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ABSTRACT. Coefficient conditions sufficient for spiral-likenss are found by

convolution methods. The order of starlikeness for such functions is also determined.
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1. INTRODUCTION.

A function £(z) = z + [‘2':.2 anzn analytic in the unit disk A = {‘z' < 1} is said to
be starlike of order a, 0 < a< 1, if Re {zf'/f} > a, z € A, and 1is said to
be A spiral-like, -n/2 < A < n/2, if Re{eixzf'/f} >0, z € A We denote these
classes, respectively, by S*(a) and Sp(A). Note that Sp(0) = S*(0), the family of
starlike functions. Functions in Sp()) were shown by Spacek [4] to be univalent

in A and were later studied extensively by Libera [1].

A function f is in S*(a) if its coefficients are sufficiently small.

THEOREM A [2]. If the coefficients of f(z) = z + T az" satisfy the inequality

n-!:'Zn

n nl:z % |an| <1

then|(zf'/f) - ll <l-a, z € A, and hence f € S*(a).

It 1is our purpose here to find coefficient conditions guaranteeing that f is in
Sp()A). Our methods will involve convolution properties and will also furnish us with
an alternate proof that (1) is a sufficient condition for f to be in S*(a).

n

The convolution or Hadamard product of two power series f(z) .ngO a z

£ abz". In [3] it is
=0 “n n

L
and g(z) = L, “nfo

shown that f ¢ S*(a) if and only if

bnztl is defined as the power series (f*g)(z)

L(gzt ((x+20-1)/ (2-20)) 2>
z 2
(1-2)

)#0 (zeA,lxl-l)
and f € Sp(A) if and only if

- - 2
z + ((x—e Zix)lé“'e 21%)2 ) #0 (z € 8, le =D.
(1-z)

1
z (&

Now (z + czz)/(l—z)2 =z +n:-£2 (n + (n-l)c)zn, so we may restate these results as
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THEOREM B. The function f(z) = 2z +n§2 a“zrl e S*(a) (Sp(A)) if and only if

1+ ?:’2 (n + (n—l)c)anzn—]'# 0 for all z € A and |x| = 1, where
n= 1ot & - arc Jhere

-21iA
—21A)’

x+2a-1 ( Xx—e
= c =
2-2a l+e

- -1
Since 'l +n§2 (n + (ﬂ—l)c)anzn 1‘ >1 -n:fz ln + (n-l)c“an“zirl ,
a sufficlent condition for f to be in S*(a) or Sp(1) is that nzzln + (n-l)c”an| <1

for the appropriate choice of c. A straightforward computation shows that

1 2a-1 -1)(2
o+ SRERED oy AN L,

and we can conclude from Theorem B that condition (1) is sufficient for f to be in

S*(a). The corresponding result for Sp(A) is computationally more involved.

2. THE MAIN CLASS.
THEOREM 1. The function f(z) =z +n:f az" ¢ Sp(A) if b Bn()‘)'an‘ <1 for

2 n — n=2
(n-1) + J(&-l) + 4n coszx
B (1) =
n 2 cos A

The result is sharp, with fn(z) =z + anzn_i_xl Sp(A) if and only if la“l < l/Bn( A).

=21

)/(l+e-21x

PROOF. From Theorem B, it suffices to show for ¢ = (x—e ) that

‘ Tax |n + (n-l)cl =B (A). Writing ¢ = ¢ + :I.r:2 ¢ and <, real, we have
x|=1

(2) ln + (n-l)c' = /n-2_+ (n-l)[(n-l)(cf + cg) + chl] .
2 2 2 d Settin
Hence {n + (n-l)c‘ will attain its maximum when (n-1) (c:1 + cz) + 2nc, does. g

X =e B, a computation shows that

2 2 _1- cos(2) + B) cos(2\ + B) + cos B- (1 + cos ZX)

c
1 2 1 + cos 2A cl 2(1 + cos 21)
Thi
us 2 2 cos(2A + B) +n cos B (1 +n cos 21)
(n--l)(cl +cy) + 2nc, = 2(1 + cos 21)

which is maximized when g(B) = cos(2X + B) +n cos Bis maximized. But g( B) attains

sin 2 )’ with 3(80) - L.-l)2 + 4n coszx « For

-1
its maximum when B = B, = tan (- T+ cos Zh -

this choice of ﬂb, we have

2
Jn-1)2 + 4n cos?A + (n-1) - 2n cos“A _ £ (0.

2 2
(n-1)(cT + ¢,) + 2nc, =
1 2 1 2 cos ZA
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It now follows from (2) that

pax In+ @-1e| = %+ @-De_0 Y7,
x| =1
2 2 2 2
- ((n-l) + 2n cos A+ (n-1) Y(n-1)" + 4n cos A )1/2.
2 coszx

which may be expressed as Bn(x). This completes the proof. To show sharpness, note
that according to Theorem B fn(z) =z + anzn # Sp(A) 1if z"-1 = - [(n+ (n-l)c)an]_l
has a solution for z € A. Choosing c so that 'n + (n-l)c' - Bn(x), we see that
n
fn(z) * Sp(1) if ‘an| > l/Bn(A). In particular, fn(z) =z + az ¢ Sp(A) 1f and only
if fa | < 1/B ().
n
COROLLARY 1. If £ (2) = z +a_ 2z ¢ Sp (X)), then £ ¢ Sp(}) for || < |l
PROOF. This is a consequence of Bn(A) being an increasing function of ‘xl.

In fact, any function that satisfies the conditions of Theorem 1l for X = AO will

also be in Sp(1) for ‘x' < 'AO" a sharp contrast to the inclusion properties for the
general class Sp(A). The function
_ze-il
fx(z) = z(1-2) cos A is in Sp(A) but it is not in Sp(A) for any y # A. On the
other hand, the upper bound on the modulus of the coefficients for f € Sp(1) is a
decreasing function of 'AI. Zamorski [5] showed the sharp coefficient bounds 'an' for
f ¢ Sp(1) to be

n-1 2 2
|an| = I /{k-l) + 4k cos {/(n—l)!, with fx(z) being extremal.
k=1

Though Theorem ! gives a sharp result, it is not aesthetically pleasing because
of the complicated nature of Bn(A). A consequence of the inequality
1 + (n-1)sec A > Bn(A) is more palatable sufficient condition.

T - n
COROLLARY 2. 1If % (1 + (n-1)sec x)|an| <1, then £(z) =z + 22" € Sp().

Using a different method, Corollary 2 will also be shown to follow from Theorem 3,

3. ORDER OF STARLIKENESS.

Since Bn(A) > n, we see from Theorem A that a function satisfying the conditions
of Theorem 1 must be starlike. We can actually do better.

THEOREM 2. If f satisfies the conditions of Theorem 1 then f ¢ S*(ao) for

ay = (3 -7/1+38 coszk)/Z(l + cosA). The result is sharp, with extremal function

f2(z) =2z + zz/Bz(A).
PROOF. In view of Theorem A, we need only show that Bn(k) > (n-ao)/(l-ao) for
every n. Since BZ(A) = (2-%))/(1-a0), it suffices to prove that (l-q))Bn(A)/(n-ao) is

an increasing function of n. Setting

I

2 2
o(x) = XL* )(:;1) + 4x co8 Ay 4111 show that G'(x) > O for x > 2.
o
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A differentiation of G leads to

2
(l—ao—Zcos MDx - (l-a0+ ZQOCOSZA)

(x-a))2¢" (x) = +

]

-a,
v/(x'l)z + 4x cos®A
= H(x), say.

4si n2 Aco s2 A(x-a.)
Since H'(x) = 0

((x-'l) + 4x cos A)

373 >0, it follows for x » 2 that

H(x) > H(2) = cosA (l __.ll_i(lg_é_l_) > 0.
/1 + 8cos?a

Therefore G(x), and consequently (l—qD)Bn(x)/(n-ao), is an increasing function. This
completes the proof.

We have actually shown more according to Theorem A.
COROLLARY. If f satisfies the conditions of Theorem 1, then
lﬁf'/f) - ll < l-ao, z € A.

Functions in S*(a) need not be in Sp(A) for A#0. The function
£ (2) = 2/ (1-2)2 (17
However fu # Sp(A),A#0. We next look at a subclass of S (a) whose functions are
spiral-like.

THEOREM 3. 1If f(z) =z + ese is analytic with I(zf'/f) - l| < l-a for z € A,
then f ¢ Sp(1) for ' ' < cos (l-a). The result is sharp, with extremal function
£(z) = ze(l—u)z

PROOF. We may write (zf'/f)-1 = (l-a)w(z), where 'w(z)' <1 for z € A.
Thus Re{eixzf'/f} =cos A + (l-a) Re{eixm(z)} > cos A-(l-a)'eum(z)| >
cos A - (1-a) > 0 for |x| < cos—l(l—a), and the proof is complete.

COROLLARY. If |(z£'/f) - 1| < cos A, then f € Sp(A).

PROOF. Set a = 1 - cos A in Theorem 3.

€ S (a) since zf'/f maps A onto the half plane Re w > a.

Finally an application of Theorem A, with a = 1 - cos A, to Theorem 3 provides us
with an alternate proof to Corollary 2 of Theorem l.
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