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ABSTRACT. By introducing a sublinear functional involving infinite matrices, we esta-

blish its connection with ergodicity and measure preserving transformation. Further,

we characterize the existence of a finite invariant measure by means of a condition in-

volving the above sublinear functional.
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I. INTRODUCTION AND DEFINITIONS.

Let be the set of all real bounded sequence {x normed by lxl suplx
n n>O n

Linear functional on = are called Banach limit [I] satisfying the conditions,

i) (xn) _> O, if Xn_ O, n 0,1,2

ii) (Xn+l) (xn)
iii) lim___ Xn --< (xn) _< lim Xnn+ n/

If there is a number for all Banach limits #, the sequence x {x is called
n

almost convergent and we write; F lim x s It is shown by Lorentz [2] that a se-
n

quence {x is almost convergent with F-limit s, if and only if
n

i+n-
lim -n ki Xk s (I.I)
n+

uniformly in i.
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k(i)Let, A (a be a sequence of real or complex matrices for each i 0,1,2...
n,

{x issuch that a 0, if any n,k,i, is a negative integer. The sequence
n, n

called A summable to s if

(i)
Xk s (1.2)lim k=O an,k

n/

uniformly in i and in this case we write:

A- lim x s, or x s(A).
n n

(i)
In the case a 1/n+I (i < k < i+n) and 0 otherwise, (A) reduces to the

n,k

method (F). If A A a then we obtain the usual summability method (A). It is
n,k’

significant to note that there does not exist any regular method (A) equivalent to

method (F) (See Lorentz [2] Theorem 11 and 12) In the case a a
n,k u+l r= r,k

then (A) reduces to the almost summability method introduced bv King [3].

The method (A) is called conservative if x-> s => x-> s (A), r_egular, if

,i
s s The following characterization of regular matrices is due to Stieglitz [4J. The

method (A) is called regular if and only if the following conditions hold:

kZ__0 lan,(i)Ik for all n and i -> 0, (1.3)

and there exists an integer m such that

(i) (i 4)sup kE__0 an, k
i_>0, n_>m

(i)
uniformly in i (I 5)lim kZ__0 an,k

lim a
(i) 0 for fixed k uniformly in i (I 6)

n,k

We write

(i)I111 sup k0 la
+/-->0 n->O

The matrix A is called translative if

(i) om k=O
n--

unifoIy n , here

(i) () ())d
n,k (an,k-1 an,k

The matrix s called positive, if

()
a 2 0 nkin,k

For real X we wrte,

X+ max (X,O), X max(-X,O).

The matrix is called almost positive, f

([)- O, unfoly inlim kO an,k

(1.7)

(1.8)

(1.9)

(1.10)
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Let (x, F, m) be a finite measure space and let, T; X X be a measurable

transformation. (This is assumed throughout). The measure m is called null invarian

if m(A) 0<->T-IA) O, A F It is conservative, if A T-nA => m(A) =0,

for all n and A F. A measure is called equivalent to measure m, if

m(A) <--> (A) 0, for A F The transformation T is called measure preserving

or invariant, if m(A) m(T-IA), A F It is called ergodic if, T-IA A =>m(A)=O

or m(X/A) 0. The set A is called invariant, if A T-IA. It is called

wandering, if A T-IA, T-2A A F are mutually disjoint. It is called weakly

wandering, if there is an increasing sequence of positive integers {r
k, k 1,2,3 ...}

such that A, T-rlA T-r2A are mutually disjoint. A measure q is called m

continuous if, for > 0 there exists a 0 such that m(A) < q(A) < e. A

sequence of measures {qn is called uniformly m continuous if for each g 0, there

exists a 0 such that m(A) < qn(A) for all n

Write:
i+n-I

t(x) lim sup ki
xk, Xke (l.ll)

n i

Let {I ,t} denote the set of linear functionals , such that #(x) ! t(x). It is

known (see Sucheston [5] Das and Misra [6]) that {I ,t} is the set of all Banach

limits on and {l,t} is unique if and only if (x) -#(-x) and this hap-

pens when

i+n-I

ki
x
k

+a limit

as n , uniformly in i Lorentz [2] calls all such sequences as almost convergent

sequences. Let A be real and such that IIAII < . Then we define, R: I I by

i)
x
k

( 12)R(x) lim sup k0 an k
n i

Since, for all x I

R is finite valued. It is easy to see that it is a sublinear functional on I. By

Hahn-Banach theorem there exists a linear functional on I such that

-R(-x) ! (x) ! R(x), x (R) (1.13)

Let {I,R} be the set of all linear functional satisfying (1.13). It is easily

seen that # is unique if and only if

-R(-x) R(x) (*.4)

and this happens if and only if

(i)
Xk a limitkO an,k

as n , uniformly in i.

We now state a lemma.

LEMMA I. Let x I then

(a) lim x < R(x) ! lim x
n n
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if and only if A is real, regular and almost positive.

(b) -t(-x) -<-R(-x) <-R(x) _< t(x)

if and only if A is regular, almost positive and translative.

(c) If x is almost convergent to s, then

lim k0
a x

k
s uniformly in

2 ERGODICITY.

In this section, we establish that the ergodicity and invariance can be established

in terms of summabi.lity of a particular sequence and thus generalizes a result of

(Sucheston !-5], Theorem 3) involving almost convergence.

We now examine the foIlowing conditions:

(I) For soe {I,R} [m (T-nB 13 c)] re(B) Ore(c), n 0,1,2

()(II) lira k0 an,k m(T-nB n C) re(B) re(C)

u,iformly in [ V B, C e F

(III) T s ergodic and measure preserving.

rgON 1. get (X, , ) be a fnite measure space and let la Then

(al ()> ()

(b) () (I) > T s ergodc

() If is translative. Then

() > ()

(c) If is regular, almost positive, and translat[ve, then

e need the following lena for the proof of the theorem

Lg 2. Let A 0 e {I,R} s: 1 1 be the shft operator

s(x s (xn)n Xn+l Xn+2"
Then

(a) I,(SX) *(x) <- lxll li sup k0 [dn(i),k
i

where d
(i)

is defined by (I 8)n,k

Let A be translative, then for x

(b) (i) R(SX- x) R(x-SX) 0

(ii) (Sx) (x)

(c) R(Sx) R(x)

Let, further

a
(i)

0 fixed k uniformly in i (2 I)lim
n,k

Then
P

(d) R(j0
sr3x) p.R (X)

ere r
0 1,rl,r2 r is a sequence of fixed positive integers.

P

PROOF: Since
(i)

(SXk_Xk)R(Sx-x) lim s?p k0 an, k
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li-m sup k=Zo dn
i)

Xk
n i

k

It follows that

_< [[x[[ li--m sup k_0_ [dn()[ (2.2)IR(Sx-)I
n

Now as is linear, we obtain

(sx) (x) (sx-x) _< R(sx-x) (2.3)

Changing the role of sx and x in (2.2) and (2.3) we obtain (a). When A is trans-

lative (b) (i), (ii) follows from (2.2), and changing the role of sx and x in

(2.2) (b) (ii) follows from (a). Since, R is sublinear,

R(Sx) R(Sx-x+x) < R(Sx-x) + R(x) R(x)

by b (i). Changing the role of Sx and x, we obtain R(x) R(Sx). So (c) follows.

rlx r
2

r r r r
2

Lastly R(S + S x) R(S
2
Xx x + S x + 2x) _< R(S x-x) + R(S x-x) + 2R(x).

i.e.
r r

2
r r

R(S Ix + S x) 2R(x) R(S Ix x) + R(S 2x x) (2.3)

But,

Similarly

Hence,

Again, since

rl (i)R(S x x) 1Tm sup k-E0- an,k (Xk+r Xkn+ i

(i)
a (i)) x_lim sup kO (an,k-rl n,k

n i

n-I I’)krl (i)
a (i))x

k
a
n

lim sup (an,k-rl n,k kZO Xk]
n i

-wrl (i) -an,k(i) xlim sup (an,k_rln i
by (2.1)

=_ Xk rl-l_ (i)k_j_l an i)
lim sup kZ_r j-EO (an k-j
n/ i

< [[x[[
j

n i

0 "." A is translative)

r
R(S 2x- x) 0

r r
R(s Ix + S 2x) _< 2R(x), x i

r r
2

r r
22R(x) R(2x- S x- S x + S x + S x)

rlx r
2

r r
2R(x S + R(S S x) + R(S x+S x)

Proceeding as above, we have

r r
2

2R(x) R(S x + S x) x e- I
Hence,

r r
2

R(S x + S x) 2 R(x) x 1 (2.4)

(d) follows by repeated application of (2.4).
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PROOF OF THEOREM I.

(a) Let (II) hold. Then

-R [-m(T-nB 0 C)] R [m(T-nB n C)]

Since

-R(x) _< Q(x) _< R(x) x e I
It follows that

m(T-nB C)] m(B)" re(C) n= 0,1,2

This proves (II)=> (I).

(b) Take, T-IB B, C x/B= B-lin (I).

Hence it follows that

0 (0) m(B) m(B I)
either m(B) 0 or m(B I) O.

i.e. T is ergodic.

Writing, C X in (I), we obtain

[m(T-nm)] re(B) re(X) (2.6)

-I
Replacing B by T B in (2.6), we obtain

[m(T-n-IB)] m(T-IB) m(X) (2.7)

If further, A is translative, by Lemma 2 (b)

[m(T-n-IB)] [m(T-IB)]
Again, since 0 < m(X) < , it follows from (2.6) and (2.7) that

-Im(T B) re(B)

Hence, (I) => (III)

(c) In veiw of (a) and (b), it is enough to show that (III) => (II). Take any fixed

B F such that m(B) 0 Define, for {I,R} and C F

m(T-nBoC)
qn(C) re(B) n 0,1,2

q(c) (qn(C)) (2.8)

We now show that q is an invariant measure and m q.

Since, A is almost positive

for x
k E I.
Write

So, by (2.9)

-I i) x
k

0 uniformly in ilim kE__O an k

a
+ (i)(x) lm sup k=Zo n,k Xkn i

R(x) R+(x)
Since, x _> 0 => R+(x) > 0

R(qn(C)) _> 0

Again, since m is a measure, qn(C) Z 0. So it follows from (2.10) that

x _> 0 R(x) _> 0 (2.10)

(2.9)
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Since R is sublinear, we have

-R [-qn(C)] 0.

Now, it follows from (2.5) that q(c) Z O, C F. Let B. F be a countable sequence
i

of disjoint sets. Then

q(il Bi) [qn(il Bi)]

[i qn(Bi)] (’. m is a measure)

=i [qn(Bi)] (0 is continuous linear functional)

So, q is countably additive and hence it is a measure.

Next,

q(T-Ic) [m(T-nBa-IC)
re(B)

[m(T-n+IBC)
m(B) (’." T is a measure preserving)

[qn-I (C)

Since is shift invariant by Lemma 2 (b),

[qn(C)]
q(C) c .

This proves that q is an invariant measure. Site T is ergodic, the invariant sets

are of measure 0 or I. Since m and q are invariant measures, an invariant mea-

sure is determined by the value it takes on invariant sets (See Sucheston [8], Theroem,

it follows that q m.

Now, we have

q(C) m(C)
m(r-nBoC

m(B) -] i.e. [m(T-nBnC)] m(B) m(C)

Hence, is unique on {T-nB n C}, n 0,1,2 But, {I,R} has unique value

if and only if

R(x) =-R(-x) %

Hence, it follows that

R[m(T-nBo C)] -R[-m(T-nBo C)] m(B) re(C)

i.e. (II) holds and hence proves (c) completely.

3. EQUIVALENT MEASURES.

Many necessary and sufficient conditions have been determined for the existence of

equivalent invariant measures (see Sucheston [7], [8], Mrs. Dowker [9], Calderon [10],

and Hajian and Kakutani [11]). In the pointwise ergodic theorem of Birkhoff [12], it

was necessary to take invariant measure, but Halmos [13] has shown that even if a mea-

sure is null invariant and conservative, an equivalent measure need not exist.

Sucheston [7], [8] has used Banach limit technique to prove the existence of invariant

measures We now generalize some of the theorems of Sucheston [5] involving almost con-

vergence and some results of Mrs. Dowker on (C,I) convergence and establish the exis-

tence of invariant measure by using linear functional e {I=,R}
We now prove

THEOREM 2. Let A be a real matrix such that IIAII < and let A be almost posi-

tive and translative. Let (x, F, m) be a finite measure space and T be a measurable
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transformation. Then, the following condition are equivalent.

(I) There exists an equivalent finite invariant measure.

(II) For some e {I=,R} and all B e F

re(B) > 0 [m(T-nB)] 0

(III) re(B) > 0 => R [m(T-nB)] 0

PROOF. (I) (II). Suppose that p is an invariant measure which is equivalent to

m. Suppose that (II) fails to hold. Then there exists a B e such that m(B) > 0

and

[m(T-nB) 0

But, since -R(-x) ! (x) ! R(x) x i= and by Lemma

lim x < -R(-x) R(x) < lim x
n nn->oo n-co

it follows that for all B E F

0 [m(T-nB) lim m(T-nB)

But, since lira m(T-nB) > 0, it follows that
n/

lim m(T-nB) O.

Hence, there exists a sub sequence {xk} such that

lim m(T-nkB) 0
k+

Since p is equivalent to m we obtain

p(B) > 0 and lim p(T-nkB) 0.
k+

Since p is invariant, we have

p(r-nkB) p(B)

Hence p(B) O. This is a contradiction and this proves the fact that (I) => (II).

(II)=> (III) Let II hold Since, [m(T-nB)] < R [m(T-nB)] it follows that

[m(T-nB)] > 0 R [m(T-nB)] > 0

(III) (I) Suppose (III) holds and (I) fails. Since Condition (I) is equiva-

lent to non-existence of weakly wandering set (See Sucheston [7], Theorem 6) it follows

that there exists positive integers r
0

I, r I, r
2

and a set B E F with m(B) >0

such that
_r T-r2 -r

kB, T B, B, T B

are mutually disjoint. Since,

(i)
uniformly in i it follows thatlim kE=0 an,k

n->o

Again

R[m(T-k X)] R[m(X)] m(X) R(1) m(X).

s
m(X) R [m(T-nX)] > R [m(jO T-rJB)]
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(i) s _rj_kBm(X)
n+lim suPi k=ZO an’k m [3tJ0o= T

lira sup a
n sr3xkkO ,k j=0

Where X
k m(T-k B), S is a shift operator. Then by Lemma 2(d),

m(X) _> S R(X) (3.1)
Then it follows from (3.1) that

re(X) _> s R m(T-kB) (3.2)

Since m(T-k S) 0 by hypothesis and s is an arbitrary positive integer. This

contradicts (3.2). This proves (III)=> (I).

In the next theorem we give yet another characterization of existence of invariant

measure in terms of the sublinear functional R(x).
THEOREM 3. Let A satisfy the condition of Theorem 2. Let (x, F, m) be the finite

measure space. Then there exists an invariant measrure equivalent to measure m on X,
if and only if,

(i) m is null-preserving.

(ii) T is conservative.

(iii) n__ZO an,k(i) m(T-kB) converges uniformly in i for every B e F

Again, whenever it has equivalent invariant measure, then the map q

defined by q(B) R [m(T-nB)] is an invariant measure equivalent to m and agrees

with m on invariant sets.

PROOF: NECESSITY

Let us assume that m admits an invariant equivalent measure B Then is m

continuous (See Halmos [9] p. 125).

Write for e {I,R}

q(B) [m(T-n B)]

We want to show

(a) q is a measure

(b) q is a m continuous

(c) q is invariant.

As in the proof of Theorem 1, we can show that

q(B) _> O, for all B e F
It is easy to show that

B,C e F B C => q(B) < q(C)

Since is linear, it also follows that q is finitely additive. Since is

m-continuous, for given e > O, 5 > 0 Such that

m(T-nB) < e when (B) (T-nB) < 5 and m(T-nB) < e => q(B) < .
So q is m-continuous. The countably additivity of m and m-continuity of q (See

Halmos [9] p. 39).

Next,

q(T-IB) q(B) [m(r-n-IB)] [m(T-nB)]

[m(T-n-IB) m(T-nB)] ( is linear).
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_< R [m(T-n-lB) m(T-nB)]
(i) in(T-k-lim sup k--ZO an,k

n i

Since an ()--O, V n and i

li sup k=O [a
n

(i) (i) m(T-kB)
n i

,k-1 an,k

l)l< re(X) lira sup k__Z0 [d
n k

n i
Since A is translative,

B) m(T-kB)

0 as n uniformly in i.
Hence,

-Iq(T B) < q(B).

-I
Changing the role of T B and B, we obtain

-Iq(B) q(T B)

Hence,
-!

q(T B) q

i.e. q is invariant under T

-1
Now if T B B. Then,

qB) [m(T-IB)] [m(B)]

m(B).l) mB)

So q m on invariant sets. Hence (Sucheston [8], Theorem 2) q m on F. Thus

q(B) [m(T-nB)] is unique. But {I,R} is unique if and only if R(x) =-R(-x)--

q(B) and this happens if and only if

(i)
lim k=Z0 an, k m(T-km) q(m)
n-

uniformly in i.

Now since, q(T-IB) q(B), B F and q m on F, we have m(T-IB) re(B),

B E F so re(B) 0 => m(T-IB) =0

i.e. m is null-preserving

Again (See Sucheston [7], Theorem 6) existence of invariant measure is equivalent to

non-existence of weakly wandering sets and non-existence of weakly wandering sets is the

same as conservativeness of T.

SUFFICIENCY:

Let (i), (ii) and (iii) hold. Define

(i) m(T-kB)q(B) lim k=EO an,k

Then it can be proved as before that q ia an invariant measure. So only we have to

prove q is equivalent to m. Since T is null preserving,

-Ire(B) 0 => m(T B) O.

Then

(i)q(B) lim k__ZO an, k m(T-kB)’- 0

uniformly in i.
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Write;

Conversely, let q(B) 0.

A a T B. Then
n=l i=n

, T-iB)q(A )= q n i=n

q(
iI T-iB

i q (T iB) (q is a measure)

in
q(B) (q is invariant)

=0 ,
Since, q and m agrees on invariant sets, we have m(A O. Since, T is conserva-

tive by recurrence theorem m(B/A 0 => m(B) 0.

Hence q is equivalent to m.
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