + -2i
a (l+A)-Sa- i[ (4+,)-2]

We shall now seek the fourth order solutions in the following form

F4e4i(x-t)+F43e3i(x-t) + F42e21(x-t)+
l(x-t)

F41e + c.c. + F4s,

(3.54)

4e4 2i (x-t)
p4 F

i(x-t) + F
31(x-t) + F e +F

p p43e p42 p41
i(x-t) + (3.55)e c.c. + Fp4s

4i (x-t) 31 (x-t) 2i (x-t)
4 f4e + f43e + f42e + f41 e

i(x-t) + c.c. + f4s’

where

4i (x-t) 31 (x-t) 2i (x-t)
fp4e + fp43e + fp42e

i(x-t)+ f e + c.c.+ fp41 p4s

F
4
=F =0

p4

l

F43
48r

2 T38 622 [3 2_ 82
{,/3 8( 3 82-T4 + 6( 3T4-6 62+2 y2

2T
T2_T

432_22
{2,/3y(32-2 + ,/2(3T4-62+22) + 86]

T4 ,/2 )’1TT -,/2 1 ‘07 8T3 ’1 ’1 8Y
+-

62_ 2
e

62 82
e

8r
2

3 2 3
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I 2B2T3(32-B2-T4 4y2TI (32-2y2-T4)
48 r2 2 B2 2 2

3 3 2y

Fp43 -31 F43
* 2
X a -,/2 >‘1{,/2yr le -T3Be

8r
2 a2-3t a -2) (-3i)

},

2 T
5T2,- i>‘lT5 y + {(2y2 B2 y2F42 -Y +

4B (2y2_B2)2 4B(2y2_B2)2
)-i >‘1

2 {T5B2-(2y2-B2)T2 (e

Fp2 o-2i F42
->‘1 6Y

>‘1 e+
4 B(-i)2 (-2i) 4B( -i

2
-2i

-,/2 >‘1 -1),

i >‘I i
2 >‘I

F41 B
[-

28
+ 2---T8

i y2T IT6
4r2( B2-2y2)

+ t (B2T3-2y2T1)+
*(82+B.2) 8r

2

i 62 t 6
*2 ->‘1 8Y

+ (e -1 +
8r2 16r2

>‘1 T1 T6 Y T9+
4,/’ r2 B2_2 y2 2 g2+ B*2

>‘1 >‘1 B
(-,/2 YTI+BT3) + 24r2 8r

1 B T8>‘1 ->’I BY >‘1 TIT6 Y
+ ye

16r
2 263 4,/2 r

2

T
9

>‘I B Y it2 >‘Ie 2
*2

+
48 Y

8 82+8*2
2~3 2

_r_ ir
12 28 y’

F --- Fp41 -I 2 6T3e -,/2 YI’le8r2(2+I) (-i)

Q1 a

8r2(a2+l) (a-i)

->‘ISY , ->‘i B Y

2 {i >‘I Be + i >‘I 8 e

>‘1 a
2
Be

8r2 (2+11 (-i)

*>‘I 2 8" e->‘I 8 Y

8r
2 (a2+l) (a-l)

2
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82 + 8*2 e
-(klS+k18 )y

dF4-s T1 * * 2dy 0
488 (I 8+I B

e
-I y I 8 i 8,)82 (-- + +---48

-kl 8 Y I 8 Ye

B*2 ------ +
4

i8") (82+8*2 *
, , 2--) ],

4( X 8+k 8

_v4s dF4s
dy dy

a (82+8"2) (-X18+x18 )y
, e

4(2+t) 88

4
)e+ ---- (---8, +

42+I 48

* ,
* ikl8+ a (__ i -) e

2+1 48-
+

4
-klB Y

f4 fp4 f43 fp43 0,

2T2 -2y eT2 -2y ir -y
f42 e fp42 4(-2i) e f41 282

e

2 df T 82+8.2)a ir -y 4s dfp4s I0
f ep41 a-i 2 82 dy dy 82 8*2 **2

4 k 8+ k 8

1/2 3
a (I+X)-11 od-6i(l-a2)

6= (1 +-y) T
4 a3_l 1od.6i (I_2)

3
2a

2
a Xa (l+X)-Sa+2i(l
3

T5 j_5+2i(i_22)
T
6

+
(-2i) ((z2+l)

2
a
3 * 832 r I 8 I 83T3T6 I 8QIT7 IllaT7 + T

8
+

(or_i)2’ 2
8r

2 8r2(2+1) 8r2(2+1)(_i)2

* * QIT7 t3B*2k Q1
T9 I 8 2

8r (2+1) 8r2(2+1) (e-i) 2 1’ TI0 a2+1
(3.56)

In a similar way higher order solutions can also be found. Since it is very

laborious to find higher order solutions due to the complexities involved in a dsuty

fluid, we are terminating our analysis with a fourth order solution.
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4. RESULTS AND DISCUSSIONS.

Thus we found that the third and the fourth solutions consist of the steady part

in addition to the periodic one. But the contribution of the steady term in the

fourth order solution is more significant to the solution. So we shall take up for

discussion the fourth order solution.

The inner steady streaming parts of both the fluid and the dust are plotted

against y for various values of the concentration parameter % vide fig. I. We find

that both in the case of the fluid and the dust the inner steady streaming parts

approach to a constant value in the form of the damped oscillation with respect to the

distance from the wall.

We see that the progressive motion of the wall causes, at first, the periodic

flow in the boundary layer having the same phase as that of the wall motion and then

it causes flows of higher harmonics in the boundary layer and induces the periodic

flow n the outer layer sucesslvely. The components of velocltes for fluid and dust,

both for the outer and the inner flows have been plotted against y and y respectively

in figures 2-5, for various values of the parameter % and (x-t), taking 2.0 and

Reynolds number R 500.0.

We observe from fig. 2 that the axial velocity components u of the dust are
po

less than u of the fluid. It is also seen that while u increases as y increases,o po
u decreases as y increases. The increase in the value of the concentrationo
parameter results in the increase of the velocity components. But it is

interesting to note that both u and u are becoming steady as y increases further
o po

and approach almost equal values.

From fig. 3 we observe the nature of the transverse velocity components

v and v of the fluid and the particles respectively of the outer flow. The
o po

velocity component v of the dust is greater than the corresponding value v of thepo o
fluid. Both decrease as y increases and approach more or less the same constant

value.

The behaviour of the velocity components uI of the fluid and Upl of the dust of

the inner flow can be studied from fig. 4. We note that Upl is greater than u
I and

Upl are oscillating between positive and negative values.

From fig. 5 we study the nature of the transverse velocity components vI of the

fluid and Vpl of the dust of the inner flow. We see initially some oscllatory

nature in the case of the fluid. But both vI and Vpl become steady as y increases.

When m 0, the dusty fluid becomes ordinary viscous fluid and then our results

are in perfect agreement with those obtained by Tanaka [I] for the case of moderately

large Reynolds numbers.
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