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ABSTRACT. Levy’s theorem "A second order parallel symmetric non-singular tensor

in a real space form is proportional to the metric tensor-" has been generalized by

showing that it holds even if one assumes the second order tensor to be parallel

(not necessarily symmetric and non-singular) in a real space form of dimension

greater than two. Analogous result has been established for a complex space form.

it has been shown that an affine Killing vector field in a non-flat complex space

form is Killing and analytic.
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1. INTRODUCTION.

In 1923, Eisenhart [l] proved that if a positive definite Riemannian manifold

admits a second order- parallel symmetric tensor other than a constant multiple of

the metric tensor, then it is reducible. ]n 1926, Levy [2] proved that a second

order parallel symmetric non-singular (with non-vanishing determinant) tensor in a

space of constant curvature is proportional to the metric tensor. The purpose_.

of this pape..r is to present a eneralization over Levy’s theorem for dimension

greater than two in the form .pf Theorem and its an.a__lqg.._e in a Kaehlerian manifold

of constant holomorphic sectional curvature also called a comp!ex space form) in the

f_q_rm of Theorem 2. Using_ Theorem__2_ it has been proved in Theorem 3 t_h_a_t___.an

affine Killing vector field in a non-flat co,nplex space form is Killing and analytic.

Let M denote an n-dimensional pseudo-Riemannian manifold with its metric

tensor g of arbitrary signature and Levi-Civita connection v. Let R denote the

Riemann curvature tensor of M. If h is a (0,2)-tensor which is parallel with

respect to v then we can show easily that

h(R(X,Y)Z,W) + h(Z,R(X,Y)W) 0 (l.l)
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2. A GENERALIZATION OF LEVY’S ’rIIEOREM.

W, prt;seril lh(; f,.)llowir, g(-:,’raliz:tiotJ over l,evy’s theorem:

TtlEOREM 1. ,4 second order parallel tensor in a non-flat real space form

dimet,qi,r r 2 i; prportional to the melric tcnsor.

PROOF: For a real space form M with constant sectional ctrvature k, we

hay(,

[I(X,Y)Z k{g(Y,Z)X g(X,Z)Y] (2. I)

Note that k ; 0, by hypothesis. Use of (2. l) in (l.1) gives

g(Y,Z)h(X,W) g()f,Z)h(Y,W) g(Y,W)h(Z,X) -g(X,W)h(Z,Y) 0

Contraction at X ad W with respect to an orthonormal frame in M, provides

(tr.H)g(Y,Z)- h(,Z)- h(Z,Y) nh(Z,Y) 0 (2.3)

where H is a (l,1)-tensor metrically equivalent to h. Anti-symmetrization of (2.3)

shows that h is symmetri(:. Eventually (2.3) reduces to

|r.H
h g (2.4)

Now, tr.H is constant, as H is parallel. Hence (2.4) proves the theorem.

RRMARg I. That the theorem does not hold for rt 2, can be seen t)y

considering the 2-sphere S . It is kr(,wr thai S carries a Kaehlerian structure

(see the beginning of section 3) whose Kaehlerian 2-form is a parallel tensor.

3. ANALOGUF, OF THEOREM FOR A COMPI,EX SPACIg FORM.

Before presenting an analogue of Theorem for a complex space-form, we would

like to recall the basic structure of a complex space form M(c). M((:) is a

Kaehlerian manifold of constant holomorphic sectional curvature c, with its complex

structure tensor J J -l, gaeh]erian metric g g(JX,JY) g(X,Y), Kaehlerian

2-form fl i(X,Y) = g(X,JY) and the gaehlerian connection v vJ 0.

THRORRM 2. A second order parallel tensor in a non-flat complex space form is

a linear combination (with constant coefficients) of the underlying Kaehlerian metric

and Kaehlerian 2-form.

PROOF: For a complex space form M(c), it is known 13] that

CR(X,Y)Z [g(Y,Z)X- g(X,Z)Y g(JY,Z)JX- g(J)l,g)JY + 2g(X,JV)Jg}

Plugging the value ()f 14 from (3.1) into (l.1) and contracting at X and W,

provide

(Ir.H)g(V,Z)--h(Y,Z) (n + 2)h(Z,Y) + Ir.(HJ)g(JV,Z)

g(HJY,JZ) + 2g(llJZ,JY) 0

Symmetrization and anti-symmetrization of (3.2) yield:
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(n 3)h (Y Z) 3h (JY,JZ) (Ir.H)g(Y Z)

(n + l)h (Y Z)-- h (JY JZ) (Ir. HJ)g(Y, JZ)
a

Replacing Y, Z by JY, JZ respectively in (3.3) arid subtracting the resultant

equation from (3.3), provide the relation:

h
tr.}l

g (3.5)
s n

Likewise; replacing Y, Z by JY, JZ respectively in (3.4) and eliminating

ha(JY,JZ) from the resultant equation and (3.4), provide the relation:

h t[.HJ) fl (3.6)
a n

By summing up (3.5) and (3.6) we obta n the expression:

h -l[(tr.H)g + (tr. HJ)tl] (3.7)
n

Now as both H and J are parallel with respect to v; therefore tr.H and

tr.HJ are constants. Thus, Equation {3.7) proves the theorem.

COROLLARY. The only symmetric (anti-symmetric) parallel tensor of type (0,2)

in a non-flat complex space form is the Kaehlerian metric (the Kaehlerian 2-form)

up to , constant multiple.

REMARK 2. The anti-symmetric case of the above corollary agrees well with the

following result [3]: "In a compact Kaehlerian space of constant holomorphic

sectional curvature c > 0, we have B 1, B+, 0 for 0 25, 25 + n)’.

Taking $ 1, the second Betti number B for a compact M(c) with c 0.

Thus the only harmonic 2-form in such a space is the Kaehlerian 2-form fl (Note

that vfl : 0 implies dr} : 0 and 6fl : 0, that is, fl is harmonic).

THEOREM 3. An affine Killing vector field in a non-flat complex space form is

Killing and analytic.

PROOF: If is an affine Killing vector field in a non-flat M(c), then the

Lie-derivative Lg of the metric tensor g is a second order parallel tensor. A

direct application of the symmetric case of the corollary to Theorem 2, shows that

Lg : ag (a being a constant). The last equation implies that LRic : 0 (Ric

denotes the Ricci tensor of M(c)). Now, we know [3] that M(c) is an Einstein
n+2

space, that is, Ric 4
cg. Taking lhe Lie-derivatives of both sides along

and noting c / 0, obtain Lg 0. Hence is Killing. To prove the remaining

part, we first observe the identiiy [4]:

(I,vxJ VxLJ v[,X]J)Y (Lv)(X,JY) J( (Lv) (X, Y)

But VXJ 0 and Lv 0 and therefore the above identity implies

vxLJ 0 (3.8)
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As is Killing, it follows fro,, the relation: fl(Y,Z) g(JY,Z), that

(Vxl.n)(Y,z) g(v, (Vxl.J)z)
The last equation; together with {3.8), yields

vxLfl 0 (3.9)

Note that | is anti-symmetric and therefore, so is Lfl. In view of (3.9) and the

anti-symmetric case of the corollary to Theorem 2, we obtain Lfl : bfl {b is

constant). Using the above relation we derive

LJ bJ (3.10)

Now, L(J2Y) (LJ)(JY) + J((LJ)Y) + J2(LY) shows that

(LtJ)(JY) + J((I,J)Y) 0 (3.1t)

Use of (3.10) and {3.]1) readily gives b 0. Consequently (3.10) reduces to LSJ :

0. Hence is an analytic vector field [3]. This completes the proof.

REMARI[ 3. In Theorem 3 we have proved that a Killing vector field in a

non-flat complex space form is analytic vector field of J. One can compare this

result with the following result of Yano [3]: "A Killing vector field in a compact

Kaehler space is analytic’. Our result assumes the vector field to be just affine

Killing and proves it to be Killing and analytic in a complex space form (not

necessarily compact), whereas Yano’s result proves a Killing vector to be analytic if

the space is compact Kaehler (not necessarily of constant holomorphic sectional

curvature).
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