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ABSTRACT. Let 8(x) be the number of numbers not exceeding x satisfy the 3X + 1
conjecture. We obtain a system of difference inequalities on functions closely
related to 6. Solving this system in the simplest case, we

3

establish 6(x) > cx 7 . This improves a result of Crandall [1].
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1. INTRODUCTION.

The famous conjecture of Collatz-Kakutani, also known as the Syracuse or the

"3X + 1" problem, claims that the sequence

@ e T(un) = (1.1)

=3

—é% a = 0 (mod 2)

+
converges to the cycle (1,2) for any a, e 2.
The following well-known heuristic argument serves as an evidence for its
validity. Consider T as though it were a random walk. It is natural to suppose that

odd and even numbers appear independently, with probability 1/2 at each jump.
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Then T(n)(ao) should converge since the mathematical expectation

T(a)

3 11
of-—a— is about CE .-5) < 1.

Although this conjecture seems to be intractable at present, some supporting
results have been obtained. An interesting review on this problem can be found in
[2]. In particular, Crandall [1] proved that the conjecture is true for many values
of a. Namely, set 9(x) = ‘ {u: T(k)(u) = 1 for some k » 0 and u < x} '.

Thus, 9(x) is just the number of numbers not exceeding x satisfing the conjecture.
Then Crandall's result is 0(x) > cxr, for appropriate constants ¢, r > 0. However,

his proof gives a very poor value for r, about 0.05.

Here we derive a system of difference inequalities on functions closely related
to 0 (Lemma 4). Solving this system in the simplest case, we
3

establish 9(x) > cx 7. Actually our proof gives a little more, namely:

given any v =1 or 2 (mod 3) that is not in a cycle, for all x > 1
3

' {n € vx: T(k)(n) = v for some k » 1} ' > c0x7,

where <o is a positive constant independent of v.
In some sense the proof may be regarded as an attempt to formalize the above

mentioned heuristic argument.

2. RESULTS.

Consider the infinite directed graph G on the vertex set V = Z+ and the edge
set E = {(T(v), v)}, whose edges are oriented from T(v) to v. Denote by G(v,x) an
induced subgraph of G whose vertex set consists of all integers n such that
some Tk(n) = v and Ti(n) € x for 0 € i € k. That is, it consists of all integers n
whose trajectory hits v and remains below x the entire time. In particular G(v,x) is
the empty set if x < v. We also put G(v) = G(v,»). Observe that G(v) has at most
one cycle since the in degree of each vertex, but may be v, is one. Moreover, if v

does not lie in a cycle of G then G(v) is a tree.

Here we prefer to deal with U, the mapping inverse to T, namely:

2a, @ = 0,1 (mod 3)
U(a) = (2.1)
2a U -2—03—-—1,(152(mod3)
Since only numbers @ = 2 (mod 3) have two inverses under T, we wish to analyze
iterates under U = 'I‘—1 restricted to 1integers = 2 (mod 3). To do this we must

consider values of a (mod 9).
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Let Sn be a complete system of residue classes modulo 3m. We split Sn as

follows:

1, where ac R: =>a i (mod 3).

=]

2
S= U R
Furthermore, put
2 2 5 8 ol en -
Ro=QuUQuQp, where acQ <=> a = i (mod 9).

Obviously, U: Rz > Rﬁ and U:R; *> Ri. The action of U on R: can be split into

the four following operators:

2 2
Uyt R > Rn’ Ul(a) = 4a

1

Uyt Qi > RO_ps Uyl =£2§:_1
U Qrzl > Ri_l, Uy(a) =4—a;—l
Uyt Qi > Ri—l’ Uyle) = 39‘3:"1

The following lemma is an easy exercise in elementary number theory:

LEMMA 1.
2 2 . 2 n-1

(i) U1 ia a bijection R« Rn. Moreover, if a € Rn then £ = 3 is the
smallest positive integer such that Uig)(a) = a.
(ii) U, is a bijection Q2 AR R2 .

3 n n-1
(1ii) U, is a bijection Q8 > R2 .

4 n n-1

The action of U on R: and Ri is much simpler. Namely, U: R: > Rz and

U: Ri > Rﬁ are bijections. Moreover, since a(ERz implies U(a) = 2a € Rz we get

LEMMA 2. If v € Rz then G(v) is a chain.

Now we define the functions we deal with in this paper.
Let v = m (mod 3"). We set f(v,x) = f:(v,x) = | G(v,x)'. (The reason for using the
redundant notation fﬁ(v,x) instead of f(v,x) 1is to simplify the statement of the

difference inequalities that follow.)

Observe that for v £ x

m x o
fn(v,x) 1+ [log2 ;], m C R, (2.2)

2 1
f'::(v,x) 1+ fn"'(2v,x), me R, (2.3)
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Furthermore, let W = {w! be the set of those vertices of G which do not belong to

a cycle. For instance, Uk(4)€ W for all K > 0. Then G(w) is a tree and we set

¢:(y) = inf f:(v, 2yv) = inf{f(v,2yV): ve Wand v = m (mod 3“)}.
ve W

Note that for any m = 2 (mod 3) and n, the set {v: v G(u), v
(mod 3“)} + ¢ because Zkv is in this set and 2 is a primitive root (mod 3") for all n.

LEMMA 3. ¢:(y) is nondecreasing function of y.
PROOF. Obviously, f:(v,x) is a nondecreasing function of x.

Hence, ¢:(y) = inf f:(v, 2yv) is nondecreasing function of y.
The following lemma gives important recurrent inequalities on ¢ﬁ(y).
LEMMA 4. For y 2> 0,
4m—-2
m 4m 3 2
> - -
o) >0y -2 +¢ | (y+ta=-2),meQ

2v-1
2™y -n+e’ (yra-D,medd (2.4)
) > 6™y -2 + [y +al, meQ

where a = log23 = 1.585 and

-1 n-1
m m m3" m+2°3
o (y) = min (R0, o0 (), 4 ). 2.5)
PROOF. (2.5) follows immediately from the definition of ¢ﬁ(y). Let us

demonstrate (2.4). If v = m (mod 3™, me Q: then, by (2.1), if v < x,

lotv, 0] > |etav, 0| + | ¢ E5—E,0].

If 233:_1 2 0 (mod 3) then G (

if v < x,

2v - 1

,x) is a chain by lemma 2. Thus, by (2.2),
m 4m 3x
fn(v,x) = fn (4v,x) + 1 + [logz-iz—:—fl.
4
Hence, ¢:(y) > ¢n“‘(y - 2) + [y + al.
If me Qg then G(v,x) is a forest. Hence,

'G(v,x)' = I G(Av,x)' + | GCZXE:‘l,X)l
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2v - 2
By v- L < =Y and by lemma 3 we get, if y > 0 and x =

3 3 2yv, then

o

v-1

! 4 .3 2v - 1
v:(y) = inf f:(v,x) = inf (fnm(ﬁv,X) +E (-—--5‘—.X)) >

2v-1 2v-1

4m 3 v -1 4m 3
? inf fn (4v, x) + inf fn-l ( 3 ,X) 3 ¢n (y - 2) + ¢n—l (y+a-1).

The case m ¢ Qi may be considered similarly to the case m € Qﬁ. We omit the
details
3
THEOREM 1. 6(x) > czx 7.
PROOF. For n = 2 the system (2.4) becomes for y » 0,
2 8 2
99 (9) > 9y (y - 2) + 3y +a - 2),
8 5 2
vo(y) > dy(y=2) + ¢ (y + a = 1),
5 2
0,0 > 4,Cy - D),
2 2 8 5 8 2
where ¢1(y) = min (¢2(y), ¢2(y), ¢2(y)). Observe that ¢2(y) > ¢1(y) fory » 2 by
B -+ ra-n>dwm,
2 2 1 1
2 2 5
since ¢l(y +a-1) > ¢l(y) and ¢2(y -2) >0 1f y > 2. Hence,
2 2 2 2
20y = min G2(n), () > min GEG, Gy = D) = 4,0y - D) -
This yields if y > 6,
2 2
¢§(y) > ¢;(y - 4) + ¢l(y + o - 1) + ¢1(y +a-2)
2
> 02y 6) + 4y ke =D oy +a-2)
2 2 2
> 450y = 6) + o, (y + a = 5) +4,(y +a-b).

The initial conditions ¢§(0) =1 imply ®§(y) > 1 for y » 6, whence one proves by
induction on n, that for n € y < n + 1, one has ¢§(y) 3 clxy, where A = 1.3534 is the

-6 a=5 a=4

largest root of 1 = X + A + A .

~lw

log, A

Finally, we obtain 9(x) 2> c X > cX where logZA * 0.436.

REMARK. Although system (2.4) seems to be very complicated and we were unable to
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solve it for m 2 3, averaging it over all residue classes modulo 3n—l looks much more

attractive. Namely, define

-n+l m
F(y) = 3 Ly ¥0(y)e

meRn

Using lemmas 1 and 4 we get

-1 . .
TR (D=L L 00 2L, 002 + ), en (y+am2) + ), 4n (yre-l) =
m CR” mER mcR__, mc¢R

~
=}

n-1

= 3“'1Fn(y -2+ %F (yra-2) +3VF (yra-1).

n-1 n-1
Thus,
1 1
Fn(y) > Fn(y -2) + 3 Fn_l(y +a-2)+ 3 Fn—l(y +a-1).
2

Observe that the associated limit equation 1 = A +% (Aa-2+ )\u-l) has A = 2 as

the smallest positive root. Therefore, one might expect that the solution of the

r
difference ineqalities gives 6(x) > c X " where r” 1 when n tends to infinity.
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